sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A379802
Indices k such that A377091(k) is immediately followed by A377091(k+1) = -A377091(k).
[ "2", "12", "31", "60", "90", "132", "183", "241", "307", "380", "462", "552", "677", "997", "1125", "1444", "1563", "1722", "1892", "2117", "2257", "2450", "2652", "2914", "3081", "3306", "3540", "3782", "4033", "4291", "4560", "4830", "5112", "5403", "5701", "6006", "6320", "6643", "6972", "7311", "7657", "8464", "8743", "9121", "9506", "9902", "11238", "12100", "12542", "12883", "15877", "16257", "17424", "17823", "18361", "18906", "19462" ]
[ "nonn" ]
19
1
1
[ "A377091", "A379066", "A379788", "A379794", "A379802", "A379803", "A379804", "A380837" ]
null
N. J. A. Sloane, Jan 19 2025
2025-02-09T12:13:27
oeisdata/seq/A379/A379802.seq
a0c9876a212de762564d208fc71903af
A379803
A377091(k) for k in A379802.
[ "2", "8", "-18", "-32", "50", "72", "-98", "-128", "-162", "200", "242", "288", "338", "512", "-578", "722", "800", "882", "968", "-1058", "1152", "1250", "1352", "1458", "-1568", "1682", "1800", "1922", "-2048", "-2178", "-2312", "2450", "2592", "-2738", "-2888", "3042", "3200", "-3362", "3528", "-3698", "-3872", "4232", "-4418", "-4608", "4802", "-5000", "5618", "-6050", "6272", "-6498", "7938", "-8192", "8712", "-8978", "-9248", "9522", "-9800" ]
[ "sign" ]
21
1
1
[ "A377091", "A379066", "A379788", "A379794", "A379802", "A379803", "A379804", "A380837" ]
null
N. J. A. Sloane, Jan 19 2025
2025-02-12T01:57:50
oeisdata/seq/A379/A379803.seq
93382f83012fc6aee950f79844b76022
A379804
By definition, |A379803(k)| is twice a perfect square, say 2*b(k)^2. The values of b(k) appear to be the consecutive natural numbers 1, 2, 3, ... except that the numbers in the present sequence are omitted.
[ "14", "15", "18", "45", "51", "52", "54", "58", "59", "60", "61", "62", "65", "71", "101", "102", "104", "106", "111", "114", "117", "120", "121", "122", "123", "124", "125", "126", "128", "130", "141", "161", "164", "176", "189", "203", "204", "213", "215", "229", "241", "256", "261", "262", "281", "284", "301", "306", "307", "310", "311", "312", "314", "315", "316" ]
[ "nonn" ]
7
1
1
[ "A377091", "A379066", "A379788", "A379794", "A379802", "A379803", "A379804" ]
null
N. J. A. Sloane, Jan 19 2025
2025-02-09T19:07:41
oeisdata/seq/A379/A379804.seq
d46d3ac97647528b8466f6c9510b1da5
A379805
Floor of n*(1+sqrt(6))/2.
[ "0", "1", "3", "5", "6", "8", "10", "12", "13", "15", "17", "18", "20", "22", "24", "25", "27", "29", "31", "32", "34", "36", "37", "39", "41", "43", "44", "46", "48", "50", "51", "53", "55", "56", "58", "60", "62", "63", "65", "67", "68", "70", "72", "74", "75", "77", "79", "81", "82", "84", "86", "87", "89", "91", "93", "94", "96", "98", "100", "101", "103", "105", "106", "108", "110", "112", "113", "115", "117", "119", "120", "122", "124", "125", "127", "129", "131", "132", "134", "136", "137", "139", "141", "143", "144", "146", "148", "150", "151", "153", "155", "156", "158", "160", "162", "163" ]
[ "nonn" ]
12
0
3
[ "A000201", "A182760", "A379800", "A379801", "A379805" ]
null
N. J. A. Sloane, Jan 20 2025
2025-01-21T06:32:31
oeisdata/seq/A379/A379805.seq
2aa5ecb3b850c45b66cf0d2e2aa8613f
A379806
Numbers k such that 2^prime(k) - 3 is prime.
[ "2", "3", "10", "51", "4462", "6883" ]
[ "nonn", "more" ]
9
1
1
[ "A000720", "A050414", "A283266", "A379806" ]
null
N. J. A. Sloane, Feb 01 2025
2025-02-09T06:56:26
oeisdata/seq/A379/A379806.seq
18c7d16ef2ab1d2a292100fd2be301fd
A379807
Records in A379059.
[ "0", "1", "2", "5", "6", "7", "10", "11", "12", "22", "23", "24", "25", "33", "34", "35", "36", "46", "48", "52", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "82", "83", "84", "85", "86", "87", "88", "89", "90", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "122", "123", "124", "125", "126", "127", "128", "129", "130", "131", "132", "148", "149", "150", "151", "152", "153", "154", "155", "156", "157", "158", "159", "160", "188", "189" ]
[ "nonn" ]
6
1
3
[ "A377091", "A379059", "A379807", "A379808" ]
null
N. J. A. Sloane, Feb 01 2025
2025-02-01T23:05:35
oeisdata/seq/A379/A379807.seq
e06240dd8096411d640a873975e10d88
A379808
Indices of records in A379059.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "14", "15", "16", "17", "19", "22", "24", "29", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "90", "91", "92", "93", "94", "95", "96", "97", "99", "101", "105", "106" ]
[ "nonn" ]
8
1
3
[ "A339807", "A377091", "A379059", "A379808" ]
null
N. J. A. Sloane, Feb 01 2025
2025-02-01T23:07:55
oeisdata/seq/A379/A379808.seq
be68983c6fe88b3da7a092adb74313ad
A379809
Coefficient of x^n in (3-sqrt(5+4*sqrt(1-36*x)))/12.
[ "1", "11", "206", "4711", "119762", "3251262", "92306652", "2707246767", "81383125802", "2494303114138", "77649809235908", "2448551324091158", "78045772623110068", "2510492897120044508", "81392303609900487864", "2656907435381578839999", "87251781133687146226074", "2880554534221668509513154" ]
[ "nonn" ]
31
1
2
[ "A051862", "A379809" ]
null
N. J. A. Sloane, Feb 07 2025
2025-02-22T10:43:30
oeisdata/seq/A379/A379809.seq
a8f9e52ababdedec2cf65e0f9b85548b
A379810
Composite numbers in A381019 which are immediately followed by another composite number, in order of their appearance.
[ "15", "46", "104", "305", "261", "1691", "380", "406", "508", "1175", "3281", "7729", "2827", "10877", "6289", "13289", "1737", "4829", "2945", "3205", "9673", "1940", "21253", "1970", "31921", "21127", "34861", "5457", "22219", "120983", "99893", "110843", "148613", "105029", "164107", "12905", "89279", "15245", "195617", "79909", "89827" ]
[ "nonn" ]
20
1
1
[ "A379810", "A381019", "A381120" ]
null
N. J. A. Sloane, Feb 15 2025
2025-02-23T11:14:34
oeisdata/seq/A379/A379810.seq
5d8dde48695a4f4500bcd0dc5e86c9d7
A379811
a(n) = index of 2*prime(n) in A381019.
[ "7", "23", "47", "79", "123", "223", "325", "364", "630", "910", "1034", "1310", "1610", "1857", "2219", "2819", "3378", "3979", "4499", "4773", "5057", "5790", "6899", "7581", "9226", "9429", "10225", "11459", "12329", "12781", "15890", "16910", "18506", "19887", "22211", "22514", "23738", "27231", "27899", "29602", "32055", "32418", "37255", "38031" ]
[ "nonn" ]
6
1
1
[ "A379811", "A381019", "A381118" ]
null
N. J. A. Sloane, Feb 15 2025
2025-02-16T21:55:19
oeisdata/seq/A379/A379811.seq
78a7aeae8a87830b0ee7e797a90cf810
A379812
a(n) = sigma_1(n) * sigma_2(n).
[ "1", "15", "40", "147", "156", "600", "400", "1275", "1183", "2340", "1464", "5880", "2380", "6000", "6240", "10571", "5220", "17745", "7240", "22932", "16000", "21960", "12720", "51000", "20181", "35700", "32800", "58800", "25260", "93600", "30784", "85995", "58560", "78300", "62400", "173901", "52060", "108600", "95200", "198900", "70644" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A000203", "A001157", "A072861", "A086666", "A092346", "A158274", "A158275", "A356533", "A356534", "A379812", "A379813", "A379814" ]
null
Amiram Eldar, Jan 03 2025
2025-01-03T09:36:59
oeisdata/seq/A379/A379812.seq
ef88d43f07eabc395082fcbc78a3df90
A379813
a(n) = sigma_1(n) * sigma_3(n).
[ "1", "27", "112", "511", "756", "3024", "2752", "8775", "9841", "20412", "15984", "57232", "30772", "74304", "84672", "145111", "88452", "265707", "137200", "386316", "308224", "431568", "292032", "982800", "488281", "830844", "817600", "1406272", "731700", "2286144", "953344", "2359287", "1790208", "2388204", "2080512", "5028751" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A000203", "A001158", "A013663", "A072861", "A091258", "A091259", "A092345", "A092348", "A356533", "A356534", "A379812", "A379813", "A379814" ]
null
Amiram Eldar, Jan 03 2025
2025-01-03T09:36:55
oeisdata/seq/A379/A379813.seq
a916f45453e3424eb1dc4b6ea0e2114a
A379814
a(n) = sigma_2(n) * sigma_3(n).
[ "1", "45", "280", "1533", "3276", "12600", "17200", "49725", "68887", "147420", "162504", "429240", "373660", "774000", "917280", "1596221", "1425060", "3099915", "2483320", "5022108", "4816000", "7312680", "6449040", "13923000", "10253901", "16814700", "16760800", "26367600", "20536380", "41277600", "28659904", "51117885" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A001157", "A001158", "A002117", "A013662", "A013664", "A013665", "A091260", "A092344", "A298754", "A379812", "A379813", "A379814" ]
null
Amiram Eldar, Jan 03 2025
2025-01-03T09:37:02
oeisdata/seq/A379/A379814.seq
e9f30d275964e6e3881fdc9bc5fa36f0
A379815
a(n) is the smallest integer k > n such that sqrt(1/n + 1/k) is a rational number; or 0 if no such k exists.
[ "0", "16", "9", "0", "20", "12", "441", "64", "16", "90", "1089", "36", "4212", "98", "225", "0", "272", "144", "549081", "25", "567", "2156", "13225", "48", "144", "650", "81", "98", "142100", "150", "71622369", "256", "363", "578", "1225", "64", "1332", "684", "468", "360", "41984", "252", "521345889", "198", "180", "559682", "108241", "144", "63", "400", "127449", "117", "1755572", "108", "2420", "392", "4275", "568458" ]
[ "nonn" ]
16
1
2
[ "A002350", "A024352", "A076600", "A257522", "A357372", "A378501", "A379815", "A379816" ]
null
Felix Huber, Feb 07 2025
2025-02-12T16:54:27
oeisdata/seq/A379/A379815.seq
f7a99f8973cd668ece95d5e7ce47a167
A379816
a(n) is the smallest integer k > n such that sqrt(1/n - 1/k) is a rational number; or 0 if no such k exists.
[ "0", "4", "12", "0", "25", "18", "448", "16", "12", "100", "1100", "18", "4225", "112", "240", "18", "289", "36", "549100", "25", "588", "2178", "13248", "72", "45", "676", "108", "126", "142129", "180", "71622400", "64", "396", "612", "1260", "48", "1369", "722", "507", "400", "42025", "294", "521345932", "242", "225", "559728", "108288", "72", "112", "100", "127500", "169", "1755625", "162", "2475", "448", "4332", "568516", "16573100", "150" ]
[ "nonn" ]
24
1
2
[ "A002349", "A002350", "A024352", "A378501", "A379815", "A379816" ]
null
Felix Huber, Feb 07 2025
2025-02-25T09:58:06
oeisdata/seq/A379/A379816.seq
1260d9be62b8ce8f5bb97fb4e64c0df9
A379817
Irregular table T(n, k), n >= 0, k >= 0, read by rows such that T(n,k) = f(n,k)/f(2^k-1,k) where f(n,k) is defined in Comments.
[ "1", "1", "1", "3", "2", "1", "3", "1", "7", "4", "3", "7", "2", "7", "12", "3", "1", "7", "6", "1", "15", "8", "7", "15", "4", "17", "26", "6", "3", "17", "13", "2", "31", "42", "9", "7", "31", "21", "3", "15", "50", "30", "4", "1", "15", "25", "10", "1", "31", "16", "15", "31", "8", "37", "54", "12", "7", "37", "27", "4", "69", "88", "18", "17", "69", "44", "6", "37", "112", "63", "8", "3", "37", "56" ]
[ "nonn", "base", "tabf" ]
6
0
4
[ "A000120", "A329369", "A341392", "A379817" ]
null
Mikhail Kurkov, Jan 03 2025
2025-01-14T16:11:44
oeisdata/seq/A379/A379817.seq
3fbc529503ad4dc24c8faae204292a5b
A379818
a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^f(n)) + a(2n - 2^f(n)) + a(A025480(n-1)) for n > 0 with a(0) = 1 where f(n) = A007814(n).
[ "1", "1", "4", "1", "10", "4", "10", "1", "22", "10", "28", "4", "49", "10", "22", "1", "46", "22", "64", "10", "118", "28", "64", "4", "190", "49", "118", "10", "190", "22", "46", "1", "94", "46", "136", "22", "256", "64", "148", "10", "424", "118", "292", "28", "478", "64", "136", "4", "661", "190", "478", "49", "796", "118", "256", "10", "1177", "190", "424", "22", "661", "46" ]
[ "nonn", "base" ]
4
0
3
[ "A007814", "A025480", "A329369", "A341392", "A347205", "A379818" ]
null
Mikhail Kurkov, Jan 03 2025
2025-01-14T16:11:53
oeisdata/seq/A379/A379818.seq
6e6a6f6e87f82d3fcde5671768fe9283
A379819
Irregular table T(n, k), n >= 0, k >= 0, read by rows such that T(n,k) = f(n,k)/f(2^k-1,k) where f(n,k) is defined in Comments.
[ "1", "1", "1", "4", "2", "1", "3", "1", "10", "4", "4", "8", "2", "10", "13", "3", "1", "7", "6", "1", "22", "8", "10", "18", "4", "28", "30", "6", "4", "20", "14", "2", "49", "47", "9", "10", "36", "22", "3", "22", "56", "31", "4", "1", "15", "25", "10", "1", "46", "16", "22", "38", "8", "64", "64", "12", "10", "46", "30", "4", "118", "102", "18", "28", "88", "48", "6", "64", "138", "68", "8", "4" ]
[ "nonn", "base", "tabf" ]
6
0
4
[ "A000120", "A341392", "A379818", "A379819" ]
null
Mikhail Kurkov, Jan 03 2025
2025-01-14T16:12:02
oeisdata/seq/A379/A379819.seq
ad82b854ad50d84235efeba377f3a652
A379820
Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} j! * Stirling1(n, j) * Stirling1(k, j).
[ "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "2", "3", "2", "0", "0", "6", "8", "8", "6", "0", "0", "24", "28", "28", "28", "24", "0", "0", "120", "124", "114", "114", "124", "120", "0", "0", "720", "668", "558", "518", "558", "668", "720", "0", "0", "5040", "4248", "3234", "2744", "2744", "3234", "4248", "5040", "0", "0", "40320", "31176", "21768", "16888", "15446", "16888", "21768", "31176", "40320", "0" ]
[ "nonn", "tabl" ]
7
0
12
[ "A108470", "A379820" ]
null
Peter Luschny, Jan 03 2025
2025-01-15T05:52:51
oeisdata/seq/A379/A379820.seq
87892353faf048abe836ab43b2909fa2
A379821
Array read by ascending antidiagonals: A(n, k) = (-1)^(n + k) * Sum_{j=0..k} (j!)^2 * Stirling1(n, j) * Stirling1(k, j).
[ "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "2", "5", "2", "0", "0", "6", "14", "14", "6", "0", "0", "24", "50", "76", "50", "24", "0", "0", "120", "224", "360", "360", "224", "120", "0", "0", "720", "1216", "1908", "2392", "1908", "1216", "720", "0", "0", "5040", "7776", "11628", "15664", "15664", "11628", "7776", "5040", "0" ]
[ "nonn", "tabl" ]
10
0
12
[ "A371761", "A379821", "A382792" ]
null
Peter Luschny, Jan 03 2025
2025-04-05T16:09:40
oeisdata/seq/A379/A379821.seq
518bca37477bc501f4c07c79b4d63ea0
A379822
Triangle read by rows: T(n, k) is the number of walks of length n on the Z X Z grid with unit steps in all four directions (NSWE) starting at (0, 0), and ending on the vertical line x = 0 if k = 0, or on the line x = k or x = -(n + 1 - k) if k > 0.
[ "1", "2", "2", "6", "5", "5", "20", "16", "12", "16", "70", "57", "36", "36", "57", "252", "211", "130", "90", "130", "211", "924", "793", "507", "286", "286", "507", "793", "3432", "3004", "2016", "1092", "728", "1092", "2016", "3004", "12870", "11441", "8024", "4488", "2380", "2380", "4488", "8024", "11441", "48620", "43759", "31842", "18717", "9384", "6120", "9384", "18717", "31842", "43759" ]
[ "nonn", "tabl", "walk" ]
20
0
2
[ "A000302", "A000984", "A052174", "A068551", "A283799", "A323229", "A378067", "A379822" ]
null
Peter Luschny, Jan 16 2025
2025-01-17T18:21:42
oeisdata/seq/A379/A379822.seq
541ced2fd4acb5073db0c5ab67ab43d2
A379823
a(n) = (-1)^n * hypergeom([-n, n/2 + 1, n/2 + 1/2], [1, n + 2], 4). Central terms of A379907.
[ "1", "1", "4", "17", "76", "352", "1667", "8017", "38992", "191276", "944648", "4690688", "23396023", "117130483", "588267604", "2962532945", "14954741680", "75647585152", "383359922324", "1945925312492", "9891894347360", "50350481125000", "256592858798416", "1309047896676352", "6684914267741951", "34168808617063927" ]
[ "nonn" ]
3
0
3
[ "A379823", "A379907" ]
null
Peter Luschny, Jan 06 2025
2025-01-06T10:50:29
oeisdata/seq/A379/A379823.seq
baf15c33f330998417d3b30326662b9f
A379824
a(n) = [x^n] 2 / (1 + x*(2*x + 3) + sqrt((x + 1)*(1 - 3*x))). Alternating row sums of A379907.
[ "1", "-1", "1", "0", "1", "2", "5", "12", "31", "79", "207", "546", "1457", "3919", "10621", "28968", "79459", "219053", "606611", "1686660", "4706879", "13178956", "37012219", "104235300", "294301801", "832901237", "2362328425", "6713749632", "19116443881", "54526962682", "155785926413", "445772216816", "1277394033603" ]
[ "sign" ]
6
0
6
[ "A114589", "A379824", "A379907" ]
null
Peter Luschny, Jan 06 2025
2025-01-06T06:56:12
oeisdata/seq/A379/A379824.seq
8839622b782e59a4b9ca4ade4fe0b39d
A379825
a(n) = [x^n] x/(12*x^2 - 6*x + 1).
[ "0", "1", "6", "24", "72", "144", "0", "-1728", "-10368", "-41472", "-124416", "-248832", "0", "2985984", "17915904", "71663616", "214990848", "429981696", "0", "-5159780352", "-30958682112", "-123834728448", "-371504185344", "-743008370688", "0", "8916100448256", "53496602689536", "213986410758144", "641959232274432" ]
[ "sign", "easy" ]
17
0
3
[ "A000748", "A057083", "A190965", "A379825" ]
null
Peter Luschny, Jan 04 2025
2025-01-05T11:01:43
oeisdata/seq/A379/A379825.seq
47e92aeecc1cace502ae2870d679427b
A379826
Decimal expansion of the alternating double sum zeta(-2,-1) = Sum_{i>=2} (Sum_{j=1..i-1} (-1)^(i+j)/(i^2*j)) (negated).
[ "2", "4", "3", "0", "7", "0", "3", "5", "1", "6", "7", "0", "0", "6", "1", "5", "7", "7", "5", "6", "2", "7", "0", "4", "7", "2", "3", "9", "6", "7", "5", "8", "2", "2", "1", "7", "1", "6", "8", "1", "5", "7", "9", "6", "3", "0", "0", "6", "3", "3", "2", "3", "0", "4", "0", "8", "1", "4", "0", "8", "3", "1", "5", "3", "0", "1", "2", "0", "7", "7", "7", "4", "6", "7", "2", "0", "6", "6", "5", "8", "9", "8", "7", "6", "5", "0", "3", "2", "6", "8", "1", "4", "3", "8", "7", "1", "4", "4", "9", "0", "5", "3", "2", "0", "8" ]
[ "cons", "nonn" ]
18
0
1
[ "A076788", "A255685", "A379826", "A379827", "A379829" ]
null
Artur Jasinski, Jan 03 2025
2025-02-04T15:12:09
oeisdata/seq/A379/A379826.seq
d7c69a3905265359d774ebc2bee9791a
A379827
Decimal expansion of the alternating double sum zeta(-5,-1) = Sum_{i>=2} (Sum_{j=1..i-1} (-1)^(i+j)/(i^5*j)) (negated).
[ "2", "9", "9", "0", "1", "6", "3", "5", "5", "8", "1", "1", "4", "9", "4", "2", "5", "9", "4", "2", "8", "6", "7", "9", "2", "1", "7", "4", "9", "1", "0", "0", "3", "1", "3", "7", "6", "5", "7", "9", "0", "3", "4", "1", "1", "1", "8", "5", "8", "5", "1", "0", "4", "5", "6", "7", "2", "4", "9", "6", "1", "2", "4", "5", "8", "7", "1", "8", "4", "8", "3", "7", "8", "3", "1", "6", "8", "9", "4", "4", "3", "2", "4", "1", "3", "4", "4", "1", "3", "8", "9", "3", "7", "5", "9", "5", "8", "1", "3", "7", "8", "2", "4", "8", "6" ]
[ "cons", "nonn", "changed" ]
50
-1
1
[ "A076788", "A197110", "A214508", "A255685", "A379826", "A379827", "A379829" ]
null
Artur Jasinski, Jan 03 2025
2025-04-14T05:32:22
oeisdata/seq/A379/A379827.seq
842a6f8fe16f6d756c7e3b0045100a10
A379828
Ulam numbers that are oblong (or promic) numbers.
[ "2", "6", "72", "182", "1406", "2550", "5550", "6806", "9120", "9702", "13572", "14520", "14762", "32580", "43890", "50400", "51756", "56882", "65280", "74802", "78680", "80940", "86142", "92112", "96410", "99540", "107256", "115940", "120062", "120756", "129240", "134322", "138012", "139502", "154842", "179352", "193160", "199362", "224202", "251502", "259590", "278256" ]
[ "nonn" ]
27
1
1
[ "A002378", "A002858", "A379828" ]
null
Massimo Kofler, Jan 03 2025
2025-01-28T22:13:38
oeisdata/seq/A379/A379828.seq
f1467d8e263d3c900623e20c4dfe7e27
A379829
Decimal expansion of the alternating double sum zeta(-5,-3) = Sum_{i>=2} (Sum_{j=1..i-1} (-1)^(i+j)/(i^5*j^3)) (negated).
[ "2", "8", "3", "3", "3", "6", "6", "1", "2", "8", "0", "0", "4", "6", "9", "0", "2", "2", "9", "6", "7", "3", "8", "2", "3", "7", "1", "5", "7", "5", "4", "0", "7", "7", "6", "8", "4", "2", "8", "8", "7", "5", "7", "2", "0", "3", "8", "1", "7", "6", "1", "1", "0", "5", "0", "1", "5", "2", "0", "0", "7", "8", "9", "7", "6", "0", "6", "9", "9", "5", "7", "9", "9", "3", "6", "3", "1", "2", "1", "2", "5", "4", "3", "5", "1", "7", "9", "7", "0", "3", "8", "2", "8", "9", "6", "6", "0", "3", "3", "2", "1", "2", "9", "5", "1" ]
[ "nonn", "cons" ]
17
-1
1
[ "A076788", "A255685", "A379826", "A379827", "A379829" ]
null
Artur Jasinski, Jan 03 2025
2025-01-14T16:54:34
oeisdata/seq/A379/A379829.seq
635dc9fbd964d081e4d389889df0feac
A379830
a(n) is the number of Pythagorean triples (u, v, w) for which w - u = n where u < v < w.
[ "0", "0", "1", "0", "1", "0", "1", "0", "2", "2", "1", "0", "1", "0", "1", "0", "2", "0", "4", "0", "1", "0", "1", "0", "2", "3", "1", "2", "1", "0", "1", "0", "5", "0", "1", "0", "4", "0", "1", "0", "2", "0", "1", "0", "1", "2", "1", "0", "2", "4", "7", "0", "1", "0", "4", "0", "2", "0", "1", "0", "1", "0", "1", "2", "5", "0", "1", "0", "1", "0", "1", "0", "8", "0", "1", "3", "1", "0", "1", "0", "2", "6", "1", "0", "1", "0", "1", "0" ]
[ "nonn" ]
6
0
9
[ "A024361", "A024362", "A024363", "A046079", "A046080", "A046081", "A096033", "A224921", "A379830" ]
null
Felix Huber, Jan 07 2025
2025-01-17T19:38:51
oeisdata/seq/A379/A379830.seq
41c5d370b6ada70db8d1d47e7e6ba29f
A379831
Positions of records in A379857.
[ "0", "25", "50", "90", "146", "169", "260", "289", "425", "529", "625", "900", "1156", "1521", "1681", "2025", "2500", "2704", "3434", "3600", "4225", "4624", "4900", "5625", "7146", "7225", "8281", "9409", "10404", "11236", "11881", "13225", "14400", "15129", "16900", "18769", "19600", "21316", "23409", "25281", "26896", "28561", "30625", "32400", "34969", "36100", "40000", "41209", "44944", "47524" ]
[ "nonn" ]
36
1
2
[ "A001156", "A003995", "A033461", "A379831", "A379857" ]
null
Luke E. Holland, Jan 03 2025
2025-02-09T21:21:02
oeisdata/seq/A379/A379831.seq
7c2d0f6c119503ca2b70f45ee0e0e5de
A379832
The second Jordan totient function applied to the exponentially odd numbers.
[ "1", "3", "8", "24", "24", "48", "48", "72", "120", "168", "144", "192", "288", "360", "384", "360", "528", "384", "504", "648", "840", "576", "960", "768", "960", "864", "1152", "1368", "1080", "1344", "1152", "1680", "1152", "1848", "1584", "2208", "2304", "2808", "1944", "2880", "2304", "2880", "2520", "3480", "3720", "2880", "4032", "2880", "4488", "4224" ]
[ "nonn", "easy" ]
16
1
2
[ "A007434", "A065463", "A185197", "A268335", "A374456", "A379715", "A379716", "A379717", "A379718", "A379832", "A379833" ]
null
Amiram Eldar, Jan 03 2025
2025-01-17T03:38:47
oeisdata/seq/A379/A379832.seq
b5d150e42dc5646d47ded14918e14fd2
A379833
The second Jordan totient function applied to the squares.
[ "1", "12", "72", "192", "600", "864", "2352", "3072", "5832", "7200", "14520", "13824", "28392", "28224", "43200", "49152", "83232", "69984", "129960", "115200", "169344", "174240", "279312", "221184", "375000", "340704", "472392", "451584", "706440", "518400", "922560", "786432", "1045440", "998784", "1411200", "1119744", "1872792" ]
[ "nonn", "easy", "mult" ]
13
1
2
[ "A000290", "A002117", "A002618", "A007434", "A379715", "A379716", "A379717", "A379718", "A379832", "A379833" ]
null
Amiram Eldar, Jan 03 2025
2025-01-17T03:38:42
oeisdata/seq/A379/A379833.seq
3be30353ecd55db35d52a330835311c0
A379834
Positive integers with digits in nondescending order whose digit product is an integer power of their digit sum, given power > 1.
[ "999", "2558", "3366", "4444", "12489", "13377", "22444", "112668", "113388", "114455", "122289", "123336", "222244", "666666", "1113399", "1113468", "1114449", "1122455", "1133334", "1377789", "1555888", "2222224", "2346669", "3334689", "3344499", "4444448", "11112778", "11114466", "11122368", "11122449", "11222255", "11223333", "11467779", "12366666", "13336668" ]
[ "nonn", "base" ]
21
1
1
[ "A117720", "A274124", "A379834" ]
null
Robert Kinner, Jan 03 2025
2025-01-11T19:25:27
oeisdata/seq/A379/A379834.seq
15acc2b315e3d2e33cbefbe5cb38528d
A379835
Number of 1's in binary expansion of Lucas(n).
[ "1", "1", "2", "1", "3", "3", "2", "4", "5", "3", "6", "5", "3", "3", "6", "5", "7", "9", "6", "5", "9", "10", "9", "11", "6", "9", "7", "10", "15", "11", "10", "15", "13", "11", "11", "15", "15", "12", "15", "17", "15", "11", "14", "15", "20", "15", "18", "17", "13", "11", "22", "20", "23", "23", "19", "22", "22", "22", "28", "25", "23", "19", "25", "27", "27", "24", "26", "25", "23", "27", "23", "27" ]
[ "nonn", "base" ]
14
0
3
[ "A000032", "A000120", "A011373", "A379835" ]
null
Vincenzo Librandi, Jan 05 2025
2025-01-14T22:23:51
oeisdata/seq/A379/A379835.seq
2930569f8f6b41f70fbeb9786ccb18bd
A379836
Number of pairs of adjacent equal parts in all complete compositions of n.
[ "0", "0", "1", "2", "5", "12", "23", "54", "118", "258", "550", "1178", "2540", "5394", "11473", "24174", "51021", "107210", "225099", "471322", "985202", "2055542", "4281847", "8906676", "18500425", "38379246", "79516158", "164561560", "340179441", "702506576", "1449311429", "2987297778", "6151964642", "12658841766", "26027603925" ]
[ "nonn" ]
43
0
4
[ "A011782", "A106356", "A107428", "A107429", "A373306", "A374147", "A374726", "A377823", "A379836" ]
null
John Tyler Rascoe, Jan 14 2025
2025-02-05T22:21:02
oeisdata/seq/A379/A379836.seq
8812bd75d0ab45ab3a1e59373de194c2
A379837
Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+3).
[ "2", "3", "3", "5", "6", "5", "8", "11", "11", "8", "13", "19", "22", "19", "13", "21", "32", "41", "41", "32", "21", "34", "53", "73", "82", "73", "53", "34", "55", "87", "126", "155", "155", "126", "87", "55", "89", "142", "213", "281", "310", "281", "213", "142", "89", "144", "231", "355", "494", "591", "591", "494", "355", "231", "144" ]
[ "nonn", "tabl" ]
11
0
1
[ "A000045", "A074829", "A108617", "A316938", "A316939", "A379837" ]
null
Vincenzo Librandi, Jan 26 2025
2025-01-26T20:48:15
oeisdata/seq/A379/A379837.seq
05a0ac3f40b9075a1e41841f16ef2340
A379838
Triangle read by rows: T(n,k) is the total number of humps with height k in all Motzkin paths of order n, n >= 2 and 1 <= k <= n/2,
[ "1", "3", "8", "1", "20", "5", "50", "19", "1", "126", "63", "7", "322", "196", "34", "1", "834", "588", "138", "9", "2187", "1728", "507", "53", "1", "5797", "5016", "1749", "253", "11", "15510", "14454", "5786", "1067", "76", "1", "41834", "41470", "18590", "4147", "416", "13", "113633", "118690", "58487", "15223", "1976", "103", "1", "310571", "339274", "181181", "53599", "8528", "635", "15" ]
[ "nonn", "tabf" ]
53
2
2
[ "A004526", "A064189", "A097861", "A140662", "A379838" ]
null
Xiaomei Chen, Jan 04 2025
2025-01-15T09:02:29
oeisdata/seq/A379/A379838.seq
121e7aa2ede16e31b378c59190075260
A379839
Numbers that are the sum + product of some multiset of positive integers > 1. Nonzeros of A379669.
[ "1", "4", "6", "8", "10", "11", "12", "14", "15", "16", "17", "18", "19", "20", "22", "23", "24", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "38", "39", "40", "41", "42", "43", "44", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77" ]
[ "nonn" ]
8
1
2
[ "A001055", "A002865", "A003963", "A025147", "A045778", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A318029", "A318950", "A319000", "A319005", "A319057", "A319916", "A325036", "A325037", "A325038", "A325044", "A326149", "A326152", "A326155", "A326156", "A326172", "A326178", "A379666", "A379667", "A379668", "A379669", "A379670", "A379671", "A379672", "A379678", "A379679", "A379680", "A379720", "A379721", "A379722", "A379733", "A379736", "A379839", "A379840", "A379841", "A379842" ]
null
Gus Wiseman, Jan 04 2025
2025-01-05T22:36:18
oeisdata/seq/A379/A379839.seq
f86b9f6f75334914d1f72c2c1fcd5dd9
A379840
Numbers that are the sum + product of a unique multiset of positive integers > 1.
[ "1", "4", "6", "10", "11", "12", "15", "16", "17", "18", "22", "27", "28", "30", "31", "43", "52", "58", "61", "67", "70", "73", "91", "97", "100", "102", "108", "115", "130", "145", "147", "148", "162", "165", "171", "217", "262", "277", "283", "291", "361", "430", "481", "508", "577", "633", "652", "682", "763", "1093", "1137", "1201", "1513", "1705", "2257", "2401", "2653", "3133", "4123", "5113", "5905" ]
[ "nonn" ]
9
1
2
[ "A001055", "A002865", "A003963", "A025147", "A045778", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A318029", "A318950", "A319000", "A319005", "A319057", "A319916", "A325036", "A325037", "A325038", "A325044", "A326149", "A326152", "A326155", "A326156", "A326172", "A379666", "A379667", "A379668", "A379669", "A379670", "A379671", "A379672", "A379678", "A379679", "A379680", "A379721", "A379722", "A379733", "A379736", "A379840", "A379841", "A379842" ]
null
Gus Wiseman, Jan 08 2025
2025-01-12T10:15:17
oeisdata/seq/A379/A379840.seq
c0d4b974f7f29cf4054dab94dc6fe968
A379841
Numbers that are the sum + product of some set of positive integers > 1. Positions of nonzeros in A379679.
[ "1", "4", "6", "8", "10", "11", "12", "14", "16", "17", "18", "19", "20", "22", "23", "24", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "38", "39", "40", "41", "42", "43", "44", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78" ]
[ "nonn" ]
5
1
2
[ "A001055", "A002865", "A025147", "A045778", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A318029", "A318950", "A319000", "A319005", "A319057", "A319916", "A325036", "A325037", "A325038", "A325044", "A326149", "A326152", "A326155", "A326156", "A326172", "A326178", "A379666", "A379670", "A379671", "A379678", "A379679", "A379680", "A379681", "A379720", "A379721", "A379722", "A379733", "A379736", "A379839", "A379840", "A379841", "A379842" ]
null
Gus Wiseman, Jan 09 2025
2025-01-09T14:59:11
oeisdata/seq/A379/A379841.seq
3e9f45586cd351180ba3434173512a2c
A379842
Numbers that are the sum + product of a unique set of positive integers > 1. Positions of 1 in A379679.
[ "1", "4", "6", "8", "10", "11", "12", "16", "17", "18", "19", "22", "24", "27", "28", "30", "31", "33", "36", "42", "43", "46", "48", "49", "52", "58", "61", "63", "66", "67", "70", "73", "85", "88", "91", "97", "100", "102", "105", "108", "115", "126", "130", "141", "145", "147", "148", "162", "171", "178", "192", "205", "211", "213", "226", "262", "277", "283", "288", "291" ]
[ "nonn" ]
6
1
2
[ "A000009", "A000041", "A001055", "A002865", "A025147", "A045778", "A069016", "A111133", "A318950", "A319000", "A319057", "A326152", "A326178", "A326622", "A328966", "A379666", "A379667", "A379668", "A379669", "A379670", "A379671", "A379672", "A379678", "A379679", "A379680", "A379720", "A379839", "A379840", "A379841", "A379842", "A379843" ]
null
Gus Wiseman, Jan 14 2025
2025-01-16T08:47:54
oeisdata/seq/A379/A379842.seq
125e754c19167de53d129f3cc3b31e4f
A379843
Least number x such that there are exactly n sets of positive integers > 1 with sum + product = x. Position of first appearance of n in A379679.
[ "2", "1", "14", "44", "47", "89", "119", "179", "159", "239", "335", "539", "599", "744", "359", "719", "839" ]
[ "nonn", "more" ]
6
0
1
[ "A000009", "A000041", "A001055", "A002865", "A025147", "A045778", "A069016", "A111133", "A318950", "A319000", "A319057", "A379543", "A379666", "A379667", "A379668", "A379669", "A379670", "A379671", "A379672", "A379678", "A379679", "A379680", "A379720", "A379839", "A379840", "A379841", "A379842", "A379843" ]
null
Gus Wiseman, Jan 15 2025
2025-01-15T23:51:16
oeisdata/seq/A379/A379843.seq
442642e3bbb64d4c1bed674d51863977
A379844
Squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.
[ "2", "3", "5", "7", "11", "13", "17", "19", "23", "29", "30", "31", "37", "41", "43", "47", "53", "59", "61", "65", "67", "71", "73", "79", "83", "89", "97", "101", "103", "107", "109", "113", "127", "131", "137", "139", "149", "151", "154", "157", "163", "165", "167", "173", "179", "181", "190", "191", "193", "197", "199", "211", "223", "227", "229", "233", "239", "241" ]
[ "nonn" ]
10
1
1
[ "A000720", "A001055", "A001222", "A003963", "A005117", "A025147", "A036844", "A056239", "A057567", "A057568", "A096276", "A111133", "A112798", "A114324", "A301987", "A318029", "A319005", "A324850", "A324851", "A324925", "A325037", "A325038", "A325044", "A326149", "A326150", "A326151", "A326153", "A326154", "A326155", "A326156", "A326157", "A326158", "A379720", "A379721", "A379722", "A379733", "A379735", "A379736", "A379844", "A379845", "A380221" ]
null
Gus Wiseman, Jan 19 2025
2025-01-20T09:11:12
oeisdata/seq/A379/A379844.seq
2b010ac2cc281416d4a9525eccd47271
A379845
Even squarefree numbers x such that the product of prime indices of x is a multiple of the sum of prime indices of x.
[ "2", "30", "154", "190", "390", "442", "506", "658", "714", "874", "1110", "1118", "1254", "1330", "1430", "1786", "1794", "1798", "1958", "2310", "2414", "2442", "2470", "2730", "2958", "3034", "3066", "3266", "3390", "3534", "3710", "3770", "3874", "3914", "4042", "4466", "4526", "4758", "4930", "5106", "5434", "5474", "5642", "6090", "6106" ]
[ "nonn" ]
6
1
1
[ "A000720", "A001055", "A001222", "A003963", "A005117", "A025147", "A056239", "A057567", "A057568", "A096276", "A111133", "A112798", "A114324", "A175508", "A301987", "A318029", "A319005", "A324850", "A324851", "A325037", "A325038", "A325044", "A326149", "A326150", "A326151", "A326153", "A326154", "A326155", "A326156", "A326157", "A326158", "A379319", "A379720", "A379721", "A379722", "A379733", "A379735", "A379736", "A379844", "A379845", "A380221" ]
null
Gus Wiseman, Jan 20 2025
2025-01-20T09:10:41
oeisdata/seq/A379/A379845.seq
d2ded2012fedd86c260bc62d5ee664fa
A379846
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(2*x)) ).
[ "1", "2", "15", "202", "3993", "104896", "3449431", "136490768", "6319722513", "335372124160", "20074806151551", "1338341234648320", "98356732036224745", "7900673166769620992", "688709957632464564231", "64754459774124307019776", "6532479591772426224737697", "703834470938326183482621952" ]
[ "nonn" ]
12
0
2
[ "A088690", "A366232", "A379456", "A379701", "A379846", "A379847" ]
null
Seiichi Manyama, Jan 04 2025
2025-02-05T09:22:35
oeisdata/seq/A379/A379846.seq
972374bda664e7896ed2dbcb6bd2ae7d
A379847
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) / (1 + x*exp(3*x)) ).
[ "1", "2", "17", "259", "5773", "171021", "6342937", "283094309", "14785425081", "885090944809", "59765476266061", "4494836808752049", "372655043070926821", "33769844474642217293", "3320996349535681398849", "352267766021524028011981", "40091829710459334010532593", "4873329774181782935197522641" ]
[ "nonn" ]
13
0
2
[ "A088690", "A366233", "A379456", "A379702", "A379846", "A379847" ]
null
Seiichi Manyama, Jan 04 2025
2025-02-05T09:22:31
oeisdata/seq/A379/A379847.seq
6fae970eae1f949eb45c5b5c39bf5b4f
A379848
Number of cyclic edge cuts in the Plummer-Toft graph.
[ "1", "29", "377", "3853", "35119", "300607" ]
[ "nonn", "more" ]
7
1
2
null
null
Eric W. Weisstein, Jan 04 2025
2025-02-27T07:55:39
oeisdata/seq/A379/A379848.seq
2fb4ebcd37ad7c21cf61a4d69927c852
A379849
Taxicab numbers that are deficient.
[ "1729", "20683", "40033", "46683", "134379", "149389", "195841", "216027", "216125", "327763", "402597", "439101", "443889", "515375", "558441", "593047", "684019", "704977", "842751", "920673", "984067", "1073375", "1080891", "1195112", "1260441", "1533357", "1566728", "1845649", "2048391", "2301299", "2418271", "2585375", "2622104", "2691451", "3242197" ]
[ "nonn" ]
20
1
1
[ "A001235", "A005100", "A379466", "A379849" ]
null
Massimo Kofler, Jan 04 2025
2025-01-19T17:26:58
oeisdata/seq/A379/A379849.seq
170e0187eca6be07715ca9d87508f769
A379850
a(n) is the number of integers (positive or negative) v that appears in the set {A377091(k), k = 0..n} without -v appearing in it.
[ "0", "1", "2", "1", "0", "1", "2", "3", "2", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "3", "4", "5", "4", "3", "2", "1", "0", "1", "2", "3", "4", "5", "4", "3", "2", "1", "0", "1", "2", "3", "4", "5", "6", "7", "6", "5", "4", "3", "2", "3", "4", "5", "4", "3", "2", "1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "8", "7", "6", "5", "4", "3", "2", "1", "2", "3", "4", "5", "6" ]
[ "nonn" ]
7
0
3
[ "A377091", "A379850" ]
null
Rémy Sigrist, Jan 04 2025
2025-01-05T10:16:10
oeisdata/seq/A379/A379850.seq
9f8b0bc72bffa2646b35b019a3225ea5
A379851
Numbers k such that phi(k) does not divide k. Complement of A007694.
[ "3", "5", "7", "9", "10", "11", "13", "14", "15", "17", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "30", "31", "33", "34", "35", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "56", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89" ]
[ "nonn" ]
21
1
1
[ "A000010", "A007617", "A007694", "A379851" ]
null
Franz Vrabec, Jan 04 2025
2025-02-05T21:57:50
oeisdata/seq/A379/A379851.seq
6ff5c3fe846215dc85e9567668c5192f
A379852
a(n) = floor(8*n^3/27).
[ "0", "0", "2", "8", "18", "37", "64", "101", "151", "216", "296", "394", "512", "650", "813", "1000", "1213", "1455", "1728", "2032", "2370", "2744", "3154", "3605", "4096", "4629", "5207", "5832", "6504", "7226", "8000", "8826", "9709", "10648", "11645", "12703", "13824", "15008", "16258", "17576", "18962", "20421", "21952", "23557", "25239" ]
[ "nonn", "easy" ]
16
0
3
[ "A016743", "A375473", "A379852" ]
null
Gonzalo Martínez and Javier Astudillo, Jan 04 2025
2025-01-30T03:54:55
oeisdata/seq/A379/A379852.seq
022a299809b53dcda606b8f0b9cfb796
A379853
Decimal expansion of the fraction of a population falling beyond +- 1 standard deviation of the mean, assuming a normal distribution.
[ "3", "1", "7", "3", "1", "0", "5", "0", "7", "8", "6", "2", "9", "1", "4", "1", "0", "2", "8", "2", "9", "5", "3", "4", "9", "0", "8", "7", "3", "5", "9", "2", "4", "1", "5", "5", "0", "4", "4", "1", "7", "4", "0", "6", "6", "5", "4", "6", "7", "9", "1", "2", "1", "8", "0", "2", "5", "2", "1", "1", "0", "9", "9", "5", "1", "4", "0", "1", "7", "1", "1", "6", "0", "2", "5", "5", "9", "0", "3", "4", "0", "9", "9", "8", "2", "3", "0", "1", "6", "3", "1", "8", "8", "7", "2", "1", "3", "4", "4", "9" ]
[ "nonn", "cons" ]
8
0
1
[ "A178647", "A239382", "A379853" ]
null
Stefano Spezia, Jan 04 2025
2025-02-16T08:34:07
oeisdata/seq/A379/A379853.seq
85b8d05071895bed9de5d831790768a1
A379854
a(0) = 0, and for any n > 0, a(n) is the least integer (in absolute value) not yet in the sequence such that the absolute difference of a(n-1) and a(n) is a cube; in case of a tie, preference is given to the positive value.
[ "0", "1", "2", "3", "4", "-4", "-3", "-2", "-1", "7", "6", "5", "13", "12", "11", "10", "9", "8", "16", "-11", "-10", "-9", "-8", "-7", "-6", "-5", "-13", "-12", "15", "14", "22", "21", "20", "19", "18", "17", "25", "24", "23", "31", "30", "29", "28", "27", "26", "34", "-30", "-22", "-14", "-15", "-16", "-17", "-18", "-19", "-20", "-21", "-29", "-28", "-27", "-26", "-25", "-24" ]
[ "sign" ]
11
0
3
[ "A377091", "A379854" ]
null
Rémy Sigrist, Jan 04 2025
2025-02-06T08:22:49
oeisdata/seq/A379/A379854.seq
ecc11472eb031c16c9193be2f31b33fe
A379855
Decimal expansion of Pi*BesselY(0,2)/2.
[ "8", "0", "1", "6", "9", "6", "2", "3", "1", "8", "8", "3", "6", "9", "4", "2", "1", "5", "4", "2", "5", "9", "7", "4", "3", "6", "8", "6", "7", "1", "4", "0", "6", "1", "9", "6", "5", "5", "7", "2", "8", "8", "4", "0", "2", "2", "0", "4", "7", "9", "5", "0", "6", "9", "4", "7", "6", "0", "9", "5", "1", "0", "8", "9", "0", "2", "6", "3", "0", "3", "1", "3", "7", "6", "4", "9", "1", "6", "5", "8", "1", "1", "4", "6", "0", "4", "6", "4" ]
[ "nonn", "cons" ]
6
0
1
[ "A000796", "A019669", "A283743", "A379855" ]
null
Stefano Spezia, Jan 04 2025
2025-01-04T23:22:31
oeisdata/seq/A379/A379855.seq
724e8e65e66f60d81855f186b7459dcb
A379856
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x.
[ "1", "0", "1", "-7", "81", "-1181", "21373", "-462267", "11663137", "-336711385", "10955316501", "-396815693759", "15840688752529", "-691086583866069", "32717602050027469", "-1670649590632148611", "91530694441643402817", "-5355984871255569700913", "333392838283336197688741" ]
[ "sign" ]
24
0
4
[ "A379856", "A379858", "A379868", "A379875", "A379877", "A379909" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-06T04:22:55
oeisdata/seq/A379/A379856.seq
c9dc03f3a1018f064a6f486abdd0c9ae
A379857
Number of values of k for which n can be written as a sum of k distinct positive squares.
[ "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "2", "2", "0", "0", "2", "2", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "2", "1", "0", "0", "2", "2", "0", "0", "2", "3", "1", "1", "2", "2", "1", "1", "1", "1", "1", "0", "2", "2", "1", "1", "3", "3", "0", "1", "1", "2", "1", "0", "1", "3", "3", "0", "1", "2", "2", "1", "3", "2", "1", "2" ]
[ "nonn" ]
33
0
26
[ "A001422", "A003995", "A379831", "A379857" ]
null
Luke E. Holland, Jan 04 2025
2025-02-05T09:22:53
oeisdata/seq/A379/A379857.seq
ec7a21e0dd85dcc9117f1788dc1cc6da
A379858
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x.
[ "1", "0", "1", "-10", "157", "-3136", "77509", "-2288896", "78824953", "-3105906688", "137925180361", "-6818997285376", "371578940493589", "-22130352562929664", "1430368670554859533", "-99722125119137591296", "7459992570265962997489", "-596072767690463855509504", "50666927756525446827810961" ]
[ "sign" ]
22
0
4
[ "A379856", "A379858", "A379871", "A379875", "A379910", "A379911" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-06T04:19:47
oeisdata/seq/A379/A379858.seq
f80c6611647c29d5ec39338ee3436b7b
A379859
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x) * (1 - x*exp(x))^2 ).
[ "1", "1", "9", "110", "2121", "53834", "1720105", "66197578", "2984752113", "154358553986", "9009411908001", "585917934419498", "42018536835853369", "3294423846094650658", "280362373171289449209", "25739124908062020925034", "2535728977438902352557921", "266836955238122741966767874", "29872121613650590137264191665" ]
[ "nonn" ]
13
0
3
[ "A377546", "A379684", "A379859", "A379860" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:57
oeisdata/seq/A379/A379859.seq
b9f9ea2c7201ec92805877c971f3c35a
A379860
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x) * (1 - x*exp(x))^2 ).
[ "1", "3", "33", "670", "20201", "813626", "41138953", "2507380618", "179034345393", "14663636270146", "1355499957188321", "139617725163885002", "15858083818590019993", "1969242291969058135810", "265431275379747754496409", "38595876183118645455281386", "6022354171062480540156895457", "1003753282859589405272849735810" ]
[ "nonn" ]
14
0
2
[ "A377546", "A377890", "A379859", "A379860" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:53
oeisdata/seq/A379/A379860.seq
9e95a75f04e2b998ec323a7c95d31985
A379861
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x)/(1 + x*exp(x))^2 ).
[ "1", "1", "5", "38", "441", "6714", "128245", "2943562", "79049201", "2432351618", "84408126621", "3261942050058", "138946757581225", "6468600047278498", "326782092756236741", "17805164917279808234", "1040857709162817298401", "64983981546315031200258", "4315627103007355018430509" ]
[ "nonn" ]
10
0
3
[ "A377553", "A379861", "A379862" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:41
oeisdata/seq/A379/A379861.seq
4dd08166e77165e098623b7d1cb0836f
A379862
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x)/(1 + x*exp(x))^2 ).
[ "1", "3", "29", "502", "12761", "430986", "18217813", "926514058", "55133781809", "3760088111938", "289240874117981", "24780044801646762", "2340229465310736073", "241563626661550193794", "27059024800372108029221", "3269263894468329061597546", "423798837014001794141132897", "58674726188995774863597090690" ]
[ "nonn" ]
11
0
2
[ "A377553", "A379456", "A379861", "A379862" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:45
oeisdata/seq/A379/A379862.seq
ea4cf9ffd8c311c1c65497a3453b7663
A379863
a(n) is the number of steps in a Pollard rho like integer factorization algorithm for m = 2*n + 1 with f(x) = 2^x mod m and starting from x = y = 1.
[ "2", "3", "2", "3", "5", "9", "3", "4", "10", "2", "6", "7", "2", "10", "3", "2", "3", "26", "2", "7", "2", "2", "4", "3", "2", "42", "4", "2", "21", "32", "2", "3", "52", "2", "6", "4", "2", "5", "6", "2", "73", "4", "2", "5", "3", "2", "4", "10", "2", "33", "10", "2", "7", "9", "2", "7", "7", "2", "6", "27", "2", "5", "2", "2", "93", "5", "2", "15", "53", "2", "7", "4", "2", "19", "3", "2", "3", "6", "2", "9", "126" ]
[ "nonn" ]
23
1
1
[ "A000079", "A005408", "A361913", "A379863" ]
null
Darío Clavijo, Jan 04 2025
2025-01-08T16:38:30
oeisdata/seq/A379/A379863.seq
17a76c5846cc6602b71322826523a952
A379864
Expansion of e.g.f. (1/x) * Series_Reversion( x * (exp(-x) - x)^2 ).
[ "1", "4", "54", "1334", "48816", "2383682", "146036788", "10781227690", "932243805168", "92452039842626", "10346916215343564", "1290195352404492602", "177396099439904780200", "26665611450484642809058", "4350590232650155748720484", "765717105431099707449714218" ]
[ "nonn" ]
13
0
2
[ "A379864", "A379867" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:38
oeisdata/seq/A379/A379864.seq
4d3ccbc50ae23ac757a7ca502816c2d9
A379865
Number of base 10 digits of 2^(p-1)*(2^p-1) where p = prime(n).
[ "1", "2", "3", "4", "7", "8", "10", "12", "14", "18", "19", "22", "25", "26", "28", "32", "36", "37", "41", "43", "44", "48", "50", "54", "59", "61", "62", "65", "66", "68", "77", "79", "83", "84", "90", "91", "95", "98", "101", "104", "108", "109", "115", "116", "119", "120", "127", "134", "137", "138", "140", "144", "145", "151", "155", "159", "162", "163", "167", "169", "171", "177" ]
[ "nonn", "easy", "base" ]
19
1
2
[ "A034887", "A055642", "A060286", "A379865" ]
null
Darío Clavijo, Jan 04 2025
2025-01-08T09:26:57
oeisdata/seq/A379/A379865.seq
fb254d4208496032ca04ed51b7d7736f
A379866
Expansion of e.g.f. (1/x) * Series_Reversion( x / (exp(-x) + x)^2 ).
[ "1", "0", "2", "-2", "56", "-222", "5332", "-45782", "1127408", "-15972542", "428055644", "-8598013734", "256717806952", "-6667767637598", "223389539254676", "-7076616268104278", "265762684840216544", "-9880557234248622462", "413902270494309471436", "-17591536945041528005318", "816621849842712202724696" ]
[ "sign" ]
13
0
3
[ "A108919", "A367868", "A379866" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:49
oeisdata/seq/A379/A379866.seq
b5ef48dae29889ae0614fdb5fa0ffd86
A379867
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^2) - x*A(x)^2).
[ "1", "2", "23", "529", "18589", "884281", "53195407", "3874595089", "331580316473", "32614443047521", "3625839880813171", "449629404853604185", "61535275741655857621", "9213155228282408405185", "1498018121369750569371959", "262869047482982449625840161", "49515850496472530668242845041" ]
[ "nonn" ]
18
0
2
[ "A364985", "A377890", "A377891", "A377892", "A377893", "A379864", "A379867", "A379870", "A379884", "A379886" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:34
oeisdata/seq/A379/A379867.seq
d5acfee2896973a55852f642d6770ca4
A379868
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x*A(x)^2.
[ "1", "0", "1", "-1", "25", "-101", "2281", "-19895", "472305", "-6760297", "177126121", "-3578690435", "105341330953", "-2743981145933", "91092111623241", "-2888769295882111", "107832291781283809", "-4009180998104138321", "167254334458983887689", "-7105017992715364001147", "328862774630320838523321" ]
[ "sign" ]
13
0
5
[ "A108919", "A364982", "A367866", "A377859", "A379868", "A379871", "A379879" ]
null
Seiichi Manyama, Jan 04 2025
2025-01-05T09:58:31
oeisdata/seq/A379/A379868.seq
68e2bd1b581e804ae4759a6ec710a358
A379869
a(n) is the least number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).
[ "2", "4", "9", "19", "31", "92", "157", "423", "927", "1966", "4289", "8782", "12599", "30355", "99829", "215083", "341075", "989353", "2131842", "4081435", "8334082", "20632999", "43967926", "88316866", "190349299", "364929616", "735501679", "1948602829", "3036548692", "9654499999", "17087193298", "31037622999", "99594689449", "181610950229", "426932901019", "956829383603" ]
[ "nonn", "base" ]
32
1
1
[ "A373727", "A379650", "A379869", "A380052", "A380111", "A380567" ]
null
Zhining Yang, Jan 11 2025
2025-04-03T20:35:12
oeisdata/seq/A379/A379869.seq
b523027c68923817c01e055ebb0869fc
A379870
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x*A(x)^3).
[ "1", "2", "31", "991", "48873", "3276921", "278486359", "28694553119", "3476833863281", "484490228040865", "76339085661865791", "13421203354104200271", "2604724304171427849145", "553128917492225243766065", "127578750880241791377948359", "31761039697155404251033218751", "8488576933611794321694363786849" ]
[ "nonn" ]
13
0
2
[ "A377890", "A379867", "A379870" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-09T19:41:24
oeisdata/seq/A379/A379870.seq
76cb9e390603cf07505a54a7f644c62a
A379871
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^3) + x*A(x)^3.
[ "1", "0", "1", "-1", "37", "-151", "5041", "-45277", "1548457", "-23466079", "857700181", "-18904086037", "752753527021", "-21985835786383", "961877988836857", "-34996151990315341", "1686330291491184337", "-73237182836313686719", "3882675760305075969949", "-195288563442324161608165" ]
[ "sign" ]
12
0
5
[ "A108919", "A379868", "A379871", "A379876", "A379877", "A379878" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-05T09:58:24
oeisdata/seq/A379/A379871.seq
7c480078f7ef24baddf7ae4ac3b6baf9
A379872
Numbers k that are the product of the lower half of their nontrivial divisors.
[ "1", "24", "30", "40", "56", "64", "70", "105", "135", "154", "165", "182", "189", "195", "231", "273", "286", "297", "351", "357", "374", "385", "399", "418", "429", "442", "455", "459", "494", "513", "561", "595", "598", "621", "627", "646", "663", "665", "715", "729", "741", "759", "782", "805", "874", "875", "897", "935", "957", "969", "986", "1001", "1015", "1023", "1045", "1054", "1085" ]
[ "nonn" ]
30
1
2
[ "A072499", "A379872" ]
null
Tom Gadron, Jan 04 2025
2025-04-02T09:51:27
oeisdata/seq/A379/A379872.seq
7cda1517b21a4891f297ce825a145475
A379873
Nonnegative values in A377091, in order of appearance and with offset 0.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "13", "9", "10", "11", "12", "18", "14", "15", "16", "17", "25", "21", "20", "19", "23", "22", "26", "27", "28", "24", "32", "31", "30", "29", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67" ]
[ "nonn" ]
6
0
3
[ "A377091", "A379873", "A379874" ]
null
Rémy Sigrist, Jan 05 2025
2025-01-05T10:00:07
oeisdata/seq/A379/A379873.seq
e5aca225a53a3bdd4b589f4a2763af6a
A379874
Nonpositive values in A377091, negated, in order of appearance and with offset 0.
[ "0", "2", "1", "4", "3", "8", "7", "6", "5", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "40", "36", "35", "34", "33", "37", "38", "39", "50", "41", "42", "43", "44", "45", "46", "47", "48", "49", "60", "51", "52", "53", "54", "55", "56", "57", "58", "59", "72", "63", "62", "61", "65", "64", "68" ]
[ "nonn" ]
5
0
2
[ "A377091", "A379873", "A379874" ]
null
Rémy Sigrist, Jan 05 2025
2025-01-05T10:00:02
oeisdata/seq/A379/A379874.seq
81c3d6afc5579bd80af4679c35a4a95e
A379875
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)) + x.
[ "1", "0", "1", "-4", "29", "-256", "2797", "-36352", "549145", "-9468928", "183661721", "-3960254464", "94011364405", "-2436944723968", "68503370394565", "-2075866971897856", "67464214813124273", "-2340885649895194624", "86377064031382020913", "-3377541983440381935616", "139515670016074334382541" ]
[ "sign" ]
15
0
4
[ "A377859", "A379875", "A379876" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-12T19:50:54
oeisdata/seq/A379/A379875.seq
ce717907652161c1d27f5c0aad5499f2
A379876
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)) + x*A(x)^3.
[ "1", "0", "1", "5", "53", "689", "11509", "231083", "5448841", "147483665", "4508952641", "153682778435", "5778729641629", "237643665397241", "10610714800698349", "511207317411929339", "26434273616510818961", "1460296693254659368481", "85832214445015447832569", "5348490494660467991798003" ]
[ "nonn" ]
12
0
4
[ "A377859", "A379871", "A379875", "A379876", "A379877", "A379878" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-05T09:58:15
oeisdata/seq/A379/A379876.seq
153a84fa55fe9ebc66fec5832f7f1f08
A379877
E.g.f. A(x) satisfies A(x) = exp(-x*A(x)^2) + x*A(x)^3.
[ "1", "0", "1", "2", "33", "244", "4345", "61830", "1332961", "28087208", "739562481", "20380504330", "644853623425", "21767589641628", "810480865644073", "32246095869576974", "1385625666085792065", "63366863108725330000", "3090966367543869021409", "159607809547688836085778", "8718178798812199357657441" ]
[ "nonn" ]
29
0
4
[ "A379871", "A379876", "A379877", "A379878" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-23T12:57:24
oeisdata/seq/A379/A379877.seq
960f8e64bcc0ce918642ba54680249d2
A379878
E.g.f. A(x) satisfies A(x) = exp(-x) + x*A(x)^3.
[ "1", "0", "1", "8", "97", "1544", "30673", "732752", "20486401", "656713520", "23755416481", "957430990328", "42552022022497", "2067669370359800", "109058922249721585", "6205740584180119424", "378947624701223801089", "24718152376534891564256", "1715322065909959400535361", "126186162087426817989206888" ]
[ "nonn" ]
12
0
4
[ "A000166", "A379871", "A379876", "A379877", "A379878", "A379879" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-23T04:27:40
oeisdata/seq/A379/A379878.seq
38f638d83ab5059160b58487f1b363a1
A379879
E.g.f. A(x) satisfies A(x) = exp(-x) + x*A(x)^2.
[ "1", "0", "1", "5", "41", "439", "5869", "94275", "1770705", "38102255", "924580181", "24984120523", "744154938361", "24224671103463", "855748556756157", "32604902612628419", "1332864500919743393", "58192519232324179423", "2702582455278623736997", "133037424985668849756603" ]
[ "nonn" ]
16
0
4
[ "A000166", "A377859", "A379868", "A379878", "A379879" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-23T04:34:20
oeisdata/seq/A379/A379879.seq
4fe2700dd31f89e00d04e18093d36733
A379880
a(n) is the length of the n-th maximum run of consecutive terms of A377091 in arithmetic progression with common difference 1 or -1.
[ "3", "2", "3", "2", "3", "4", "4", "1", "4", "6", "1", "4", "6", "1", "3", "2", "3", "1", "8", "4", "9", "1", "4", "3", "9", "1", "9", "11", "1", "9", "11", "1", "3", "2", "3", "2", "3", "1", "13", "1", "1", "4", "3", "14", "1", "4", "8", "14", "1", "1", "2", "3", "8", "16", "1", "1", "2", "3", "8", "16", "1", "16", "18", "1", "16", "18", "1", "3", "2", "3", "2", "3", "2", "3", "19", "1", "4", "15", "21", "1", "4", "15" ]
[ "nonn" ]
20
1
1
[ "A377091", "A379880", "A380223" ]
null
Rémy Sigrist, Jan 05 2025
2025-01-20T17:52:09
oeisdata/seq/A379/A379880.seq
f96cff0dc61e84fa907405365e0569c3
A379881
Prime numbers of the form 8*x^2 + 27*y^2 where x and y are positive integers.
[ "59", "227", "251", "419", "443", "683", "827", "1187", "1451", "1523", "1811", "2027", "2243", "2339", "2579", "2699", "3299", "3371", "3467", "3539", "3659", "3779", "4211", "4259", "4523", "4547", "4691", "5387", "5531", "5651", "6131", "6203", "6299", "6323", "6947", "6971", "7043", "7187", "7451", "7499", "7643", "8123", "8219", "8363", "8387", "8867", "8963", "9011", "9371", "9491", "9539", "9851", "9923" ]
[ "nonn", "easy" ]
49
1
1
[ "A002145", "A107161", "A379881" ]
null
Steven Lu, Feb 16 2025
2025-03-12T04:08:35
oeisdata/seq/A379/A379881.seq
2869a1c31c5246b38455812c69c66c17
A379882
a(n) is the length of the n-th maximal run of consecutive terms of A377091 with the same sign.
[ "1", "2", "2", "3", "2", "3", "8", "5", "6", "5", "6", "10", "8", "13", "8", "9", "10", "11", "10", "11", "15", "13", "23", "13", "14", "15", "16", "15", "16", "17", "18", "17", "18", "38", "20", "21", "20", "21", "22", "23", "22", "23", "24", "25", "50", "26", "26", "26", "28", "28", "28", "29", "29", "29", "31", "29", "5", "32", "26", "4", "32", "28", "2", "3", "33", "31", "34", "34", "4", "36" ]
[ "nonn" ]
13
1
2
[ "A377091", "A379882" ]
null
Rémy Sigrist, Jan 05 2025
2025-01-25T02:47:49
oeisdata/seq/A379/A379882.seq
90cc97b8c5b6bbe2c283aa42138c19b1
A379883
a(1) = 1. Let j = a(n-1) and r = A046144(j). Then for n > 1, if j is novel and r > 0, a(n) = r. If j is novel and r = 0 then a(n) = 1. If j has occurred k (>1) times already then a(n) = k*j.
[ "1", "1", "2", "1", "3", "1", "4", "1", "5", "2", "4", "8", "1", "6", "1", "7", "2", "6", "12", "1", "8", "16", "1", "9", "2", "8", "24", "1", "10", "2", "10", "20", "1", "11", "4", "12", "24", "48", "1", "12", "36", "1", "13", "4", "16", "32", "1", "14", "2", "12", "48", "96", "1", "15", "1", "16", "48", "144", "1", "17", "8", "32", "64", "1", "18", "2", "14", "28", "1", "19", "6", "18", "36", "72", "1", "20", "40", "1", "21", "22", "4", "20", "60", "1", "23", "10", "30", "1", "24", "72", "144", "288", "1", "25", "8", "40", "80", "1", "26", "4" ]
[ "nonn", "easy" ]
28
1
3
[ "A046144", "A378508", "A379883", "A380594", "A380604" ]
null
David James Sycamore, Jan 09 2025
2025-03-06T11:09:33
oeisdata/seq/A379/A379883.seq
490662e5dab4bc10d69dea2902d0fcf4
A379884
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^2) - x).
[ "1", "2", "15", "223", "5045", "154161", "5949715", "277816813", "15234148585", "959821848433", "68333878996991", "5425649143910733", "475370226250388221", "45559752911807595865", "4741534923025152367627", "532526268840445510805341", "64198018232238090097818065", "8268729272698380485865553761" ]
[ "nonn" ]
16
0
2
[ "A088690", "A377892", "A379867", "A379884" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-09T19:41:47
oeisdata/seq/A379/A379884.seq
833f5612410382dfffbb2b3fc601379a
A379885
E.g.f. A(x) satisfies A(x) = 1/(exp(-x) - x*A(x)).
[ "1", "2", "11", "118", "1885", "40266", "1080679", "34979134", "1326825497", "57744176914", "2836795756771", "155305155441030", "9376803979425205", "619006372481008474", "44357422104298022399", "3429215554499681260366", "284496868838293052890033", "25212167721275946619910178", "2377021703587467346833760315" ]
[ "nonn" ]
10
0
2
[ "A377890", "A377892", "A379885" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-05T09:35:45
oeisdata/seq/A379/A379885.seq
628f77d932dec3405623662bac3d164c
A379886
E.g.f. A(x) satisfies A(x) = 1/(exp(-x) - x*A(x)^2).
[ "1", "2", "15", "247", "6221", "212421", "9181555", "480780875", "29589829785", "2093629793113", "167458531710431", "14942213260220247", "1471585837443194533", "158562898380718019813", "18555214181719160291403", "2343490814996151816116131", "317730224718816177328965425", "46028095309438150072340711601" ]
[ "nonn" ]
8
0
2
[ "A377891", "A377893", "A379867", "A379886" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-05T09:57:34
oeisdata/seq/A379/A379886.seq
80b510546c61253d3b34b8a568c15adc
A379887
Number of rational polygons with denominator at most n having exactly one lattice point in their interior, up to equivalence.
[ "16", "5145", "924042", "101267212", "8544548186" ]
[ "nonn", "more" ]
16
1
1
[ "A145581", "A322343", "A371917", "A379887", "A379894" ]
null
Justus Springer, Jan 05 2025
2025-01-05T11:01:55
oeisdata/seq/A379/A379887.seq
01cf8ae081b9acb3a26dfad570cda352
A379888
Decimal expansion of the surface area of a pentagonal hexecontahedron with unit shorter edge length.
[ "1", "6", "2", "6", "9", "8", "9", "6", "4", "1", "9", "8", "4", "6", "6", "6", "2", "6", "7", "6", "8", "7", "2", "5", "8", "2", "4", "1", "2", "1", "3", "7", "9", "5", "9", "7", "0", "9", "7", "1", "8", "2", "2", "3", "6", "6", "4", "0", "3", "8", "2", "5", "8", "8", "3", "1", "8", "7", "7", "7", "1", "4", "4", "7", "4", "9", "3", "6", "4", "3", "1", "2", "8", "5", "5", "8", "2", "0", "1", "5", "3", "5", "7", "4", "1", "9", "8", "0", "4", "3" ]
[ "nonn", "cons", "easy" ]
10
3
2
[ "A001622", "A377804", "A379888", "A379889", "A379890", "A379891", "A379892" ]
null
Paolo Xausa, Jan 07 2025
2025-02-07T13:47:20
oeisdata/seq/A379/A379888.seq
6311005b218822e4946805f3b20c5482
A379889
Decimal expansion of the volume of a pentagonal hexecontahedron with unit shorter edge length.
[ "1", "8", "9", "7", "8", "9", "8", "5", "2", "0", "6", "6", "8", "8", "5", "2", "7", "9", "1", "0", "6", "3", "2", "3", "0", "8", "6", "1", "9", "4", "4", "7", "3", "7", "9", "6", "9", "9", "1", "0", "6", "0", "3", "3", "6", "2", "9", "7", "3", "6", "1", "1", "5", "6", "6", "1", "4", "6", "7", "9", "8", "0", "6", "7", "5", "5", "7", "5", "7", "4", "0", "4", "9", "5", "6", "8", "6", "8", "1", "3", "6", "9", "9", "0", "1", "0", "4", "0", "1", "9" ]
[ "nonn", "cons", "easy" ]
8
3
2
[ "A001622", "A377805", "A379888", "A379889", "A379890", "A379891", "A379892" ]
null
Paolo Xausa, Jan 07 2025
2025-02-10T11:55:21
oeisdata/seq/A379/A379889.seq
a9830dfd209014c8969dd496f2f6f5d6
A379890
Decimal expansion of the inradius of a pentagonal hexecontahedron with unit shorter edge length.
[ "3", "4", "9", "9", "5", "2", "7", "8", "4", "8", "9", "0", "5", "7", "6", "4", "0", "8", "2", "5", "7", "5", "3", "9", "3", "9", "0", "0", "3", "3", "7", "8", "9", "8", "2", "7", "8", "7", "7", "5", "8", "4", "9", "3", "6", "8", "9", "5", "0", "8", "8", "9", "3", "2", "5", "7", "3", "4", "2", "8", "9", "2", "2", "9", "7", "7", "1", "4", "6", "5", "2", "5", "8", "0", "6", "9", "1", "2", "6", "3", "1", "0", "8", "6", "3", "0", "3", "1", "9", "6" ]
[ "nonn", "cons", "easy" ]
9
1
1
[ "A379888", "A379889", "A379890", "A379891", "A379892" ]
null
Paolo Xausa, Jan 07 2025
2025-02-10T11:56:01
oeisdata/seq/A379/A379890.seq
ef54da9b97edb28cbc2906a03929e778
A379891
Decimal expansion of the midradius of a pentagonal hexecontahedron with unit shorter edge length.
[ "3", "5", "9", "7", "6", "2", "4", "8", "2", "2", "5", "5", "1", "1", "8", "9", "0", "1", "1", "4", "2", "8", "2", "5", "6", "5", "5", "9", "4", "4", "4", "4", "2", "3", "5", "3", "8", "4", "1", "1", "9", "6", "4", "5", "2", "2", "6", "6", "7", "7", "7", "1", "0", "1", "3", "4", "7", "6", "9", "9", "5", "5", "7", "8", "3", "0", "1", "6", "3", "6", "8", "7", "3", "2", "6", "0", "4", "5", "1", "3", "1", "6", "2", "5", "1", "7", "4", "2", "0", "6" ]
[ "nonn", "cons", "easy" ]
8
1
1
[ "A377807", "A379888", "A379889", "A379890", "A379891", "A379892" ]
null
Paolo Xausa, Jan 09 2025
2025-01-10T06:13:46
oeisdata/seq/A379/A379891.seq
6005864275dc193e13222fa91da307a0
A379892
Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal hexecontahedron.
[ "2", "6", "7", "3", "4", "7", "3", "2", "2", "7", "1", "7", "6", "7", "8", "4", "6", "6", "8", "2", "7", "9", "0", "7", "0", "3", "3", "4", "8", "9", "5", "7", "9", "1", "7", "1", "9", "7", "8", "7", "0", "3", "1", "7", "5", "0", "2", "6", "9", "3", "4", "4", "5", "6", "5", "7", "6", "9", "9", "5", "2", "4", "5", "0", "0", "2", "2", "5", "5", "7", "4", "0", "0", "5", "4", "0", "2", "1", "6", "0", "5", "9", "9", "6", "7", "4", "7", "4", "7", "5" ]
[ "nonn", "cons", "easy" ]
10
1
1
[ "A377849", "A377997", "A377998", "A379888", "A379889", "A379890", "A379891", "A379892" ]
null
Paolo Xausa, Jan 10 2025
2025-02-10T08:42:30
oeisdata/seq/A379/A379892.seq
1a521328a25750d8fb98a845f8567ea2
A379893
Triangle read by rows: T(n,k) is the number of standard Young tableaux with shapes in {lambda = (lambda_1,lambda_2,...) | lambda_1-lambda_2=k, lambda_i<=1 for i>=3, |lambda| = n}, n >= 0 and 0 <= k <= n.
[ "1", "0", "1", "1", "0", "1", "1", "2", "0", "1", "3", "3", "3", "0", "1", "6", "9", "6", "4", "0", "1", "15", "21", "19", "10", "5", "0", "1", "36", "55", "50", "34", "15", "6", "0", "1", "91", "141", "139", "99", "55", "21", "7", "0", "1", "232", "371", "379", "293", "175", "83", "28", "8", "0", "1", "603", "982", "1043", "847", "551", "286", "119", "36", "9", "0", "1", "1585", "2628", "2872", "2441", "1684", "956", "441", "164", "45", "10", "0", "1" ]
[ "nonn", "tabl" ]
34
0
8
[ "A005043", "A257520", "A379893" ]
null
Xiaomei Chen, Jan 05 2025
2025-01-15T09:02:44
oeisdata/seq/A379/A379893.seq
e092b6e052e9072a626adbde779c238d
A379894
Number of rational polygons of denominator at most n having exactly one lattice point in their interior and primitive vertices, up to equivalence.
[ "16", "505", "48032", "1741603", "154233886", "2444400116" ]
[ "nonn", "more" ]
19
1
1
[ "A141682", "A145581", "A322343", "A371917", "A379887", "A379894" ]
null
Justus Springer, Jan 05 2025
2025-01-06T05:51:49
oeisdata/seq/A379/A379894.seq
ef5c9337e3e151745bc51b03761978e5
A379895
Number of 1 <= m <= N-1 such that there exists 1 <= x < y <= N-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/N^2, N = A355812(n).
[ "1", "2", "2", "2", "1", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "2", "2", "1", "2", "2", "2", "2", "2", "2", "3", "2", "2", "1", "2", "2", "2", "4", "1", "2", "4", "2", "2", "3", "2", "2", "2", "2", "2", "2", "4", "3", "2", "2", "4", "2", "1", "2", "2", "6", "2", "2", "4", "2", "2", "1", "2", "2", "2", "2", "2", "2", "2", "3", "3", "3", "2", "2", "1", "2", "5", "1", "2", "6", "4", "2", "4", "1", "2", "2", "7" ]
[ "nonn" ]
18
1
2
[ "A355812", "A355813", "A379895", "A379979", "A379983" ]
null
Jianing Song, Jan 05 2025
2025-01-07T21:21:07
oeisdata/seq/A379/A379895.seq
5a50d88b46077c49d469b01a7c502625
A379896
a(n) is the least number k whose digit sums are 2*n-1, 2*n and 2*n+1 in bases 2*n-1, 2*n and 2*n+1 respectively.
[ "13", "61", "169", "13321", "4621", "14197", "5041", "7345", "10261", "13861", "18217", "23401", "29485", "36541", "74401", "89761", "107101", "126541", "148201", "172201", "198661", "227701", "259441", "294001", "331501", "520885", "582121", "647977", "718621", "794221", "874945", "960961", "1052437", "1149541", "1252441", "1361305", "1898101", "2054053", "2218321" ]
[ "nonn", "base" ]
13
2
1
[ "A379749", "A379896" ]
null
Robert Israel, Jan 05 2025
2025-01-06T04:15:06
oeisdata/seq/A379/A379896.seq
1955114929d00d3943627c40d9a33e83
A379897
E.g.f. A(x) satisfies A(x) = 1/(exp(-x*A(x)^3) - x).
[ "1", "2", "19", "388", "12273", "528216", "28824811", "1907463440", "148449329825", "13287501321472", "1344889039128291", "151888157696186880", "18936317798871433681", "2583256803370493809664", "382764484828432552194875", "61215815097927618654693376", "10510472883169375744953509697", "1928296235410784800904193638400" ]
[ "nonn" ]
26
0
2
[ "A088690", "A377893", "A379870", "A379884", "A379897", "A379912" ]
null
Seiichi Manyama, Jan 05 2025
2025-01-08T02:41:44
oeisdata/seq/A379/A379897.seq
ec70734960241244a6fb852d7b9a668c
A379898
Integers k equal to the sum over A003415(t) mod t, for some steps, starting with t = k and then using the result to feed the next calculation.
[ "6", "24", "38", "42", "62", "96", "98", "146", "152", "162", "168", "171", "248", "384", "392", "584", "608", "648", "672", "684", "992", "1026", "1134", "1202", "1506", "1536", "1568", "1674", "2336", "2432", "2592", "2646", "2688", "2736", "3942", "3968", "4104", "4214", "4374", "4536", "4575", "4617", "4808", "6024", "6144", "6272", "6696", "9344", "9728" ]
[ "nonn", "easy" ]
7
1
1
[ "A003415", "A377001", "A377002", "A379898" ]
null
Paolo P. Lava, Jan 05 2025
2025-01-07T10:09:48
oeisdata/seq/A379/A379898.seq
f55a03e74acf112e24cd363d958b1d1f
A379899
a(1) = 2. For n > 1, a(n) = smallest prime factor of c=a(n-1)+4 that is not in {a(1), ..., a(n-1)}; if all prime factors of c are in {a(1), ..., a(n-1)}, then we try the next value of c, which is c+4; and so on.
[ "2", "3", "7", "11", "5", "13", "17", "29", "37", "41", "53", "19", "23", "31", "43", "47", "59", "67", "71", "79", "83", "103", "107", "127", "131", "139", "151", "163", "167", "179", "61", "73", "89", "97", "101", "109", "113", "137", "149", "157", "173", "181", "193", "197", "229", "233", "241", "257", "269", "277", "281", "293", "313", "317", "337", "349", "353", "373" ]
[ "nonn" ]
24
1
1
[ "A031439", "A072268", "A131200", "A174162", "A379648", "A379652", "A379775", "A379776", "A379783", "A379784", "A379899", "A379900", "A380075", "A380076" ]
null
Robert C. Lyons, Jan 05 2025
2025-01-14T01:53:54
oeisdata/seq/A379/A379899.seq
32db0ffca818967cb8a45de0fa3c3647
A379900
a(n) = position of prime(n) in A379899, or a(n) = -1 if prime(n) is not in A379899.
[ "1", "2", "5", "3", "4", "6", "7", "12", "13", "8", "14", "9", "10", "15", "16", "11", "17", "31", "18", "19", "32", "20", "21", "33", "34", "35", "22", "23", "36", "37", "24", "25", "38", "26", "39", "27", "40", "28", "29", "41", "30", "42", "73", "43", "44", "74", "75", "76", "77", "45", "46", "78", "47", "79", "48", "80", "49", "81", "50", "51", "82", "52", "83", "84", "53", "54", "85" ]
[ "nonn", "easy" ]
8
1
2
[ "A379899", "A379900" ]
null
Robert C. Lyons, Jan 05 2025
2025-01-06T04:12:41
oeisdata/seq/A379/A379900.seq
bd9164f4071fe7c2a07fd161cf8c0539
A379901
Local maxima in A342042, in order of appearance: numbers m such that A342042(k-1) < A342042(k) = m > A342042(k+1), for k >= 2.
[ "30", "50", "70", "90", "51", "71", "91", "52", "72", "92", "73", "93", "74", "94", "95", "96", "301", "501", "701", "901", "303", "502", "503", "702", "902", "703", "505", "704", "705", "903", "307", "507", "707", "904", "905", "906", "907", "909", "509", "710", "910", "911", "309", "510", "711", "912", "311", "511", "712", "313", "913", "512", "513", "713", "914", "515" ]
[ "nonn", "base" ]
13
1
1
[ "A342042", "A379901", "A379902", "A379903", "A379904" ]
null
Paolo Xausa, Jan 05 2025
2025-01-08T05:55:28
oeisdata/seq/A379/A379901.seq
6ec3ca89942891ec4365f81985002f9e