sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A380002
Decimal expansion of long/short edge length ratio of a pentagonal hexecontahedron.
[ "1", "7", "4", "9", "8", "5", "2", "5", "6", "6", "7", "3", "6", "2", "0", "2", "7", "9", "1", "6", "7", "6", "4", "4", "6", "6", "9", "3", "6", "5", "5", "9", "2", "1", "1", "7", "9", "6", "4", "9", "8", "1", "5", "8", "1", "8", "5", "9", "0", "3", "7", "6", "0", "0", "4", "3", "8", "7", "8", "6", "1", "2", "6", "9", "7", "0", "3", "9", "8", "2", "5", "2", "6", "6", "0", "8", "4", "0", "1", "4", "5", "1", "4", "1", "4", "9", "0", "4", "5", "7" ]
[ "nonn", "cons", "easy" ]
9
1
2
[ "A377849", "A379888", "A379889", "A379890", "A379892", "A380002", "A380003", "A380004" ]
null
Paolo Xausa, Jan 11 2025
2025-01-13T04:12:57
oeisdata/seq/A380/A380002.seq
1dc98a72cba2ac9587cee13f50240659
A380003
Decimal expansion of acute vertex angle, in radians, in a pentagonal hexecontahedron face.
[ "1", "1", "7", "7", "2", "8", "5", "8", "2", "3", "4", "7", "1", "7", "5", "0", "2", "9", "1", "9", "2", "3", "5", "3", "7", "4", "4", "5", "4", "8", "1", "2", "4", "4", "6", "8", "0", "9", "0", "7", "3", "0", "5", "4", "3", "4", "5", "9", "8", "1", "2", "4", "8", "7", "4", "3", "0", "8", "9", "3", "3", "3", "8", "2", "9", "2", "3", "3", "2", "2", "9", "9", "7", "6", "3", "0", "9", "5", "9", "8", "0", "6", "4", "5", "2", "5", "2", "9", "6", "1" ]
[ "nonn", "cons", "easy" ]
9
1
3
[ "A379888", "A379889", "A379890", "A379892", "A380002", "A380003", "A380004" ]
null
Paolo Xausa, Jan 12 2025
2025-01-13T04:13:42
oeisdata/seq/A380/A380003.seq
9b97c924af87d93ecea560a4e353da31
A380004
Decimal expansion of obtuse vertex angles, in radians, in a pentagonal hexecontahedron face.
[ "2", "0", "6", "1", "8", "7", "3", "0", "3", "4", "3", "2", "4", "4", "0", "7", "3", "5", "5", "8", "6", "6", "0", "9", "8", "1", "7", "6", "0", "8", "9", "3", "1", "5", "9", "9", "2", "9", "2", "1", "0", "5", "0", "6", "9", "0", "8", "8", "1", "7", "9", "8", "1", "4", "7", "1", "5", "3", "9", "7", "5", "0", "9", "8", "5", "0", "0", "0", "3", "1", "5", "5", "5", "3", "0", "6", "9", "1", "6", "7", "9", "7", "3", "5", "7", "8", "9", "3", "7", "1" ]
[ "nonn", "cons", "easy" ]
7
1
1
[ "A379888", "A379889", "A379890", "A379892", "A380002", "A380003", "A380004" ]
null
Paolo Xausa, Jan 12 2025
2025-01-13T04:14:29
oeisdata/seq/A380/A380004.seq
e1c2155fc5801a56755e6c2ba671193b
A380005
Decimal expansion of (7/3)*log(log(12)) - exp(gamma)*log(log(12))^2, where gamma is the Euler-Mascheroni constant (A001620).
[ "6", "4", "8", "2", "1", "3", "6", "4", "9", "4", "2", "1", "7", "9", "9", "7", "6", "2", "7", "2", "0", "0", "9", "4", "2", "5", "6", "4", "3", "5", "3", "2", "9", "0", "1", "8", "9", "9", "3", "0", "4", "4", "7", "9", "9", "1", "1", "0", "1", "5", "4", "3", "1", "5", "7", "5", "4", "8", "0", "0", "1", "4", "6", "7", "0", "6", "3", "4", "4", "5", "9", "7", "1", "5", "4", "2", "4", "5", "1", "0", "2", "4", "4", "9", "5", "4", "3", "1", "7", "6" ]
[ "nonn", "cons", "easy" ]
12
0
1
[ "A000203", "A001620", "A016635", "A058209", "A073004", "A380005" ]
null
Paolo Xausa, Jan 14 2025
2025-01-15T07:06:03
oeisdata/seq/A380/A380005.seq
95fe2158c3fcacd810047ce06edaa950
A380006
Irregular triangle read by rows: T(n,k) is the number of non-isomorphic p-subgroups in the symmetric group S_n, where p is the k-th noncomposite divisor of n!.
[ "1", "1", "1", "1", "1", "1", "1", "4", "1", "1", "4", "1", "1", "1", "7", "2", "1", "1", "7", "2", "1", "1", "1", "34", "2", "1", "1", "1", "34", "7", "1", "1", "1", "61", "7", "2", "1", "1", "61", "7", "2", "1", "1", "1", "308", "12", "2", "1", "1" ]
[ "nonn", "tabf", "more" ]
16
1
8
[ "A000142", "A008578", "A036234", "A380006" ]
null
Miles Englezou, Jan 07 2025
2025-03-06T09:09:40
oeisdata/seq/A380/A380006.seq
cd85336a9987c1535702ff8239a1fe20
A380007
Hexagonal numbers that are sphenic numbers.
[ "66", "190", "231", "435", "561", "861", "946", "1653", "2278", "3655", "4371", "5151", "5995", "6441", "8911", "9453", "10011", "10585", "13366", "15051", "15753", "16471", "20301", "21115", "22366", "22791", "23653", "26335", "32131", "33153", "39621", "40186", "45451", "50403", "54946", "62481", "69751", "72771", "77421", "80601", "83845", "93961", "99235", "102831" ]
[ "nonn" ]
19
1
1
[ "A000384", "A007304", "A129521", "A380007" ]
null
Massimo Kofler, Jan 08 2025
2025-01-08T17:24:39
oeisdata/seq/A380/A380007.seq
d260899a1049c7dd52dc3911c80d7188
A380008
Numbers t whose binary expansion Sum 2^e_i has exponents e_i which are odious numbers (A000069).
[ "0", "2", "4", "6", "16", "18", "20", "22", "128", "130", "132", "134", "144", "146", "148", "150", "256", "258", "260", "262", "272", "274", "276", "278", "384", "386", "388", "390", "400", "402", "404", "406", "2048", "2050", "2052", "2054", "2064", "2066", "2068", "2070", "2176", "2178", "2180", "2182", "2192", "2194", "2196", "2198", "2304", "2306", "2308", "2310", "2320", "2322", "2324", "2326", "2432", "2434", "2436", "2438", "2448", "2450", "2452", "2454" ]
[ "base", "easy", "nonn" ]
48
0
2
[ "A000069", "A001285", "A010059", "A380008", "A380009" ]
null
Luis Rato, Jan 08 2025
2025-02-25T14:58:53
oeisdata/seq/A380/A380008.seq
bc289a97f238eaaf51921b001af54a48
A380009
Numbers t whose binary expansion Sum 2^e_i has exponents e_i which are evil numbers (A001969).
[ "0", "1", "8", "9", "32", "33", "40", "41", "64", "65", "72", "73", "96", "97", "104", "105", "512", "513", "520", "521", "544", "545", "552", "553", "576", "577", "584", "585", "608", "609", "616", "617", "1024", "1025", "1032", "1033", "1056", "1057", "1064", "1065", "1088", "1089", "1096", "1097", "1120", "1121", "1128", "1129", "1536", "1537", "1544", "1545", "1568", "1569", "1576", "1577", "1600", "1601", "1608", "1609", "1632", "1633", "1640", "1641" ]
[ "base", "easy", "nonn" ]
48
0
3
[ "A000069", "A001285", "A001969", "A010059", "A380008", "A380009" ]
null
Luis Rato, Jan 09 2025
2025-02-06T13:51:45
oeisdata/seq/A380/A380009.seq
0a2fbad26ffde98758c745aca0af7f41
A380010
Beginning with 7, least prime such that concatenation of the first n terms is prime.
[ "7", "3", "3", "3", "31", "23", "13", "3", "167", "13", "137", "3", "73", "383", "499", "431", "13", "101", "61", "47", "67", "101", "13", "83", "1237", "107", "97", "467", "499", "677", "1423", "353", "73", "431", "331", "683", "487", "2141", "3", "1753", "1787", "31", "443", "139", "653", "1327", "17", "919", "173", "2851", "137", "547", "557", "5167", "347", "7867", "839", "19", "179", "19" ]
[ "base", "nonn" ]
19
1
1
[ "A111382", "A111383", "A113584", "A379354", "A379355", "A379761", "A380010", "A380011" ]
null
J.W.L. (Jan) Eerland, Jan 09 2025
2025-01-18T14:46:40
oeisdata/seq/A380/A380010.seq
66d426ab7c4599888cbb6caf4ef77a48
A380011
Beginning with 7, least prime such that the reversal concatenation of the first n terms is prime.
[ "7", "3", "3", "13", "3", "2", "13", "47", "43", "47", "37", "41", "109", "41", "139", "149", "109", "263", "73", "563", "163", "41", "19", "797", "61", "107", "31", "821", "43", "149", "37", "953", "211", "89", "547", "353", "337", "167", "67", "239", "1009", "449", "97", "23", "349", "41", "31", "911", "61", "929", "229", "797", "331", "191", "463", "107", "463", "809", "2887", "971" ]
[ "base", "nonn" ]
19
1
1
[ "A111382", "A111383", "A113584", "A379354", "A379355", "A379761", "A380010", "A380011" ]
null
J.W.L. (Jan) Eerland, Jan 09 2025
2025-01-18T14:45:51
oeisdata/seq/A380/A380011.seq
52aac45d55671c84d907083ff96c4955
A380012
Population of elementary triangular automaton rule 54 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "9", "15", "21", "36", "36", "57", "66", "87", "81", "129", "129", "162", "162", "225", "228", "270", "267", "351", "324", "342", "483", "411", "468", "516", "588", "639", "600", "723", "762", "777", "795", "960", "888", "1071", "972", "1056", "1323", "1158", "1242", "1362", "1362", "1557", "1449", "1689", "1677", "1845", "1710", "1977", "2007", "2100", "2166", "2178", "2499", "2409", "2430", "2556" ]
[ "nonn" ]
17
0
2
[ "A372581", "A380012", "A380172", "A380173" ]
null
Paul Cousin, Jan 09 2025
2025-03-11T13:23:53
oeisdata/seq/A380/A380012.seq
e7ed664cf7cfaa9f45e118168110b89f
A380013
Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(2n+2)=q(2n+1)+q(2n), and q(2n+3)=q(2n+1)*(q(2n+2)+1).
[ "0", "1", "1", "1", "1", "3", "1", "18", "1", "432", "1", "196992", "1", "38895676416", "1", "1512881323731695591424", "1", "2288809899755012359448064967916189926490112", "1" ]
[ "nonn", "cofr" ]
69
0
6
[ "A006280", "A019426", "A380013" ]
null
Khalil Ayadi, Jan 09 2025
2025-02-12T16:54:19
oeisdata/seq/A380/A380013.seq
53d65fd8ea39e5c7e87061f478b07ca4
A380014
Expansion of e.g.f. 1/sqrt(exp(-2*x) - 2*x).
[ "1", "2", "10", "88", "1084", "17176", "332824", "7623904", "201540112", "6038820640", "202246657696", "7486877795200", "303561658686400", "13378863292503424", "636833910410881408", "32559375816074384896", "1779494669204225605888", "103532173699456380625408", "6388705590982575700625920" ]
[ "nonn" ]
9
0
2
[ "A072597", "A380014", "A380016", "A380018" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-23T04:53:46
oeisdata/seq/A380/A380014.seq
a186cd73a95a05f9ed38f56da29e514d
A380015
Expansion of e.g.f. 1/sqrt(1 - 2*x*exp(x)).
[ "1", "1", "5", "36", "361", "4640", "72771", "1347598", "28778849", "696288888", "18823644595", "562350743306", "18397666000209", "654164843763340", "25118967828553067", "1035914449832324070", "45665488606439586241", "2142825945301659242576", "106641225471890568771747", "5610282675990428302440130" ]
[ "nonn" ]
10
0
3
[ "A006153", "A380015", "A380017", "A380019" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-23T04:42:09
oeisdata/seq/A380/A380015.seq
db619f598adb8bda09a2a697d0fbbda9
A380016
Expansion of e.g.f. 1/(exp(-3*x) - 3*x)^(1/3).
[ "1", "2", "13", "161", "2833", "64841", "1827685", "61192181", "2372620801", "104549934977", "5160225776101", "281994042839477", "16902276273364465", "1102519010117525105", "77749077431938305541", "5894145002422856684501", "478015727336387513545345", "41295912476641866286397825", "3786025873450493919700627525" ]
[ "nonn" ]
7
0
2
[ "A072597", "A380014", "A380016", "A380018" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T08:00:45
oeisdata/seq/A380/A380016.seq
f74ede080b9b809067fda51b67b1a23f
A380017
Expansion of e.g.f. 1/(1 - 3*x*exp(x))^(1/3).
[ "1", "1", "6", "55", "716", "12085", "250726", "6172915", "175903400", "5694587209", "206438732810", "8284550317351", "364605758728828", "17461047965591581", "903964982917764782", "50306323769422679995", "2994799872257498255696", "189906103853462927405329", "12779300537432602189228306" ]
[ "nonn" ]
10
0
3
[ "A006153", "A380015", "A380017", "A380019" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-23T04:47:54
oeisdata/seq/A380/A380017.seq
49ba98b23bb7e93051ed9c06683064a3
A380018
Expansion of e.g.f. 1/(exp(-4*x) - 4*x)^(1/4).
[ "1", "2", "16", "256", "5856", "175296", "6486016", "285756416", "14606007296", "849615763456", "55415153442816", "4005309938466816", "317750919017168896", "27449350209163821056", "2564871898004949303296", "257753802183061443444736", "27720748513211258671988736", "3176821722223524679312736256" ]
[ "nonn" ]
7
0
2
[ "A072597", "A380014", "A380016", "A380018" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T08:00:30
oeisdata/seq/A380/A380018.seq
cf7c334b4d844350f6301bde5e0b7be4
A380019
Expansion of e.g.f. 1/(1 - 4*x*exp(x))^(1/4).
[ "1", "1", "7", "78", "1249", "26100", "673101", "20655082", "735030913", "29759100264", "1350726180085", "67929497104326", "3749296817347137", "225321905599163308", "14646040616615433949", "1023818460912628352490", "76589660469522857865601", "6105092923000191785913552", "516586509938516858800548453" ]
[ "nonn" ]
7
0
3
[ "A006153", "A380015", "A380017", "A380019" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T07:59:55
oeisdata/seq/A380/A380019.seq
0104f1142bd49a00af0d554fd91ccebf
A380020
Expansion of e.g.f. 1/sqrt(exp(-2*x) - 2*x*exp(-x)).
[ "1", "2", "8", "55", "540", "6861", "106828", "1968443", "41884496", "1010558161", "27259824996", "812935829355", "26556802948624", "943118750625377", "36176486632451012", "1490585029223430691", "65656827447552549504", "3078782615385684631809", "153127047650469476373316" ]
[ "nonn" ]
6
0
2
[ "A380014", "A380015", "A380020" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T08:00:20
oeisdata/seq/A380/A380020.seq
6ce44f2401aa6d8e70a91fe0d68bb192
A380021
Expansion of e.g.f. 1/(exp(-3*x) - 3*x*exp(-2*x))^(1/3).
[ "1", "2", "9", "77", "977", "16281", "335173", "8208901", "233037185", "7522621505", "272096862821", "10899761462085", "478990330829233", "22910468287983121", "1184832950732237381", "65877062190857942981", "3918656527419803705729", "248317978064709144523521", "16699787528059828201246021" ]
[ "nonn" ]
7
0
2
[ "A380016", "A380017", "A380021" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T08:00:16
oeisdata/seq/A380/A380021.seq
9ef0f4d8542549df4bdda824f409bccb
A380022
Expansion of e.g.f. 1/(exp(-4*x) - 4*x*exp(-3*x))^(1/4).
[ "1", "2", "10", "103", "1608", "33201", "850108", "25961489", "920672000", "37177954705", "1684020384036", "84552655333785", "4660526554922032", "279769833061460249", "18167873577214204964", "1268970734106516345721", "94861592588266224161664", "7556876103775629510620193", "639078655735155260051464132" ]
[ "nonn" ]
5
0
2
[ "A380018", "A380019", "A380022" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-09T08:00:10
oeisdata/seq/A380/A380022.seq
851ddfa74a95de02c0293a46a7b653ac
A380023
a(n) = a(n-1) * a(n-2) * (1 - 2 / (n * (n-1))), with a(1) = 2, a(2) = 3.
[ "2", "3", "4", "10", "36", "336", "11520", "3732480", "41803776000", "152564385447936000", "6261807987664209366220800000", "940854207318376503485146088437972992000000000", "5815917000990435607656487842294594291938222391518950745702400000000000000" ]
[ "nonn" ]
36
1
1
[ "A000045", "A230053", "A380023" ]
null
Hamza K. Özer, Jan 09 2025
2025-03-16T22:56:15
oeisdata/seq/A380/A380023.seq
d4121b7e9e2e6135b357e17fddb99b3c
A380024
a(n) = 4^n - 3^n - binomial(n,2)*3^(n-2).
[ "0", "1", "6", "28", "121", "511", "2152", "9094", "38563", "163729", "694282", "2934592", "12348541", "51697075", "215291356", "891989002", "3677964295", "15099277669", "61745907934", "251632677604", "1022414950465", "4143511249831", "16755357788176", "67628131638478", "272531374722091" ]
[ "nonn", "easy" ]
28
0
3
[ "A005061", "A086443", "A380024", "A380651" ]
null
Enrique Navarrete, Feb 05 2025
2025-03-03T16:28:48
oeisdata/seq/A380/A380024.seq
b5e092b87516b7421da56eab3a969d6f
A380025
Area of smallest rectangle of grid cells such that it is possible to mark a connected subset of the cells so that the lengths of runs of marked cells have lengths from 2 to n, each length appearing exactly once.
[ "2", "6", "12", "15", "24", "35", "40", "54", "65", "77", "96", "112", "126", "150", "160" ]
[ "nonn", "more" ]
34
2
1
[ "A351516", "A380025" ]
null
Rodolfo Kurchan, Jan 09 2025
2025-02-01T23:12:57
oeisdata/seq/A380/A380025.seq
954562c93b088ecdd68114e8875c40a2
A380026
a(n) is the smallest prime p such that p - a(n-1) is a primorial, starting with a(1)=2.
[ "2", "3", "5", "7", "13", "19", "229", "439", "2749", "5059", "7369", "9679", "39709", "42019", "6469735249", "5766152219975951659023630035336134306565384015606066326325804059", "5766152219975951659023630035336134306565384015606073747063938869", "5766152219975951659023630035336134306565384015606073747287031739" ]
[ "nonn" ]
26
1
1
[ "A000720", "A002110", "A100380", "A380026", "A380027" ]
null
Hayden Chesnut, Jan 09 2025
2025-01-21T15:10:24
oeisdata/seq/A380/A380026.seq
f06e8619ce3e4550eb955906545b5e02
A380027
a(n) is the largest prime p such that p - a(n-1) is a primorial, starting with a(1) = 2.
[ "2", "3", "5", "11", "41", "9699731" ]
[ "nonn" ]
40
1
1
[ "A002110", "A265109", "A380026", "A380027" ]
null
Hayden Chesnut, Jan 09 2025
2025-02-08T14:09:38
oeisdata/seq/A380/A380027.seq
e8eb9af877e8adcf05f473e350e8666f
A380028
Expansion of e.g.f. sqrt(1 - 2*x*exp(x)).
[ "1", "-1", "-3", "-12", "-79", "-760", "-9561", "-147994", "-2716239", "-57632040", "-1387518625", "-37365406606", "-1112793904311", "-36312032900884", "-1288357188957489", "-49380149141206290", "-2033232328710195871", "-89506187915127440560", "-4194948681994077973377", "-208545134727411799745878" ]
[ "sign", "easy", "changed" ]
9
0
3
[ "A002420", "A380015", "A380028" ]
null
Seiichi Manyama, Jan 09 2025
2025-04-22T13:00:59
oeisdata/seq/A380/A380028.seq
d920ef2cf0ce88ba81e907fdd622ab0d
A380029
Expansion of e.g.f. (1 - 3*x*exp(x))^(1/3).
[ "1", "-1", "-4", "-25", "-252", "-3545", "-63806", "-1397781", "-36069272", "-1071165745", "-35977484250", "-1348257912221", "-55766033179220", "-2523251585908521", "-123972318738063446", "-6572554273909419685", "-373979858167243433136", "-22731929051273411113313", "-1470009560015441800798514" ]
[ "sign", "easy" ]
9
0
3
[ "A004990", "A380017", "A380029", "A380030" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-10T10:09:59
oeisdata/seq/A380/A380029.seq
cafc477ab003cd49ec646cfec20b6c69
A380030
Expansion of e.g.f. (1 - 3*x*exp(x))^(2/3).
[ "1", "-2", "-6", "-26", "-208", "-2570", "-42332", "-865718", "-21110224", "-597416786", "-19239912340", "-694646155742", "-27785653906232", "-1219574936748506", "-58274685177526300", "-3011159013528002150", "-167299112903683007392", "-9945379044947061586850", "-629870278061691615041828" ]
[ "sign", "easy" ]
9
0
2
[ "A004989", "A380029", "A380030" ]
null
Seiichi Manyama, Jan 09 2025
2025-01-10T10:09:55
oeisdata/seq/A380/A380030.seq
1cec698f65e3fc5b2ffa8a4a831ad112
A380031
Smallest integer of d digits, greater than 1 and not ending in 0, whose constant congruence speed is not yet constant at height d + 2.
[ "5", "807", "81666295807", "81907922943", "161423787862411847003581666295807", "115161423787862411847003581666295807", "45115161423787862411847003581666295807", "44317662666830362972182803640476581907922943", "776138023544317662666830362972182803640476581907922943" ]
[ "nonn", "base", "hard" ]
8
1
1
[ "A068407", "A290372", "A290373", "A290374", "A290375", "A317905", "A370211", "A370775", "A371129", "A371671", "A372490", "A373387", "A379906", "A380031" ]
null
Marco Ripà, Jan 10 2025
2025-01-18T09:27:03
oeisdata/seq/A380/A380031.seq
418b0e3f05a00e84e1eda1802d346d1a
A380032
Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) > 1 and d | k/d but rad(k/d) does not divide d, where k is in A126706.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "1", "2", "1", "2", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "3", "1", "1", "1", "3", "2", "1", "2", "1", "1", "2", "1", "2", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1" ]
[ "nonn" ]
6
1
6
[ "A001221", "A025487", "A126706", "A380032" ]
null
Michael De Vlieger, Jan 11 2025
2025-01-15T08:43:12
oeisdata/seq/A380/A380032.seq
2f517adca4b27f7516a6f5b935e93074
A380033
Numbers that set records in A380032.
[ "12", "36", "144", "576", "720", "900", "2880", "3600", "14400", "32400", "44100", "57600", "129600", "176400", "705600", "1587600", "2822400", "6350400", "11289600", "21344400", "25401600", "57153600", "85377600", "101606400", "192099600", "341510400", "768398400", "1366041600", "3073593600", "6915585600", "12294374400" ]
[ "nonn" ]
6
1
1
[ "A025487", "A061742", "A126706", "A364710", "A380032", "A380033", "A380034" ]
null
Michael De Vlieger, Jan 11 2025
2025-01-15T08:43:21
oeisdata/seq/A380/A380033.seq
3a63f1df3b5333059cb49c0f49c5bebd
A380034
Records in A380032.
[ "1", "2", "3", "4", "5", "6", "7", "9", "12", "13", "14", "15", "17", "21", "28", "31", "35", "41", "42", "45", "51", "54", "60", "61", "67", "75", "89", "90", "111", "118", "133", "147", "155", "163", "176", "185", "186", "195", "205", "231", "246", "277", "307", "323", "343", "368", "369", "377", "383", "411", "429", "455", "471", "479", "490", "502", "545", "565", "567", "627" ]
[ "nonn" ]
5
1
2
[ "A380032", "A380033", "A380034" ]
null
Michael De Vlieger, Jan 11 2025
2025-01-15T08:43:31
oeisdata/seq/A380/A380034.seq
9b059504f786b8b84a08d8aef4e9bf44
A380035
E.g.f. A(x) satisfies A(x) = 1/sqrt( 1 - 2*x*exp(x*A(x)) ).
[ "1", "1", "5", "42", "517", "8420", "171201", "4181128", "119339081", "3900501648", "143703797725", "5893732487456", "266358266633229", "13153210420876864", "704697559381904921", "40714369264722337920", "2523456287242464370321", "167019778198736205721856", "11757749450929277192860725" ]
[ "nonn" ]
23
0
3
[ "A380015", "A380035", "A380042" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:53
oeisdata/seq/A380/A380035.seq
08659662642e01a6cd49ad9269298b65
A380036
Smallest number which is not a triangular number mod n.
[ "1", "2", "2", "4", "2", "2", "2", "8", "2", "2", "2", "2", "4", "2", "2", "16", "5", "2", "4", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "2", "2", "32", "2", "5", "2", "2", "2", "4", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "2", "2", "2", "4", "4", "2", "2", "2", "2", "2", "4", "2", "2", "2", "2", "64", "2", "2", "5", "5", "2", "2", "2", "2", "2", "2", "2", "4", "2", "2", "2", "2", "2", "2", "7", "2", "2", "4", "2", "2", "4", "2", "2", "2", "2", "4" ]
[ "nonn" ]
32
1
2
[ "A000079", "A000217", "A117484", "A343713", "A380036" ]
null
Ethan E. Wood, Jan 10 2025
2025-01-30T13:53:24
oeisdata/seq/A380/A380036.seq
f192d5ad6212e70f51dabc4e8b1bde93
A380037
For n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and set a(n+1) as 1 more than the number of positive terms between a(m+1) and a(n-1). Otherwise, a(n+1) = -1. Start with a(1) = 0.
[ "0", "-1", "-1", "1", "-1", "2", "-1", "2", "1", "3", "-1", "4", "-1", "2", "4", "2", "2", "1", "7", "-1", "7", "1", "3", "10", "-1", "5", "-1", "2", "8", "-1", "3", "5", "4", "14", "-1", "5", "3", "5", "2", "9", "-1", "6", "-1", "2", "3", "6", "3", "2", "4", "13", "-1", "8", "18", "-1", "3", "6", "8", "4", "7", "30", "-1", "7", "2", "12", "-1", "4", "6", "9", "22", "-1", "5", "26" ]
[ "sign" ]
33
1
6
[ "A181391", "A380037" ]
null
Connor Criss, Jan 10 2025
2025-01-23T12:51:36
oeisdata/seq/A380/A380037.seq
1eaf5206cd3c3f379f4b8add7a8c9d6d
A380038
Triangle read by rows: T(n, k) = T(n-k, k) - T(n-k+1, k-1), T(n, 0) = A010815(n-1), and T(0, 0) = 1.
[ "1", "1", "-1", "-1", "0", "1", "-1", "1", "0", "0", "0", "1", "0", "-1", "0", "0", "1", "-1", "0", "0", "0", "1", "0", "-1", "0", "0", "0", "0", "0", "0", "-1", "0", "1", "0", "0", "0", "1", "-1", "-1", "1", "0", "0", "0", "0", "0", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "-1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "-1", "1", "1", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "-1", "1", "1" ]
[ "sign", "tabl" ]
20
0
null
[ "A000041", "A000217", "A008284", "A010815", "A072233", "A078616", "A380038" ]
null
Friedjof Tellkamp, Jan 12 2025
2025-02-12T12:46:28
oeisdata/seq/A380/A380038.seq
794cdeb2fc98667f82b386d08df4deeb
A380039
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)) )^(1/3).
[ "1", "1", "6", "61", "908", "17865", "438286", "12901735", "443475432", "17443879057", "773018191610", "38117147134671", "2070381313048588", "122841147634754185", "7905667340470592070", "548555101319868261655", "40825552788531622527056", "3244188226183716688784289", "274164589130871765969460594" ]
[ "nonn" ]
9
0
3
[ "A380017", "A380039", "A380040", "A380041" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:57
oeisdata/seq/A380/A380039.seq
e8888d46d54e8e4de4889beea0ab6f15
A380040
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)) )^(2/3).
[ "1", "2", "14", "170", "3000", "69930", "2033212", "70972734", "2894590064", "135164076722", "7113787010100", "416759006663142", "26903080612468744", "1897553477118350922", "145204649027247413996", "11982094054396851014030", "1060673494236770414806752", "100265097180082772515691874", "10080871201186661027182272868" ]
[ "nonn" ]
9
0
2
[ "A380039", "A380040", "A380041" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:46
oeisdata/seq/A380/A380040.seq
854aeb09c5d645ee3c70d8cfea6a7ab6
A380041
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)^2) )^(1/3).
[ "1", "1", "6", "67", "1124", "25325", "718606", "24629395", "990296504", "45718478137", "2383877762810", "138578689119431", "8887132981365508", "623319005140469989", "47465740413056117894", "3900149351529967753435", "343951717449176947732976", "32405206661688405897284849", "3248370338004030319683766642" ]
[ "nonn" ]
9
0
3
[ "A380017", "A380039", "A380041" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:49
oeisdata/seq/A380/A380041.seq
b0183af7ec3b5db820a28a7ebe0363bf
A380042
E.g.f. A(x) satisfies A(x) = 1/sqrt( 1 - 2*x*exp(x*A(x)^2) ).
[ "1", "1", "5", "48", "697", "13640", "336771", "10053778", "352334753", "14183529480", "645073504435", "32715111226886", "1830671281889649", "112049330303532388", "7446824171300128811", "534068807341887943770", "41111698162393482004801", "3381089519620006418116976", "295869084136630532211207843" ]
[ "nonn" ]
11
0
3
[ "A161633", "A201470", "A380015", "A380035", "A380042", "A380043" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:39
oeisdata/seq/A380/A380042.seq
5a5f3b05f74af38e2787833c1fbc3819
A380043
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x*A(x)^3) )^(1/3).
[ "1", "1", "6", "73", "1364", "34585", "1110406", "43200535", "1975744856", "103892750209", "6176282882570", "409635957376591", "29988473838531748", "2402004132488328433", "208956515057627326094", "19619264794744128427495", "1977503574407863125008816", "212975277029523353673126529", "24408338689788753822318157330" ]
[ "nonn" ]
9
0
3
[ "A161633", "A380039", "A380041", "A380042", "A380043" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:43
oeisdata/seq/A380/A380043.seq
1ecaacae4c8254dca0d32360024e66b7
A380044
E.g.f. A(x) satisfies A(x) = 1/sqrt( 1 - 2*x*exp(x)*A(x) ).
[ "1", "1", "7", "81", "1393", "32025", "924831", "32208337", "1314511297", "61553580849", "3253663709335", "191661481308561", "12451241630689137", "884434637282286025", "68195094329460133231", "5672843158404577658385", "506413381554227338302721", "48290505275596520116029537", "4899034372132659112326787239" ]
[ "nonn" ]
9
0
3
[ "A295238", "A380044", "A380045" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:27:04
oeisdata/seq/A380/A380044.seq
e89ed538b5f16583ebb5bd915cba0f60
A380045
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*exp(x)*A(x) )^(1/3).
[ "1", "1", "8", "109", "2220", "60585", "2079166", "86098929", "4179685560", "232849349425", "14645304783450", "1026614846280441", "79371261554884036", "6709919722961129337", "615776691767279304822", "60968162469515187248545", "6478143744223567852425456", "735290556968263062361451745", "88790542940636437330983140146" ]
[ "nonn" ]
9
0
3
[ "A295238", "A380044", "A380045" ]
null
Seiichi Manyama, Jan 10 2025
2025-01-11T10:26:55
oeisdata/seq/A380/A380045.seq
8431d11817e987754579fabd9ce53a62
A380046
E.g.f. A(x) satisfies A(x) = 1 + 2*x*exp(x)*A(x)^(1/2).
[ "1", "2", "8", "36", "176", "840", "3312", "4592", "-85888", "-893664", "1375040", "165097152", "2297399040", "-437916544", "-676590342400", "-13778476089600", "-35262701498368", "5528190100333056", "159800245551129600", "1036568296401259520", "-77532370748157030400", "-3135837171024874272768" ]
[ "sign" ]
10
0
2
[ "A006153", "A380046", "A380047", "A380050" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-11T10:26:40
oeisdata/seq/A380/A380046.seq
2b3b091954a47226dacc4d49de7bb430
A380047
E.g.f. A(x) satisfies A(x) = 1 + 3*x*exp(x)*A(x)^(1/3).
[ "1", "3", "12", "45", "132", "135", "-702", "6573", "111576", "-634581", "-19482690", "104641713", "5438689380", "-21226768017", "-2173847986086", "3249084663765", "1168505502268848", "2167390942251219", "-807540016560944778", "-5035872168333504807", "693302551375611396540", "8209523136574257223383" ]
[ "sign" ]
8
0
2
[ "A006153", "A380046", "A380047", "A380051" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-11T10:26:35
oeisdata/seq/A380/A380047.seq
a3d132fcf83063b2ccd49415c88184a7
A380048
a(n) = A000045(n) * A001003(n).
[ "0", "1", "3", "22", "135", "985", "7224", "55627", "436653", "3503666", "28537245", "235558347", "1965437136", "16552173909", "140505456663", "1200968926590", "10327551834411", "89286693775373", "775611959272392", "6766372185052247", "59256729852910425", "520754062920338026", "4590973472772299193", "40591542233796808247" ]
[ "nonn", "easy" ]
10
0
3
[ "A000045", "A001003", "A380048" ]
null
Vladimir Kruchinin, Jan 11 2025
2025-01-11T18:49:38
oeisdata/seq/A380/A380048.seq
ae717345b609433fee63f8989da76ca6
A380049
Partial sums of A072203.
[ "0", "1", "3", "4", "6", "7", "9", "12", "14", "15", "17", "20", "24", "27", "29", "30", "32", "35", "39", "44", "48", "51", "55", "58", "60", "61", "63", "66", "70", "75", "81", "88", "94", "99", "103", "106", "110", "113", "115", "116", "118", "121", "125", "130", "136", "141", "147", "154", "160", "167", "173", "180", "188", "195", "201", "206", "210", "213", "217", "220", "224", "227", "231", "234", "236" ]
[ "nonn" ]
36
1
3
[ "A058933", "A072203", "A380049" ]
null
Tsuyoshi Hanatate, Jan 10, 2025
2025-02-14T16:18:33
oeisdata/seq/A380/A380049.seq
ef4c9646e0d4e00f2a819b2c2fa91dfe
A380050
E.g.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*exp(x)*A(x) ).
[ "1", "1", "3", "9", "25", "25", "-429", "-4151", "-8175", "320625", "5241475", "23329801", "-705579159", "-18521117303", "-150119840493", "3366485315145", "138253031778721", "1780881865542625", "-28047359274759549", "-1854674541474191351", "-34985197604145203655", "332608115115937927161" ]
[ "sign" ]
11
0
3
[ "A006153", "A297010", "A380044", "A380050", "A380051" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-11T10:26:32
oeisdata/seq/A380/A380050.seq
97542c8834ce3af3f1835af15cdad5ba
A380051
E.g.f. A(x) satisfies A(x) = ( 1 + 3*x*exp(x)*A(x) )^(1/3).
[ "1", "1", "2", "1", "-12", "-15", "526", "1617", "-49608", "-302111", "8126010", "85724001", "-2020009628", "-34232466255", "696686324166", "18267485751985", "-310973114236944", "-12533263924965183", "168118610439268594", "10727427541319225793", "-100693940482485604260", "-11178369799980253348079" ]
[ "sign" ]
7
0
3
[ "A006153", "A380047", "A380050", "A380051" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-11T10:26:28
oeisdata/seq/A380/A380051.seq
3c0a4729c2871a3fa5e7f757c37070ea
A380052
a(n) is the largest number whose cube is an n-digit cube which has the maximum sum of digits (A373727(n)).
[ "2", "4", "9", "19", "46", "92", "208", "453", "942", "1966", "4289", "9949", "12599", "43795", "99829", "215083", "446423", "989353", "2131842", "4081435", "9850783", "20714797", "43967926", "92827483", "190349299", "464110759", "989554129", "2132590453", "4559677342", "9654499999", "21253161559", "31037622999", "99594689449", "181610950229" ]
[ "nonn", "base" ]
23
1
1
[ "A373727", "A379298", "A379869", "A380052", "A380193", "A380566", "A380797" ]
null
Zhining Yang, Jan 11 2025
2025-04-03T14:59:21
oeisdata/seq/A380/A380052.seq
fc46c3c24fb0cfa96a3863f10bdbb9f1
A380053
E.g.f. (exp(x) - 1)/cos(x).
[ "1", "1", "4", "7", "36", "91", "624", "2087", "18256", "76231", "814144", "4078867", "51475776", "300870571", "4381112064", "29265244847", "482962852096", "3629392540111", "66942218896384", "558956224522027", "11394877025289216", "104659828714136851", "2336793875186479104", "23414201065072302407", "568240131312188379136" ]
[ "nonn" ]
14
1
3
[ "A000364", "A002084", "A380053", "A380054", "A380055", "A380057" ]
null
Paul D. Hanna, Jan 24 2025
2025-01-25T04:38:16
oeisdata/seq/A380/A380053.seq
4e8ab5df9fcebc8fa220d24231e115eb
A380054
G.f. A(x) satisfies: A( A(x)^3 - A(x)^4 ) = x*A(x)^2.
[ "1", "1", "2", "4", "10", "27", "78", "234", "722", "2275", "7288", "23662", "77676", "257372", "859592", "2890838", "9781066", "33271759", "113720380", "390354292", "1345099574", "4651222825", "16134691254", "56132722306", "195807489940", "684712787166", "2399784312560", "8428460653683", "29660054158020", "104564729164209", "369263035193928" ]
[ "nonn" ]
12
1
3
[ "A268655", "A380054" ]
null
Paul D. Hanna, Jan 27 2025
2025-01-28T08:40:03
oeisdata/seq/A380/A380054.seq
3942bfd38ce657f75f1a2c01fe687bf1
A380055
E.g.f. satisfies A(x) = log( 1 + x*cos(A(x)) ).
[ "1", "-1", "-1", "18", "-86", "-210", "8840", "-80080", "-266220", "19991520", "-274725100", "-1006434000", "123657316600", "-2328145274000", "-8148732243600", "1621702497792000", "-39454300872662000", "-113331522571488000", "38748502249144766000", "-1172806114215446464000", "-2126467491228525900000", "1525200888587905488960000" ]
[ "sign" ]
11
1
4
[ "A380053", "A380055", "A380057" ]
null
Paul D. Hanna, Jan 24 2025
2025-01-25T04:36:42
oeisdata/seq/A380/A380055.seq
88cf46399b226c78ec50e66da9b84921
A380056
E.g.f. (exp(x) - 1)/cos(2*x).
[ "1", "1", "13", "25", "441", "1261", "30213", "115025", "3529201", "16792021", "629401213", "3593565625", "159175688361", "1060279600381", "54189700721013", "412526870321825", "23894940183997921", "204641610743378341", "13248060325188261613", "126065945039257743625", "9020317522757414377881", "94419130586604915837901" ]
[ "nonn" ]
10
1
3
[ "A000364", "A380053", "A380056", "A380555" ]
null
Paul D. Hanna, Jan 28 2025
2025-02-18T07:36:40
oeisdata/seq/A380/A380056.seq
58407c3541a0f4f5e1bfbaf23dfbdbd4
A380057
E.g.f. satisfies A(x) = real( 1 + x*A(x)^i ), where i^2 = -1.
[ "1", "1", "0", "-3", "12", "10", "-660", "5600", "8400", "-951660", "12715200", "21635900", "-4308744000", "80314007800", "115204471200", "-44501789202000", "1083368456352000", "782537744170000", "-876176569052928000", "26724653123017850000", "-10930955906482560000", "-29304692085200613900000", "1088420125090964265600000" ]
[ "sign" ]
20
0
4
[ "A380053", "A380055", "A380057", "A380058" ]
null
Paul D. Hanna, Jan 24 2025
2025-01-25T09:52:23
oeisdata/seq/A380/A380057.seq
392b7d1d7b209f5a112355d48b8f9507
A380058
G.f. A(x) satisfies: A( A(x)^4 - A(x)^5 ) = x*A(x)^3.
[ "1", "1", "2", "5", "13", "37", "111", "345", "1103", "3603", "11971", "40328", "137423", "472829", "1640328", "5731315", "20150376", "71235454", "253061855", "902922756", "3234281950", "11626416055", "41928973015", "151656509670", "550021604731", "1999753822557", "7287331086431", "26612272636168", "97375824946785", "356957982413881" ]
[ "nonn" ]
7
1
3
[ "A268655", "A380054", "A380058" ]
null
Paul D. Hanna, Jan 28 2025
2025-01-29T12:45:48
oeisdata/seq/A380/A380058.seq
447ca767d87f4ad27c1090aeb89cb124
A380059
G.f. A(x) satisfies: A(x)^4 = x * A( A(x)^3 + A(x)^4 ).
[ "1", "1", "1", "2", "7", "22", "61", "172", "528", "1696", "5461", "17591", "57356", "189786", "634137", "2131628", "7205426", "24500143", "83760349", "287672215", "991932713", "3432816902", "11920342010", "41521046864", "145032773711", "507902711094", "1782900884412", "6272354908197", "22111650029873", "78097290365451", "276324399241123", "979311618314876" ]
[ "nonn" ]
6
1
4
[ "A272485", "A380059" ]
null
Paul D. Hanna, Jan 28 2025
2025-01-29T12:45:55
oeisdata/seq/A380/A380059.seq
522efa9e55bf0d877a96741b5f2815b8
A380060
G.f. A(x) satisfies A(x) = Sum_{n=-oo..+oo} x^(n^2) * (A(x) - x^n)^n/(1 - x^n*A(x))^n.
[ "1", "2", "4", "16", "66", "284", "1256", "5752", "26944", "128538", "622560", "3053224", "15132720", "75679956", "381430176", "1935464936", "9879523418", "50695803612", "261364074484", "1353156913528", "7032341655200", "36673080496896", "191847911851336", "1006497470833352", "5294344082015344", "27916789231188726", "147534225848777456" ]
[ "nonn" ]
13
0
2
[ "A380060", "A380680" ]
null
Paul D. Hanna, Feb 06 2025
2025-02-07T05:41:25
oeisdata/seq/A380/A380060.seq
a5ed147d1daf6206827610a1b8346393
A380061
G.f. A(x) satisfies 1 + 2*A(x) = Sum_{n>=0} (x + A(x)^n)^n.
[ "1", "1", "3", "6", "22", "64", "238", "813", "3064", "11276", "43290", "165781", "647916", "2541826", "10085272", "40216458", "161537304", "651906163", "2644581776", "10771863433", "44052178217", "180771472434", "744215912074", "3072704927332", "12720703058636", "52791694969046", "219588568135410", "915306832688642", "3822734157002821", "15994557980983589" ]
[ "nonn" ]
10
1
3
[ "A380061", "A380062", "A380063", "A380064" ]
null
Paul D. Hanna, Jan 11 2025
2025-01-22T03:56:23
oeisdata/seq/A380/A380061.seq
8e735f0b39a9ff9e1e06ddad99341a30
A380062
G.f. A(x) satisfies 1 + 3*A(x) = Sum_{n>=0} (x + 2*A(x)^n)^n.
[ "1", "1", "5", "13", "67", "267", "1333", "6257", "31649", "159205", "824227", "4295599", "22706441", "120952097", "649957785", "3515569465", "19134939879", "104700236227", "575656327477", "3178537378181", "17618587510649", "98000687531045", "546850545803695", "3060334365371927", "17172225926646469", "96593865520419529", "544573760947543421" ]
[ "nonn" ]
11
1
3
[ "A380061", "A380062", "A380063", "A380064" ]
null
Paul D. Hanna, Jan 11 2025
2025-01-22T03:59:04
oeisdata/seq/A380/A380062.seq
c1164720c858c51b94556a35fa8d4062
A380063
G.f. A(x) satisfies 1 + 4*A(x) = Sum_{n>=0} (x + 3*A(x)^n)^n.
[ "1", "1", "7", "22", "136", "682", "4030", "23539", "143026", "883696", "5546230", "35293039", "226922620", "1473059344", "9637454320", "63493041340", "420841313770", "2804372957419", "18777007427668", "126261555174991", "852293214690055", "5773260342048436", "39231225884581288", "267363603092143528", "1826957733209857000", "12514655218275667486" ]
[ "nonn" ]
10
1
3
[ "A380061", "A380062", "A380063", "A380064" ]
null
Paul D. Hanna, Jan 11 2025
2025-01-22T04:03:18
oeisdata/seq/A380/A380063.seq
45af729c9568ac5abfb087489d3d9341
A380064
G.f. A(x) satisfies 1 + 5*A(x) = Sum_{n>=0} (x + 4*A(x)^n)^n.
[ "1", "1", "9", "33", "229", "1381", "9169", "63225", "440257", "3164657", "22959933", "169226413", "1259998401", "9468455953", "71735232745", "547149712977", "4199096527653", "32397250554709", "251152306142033", "1955325586152313", "15281679449617745", "119849879841490737", "942933049414865245", "7440178358444340061", "58862772743085470513" ]
[ "nonn" ]
10
1
3
[ "A380061", "A380062", "A380063", "A380064" ]
null
Paul D. Hanna, Jan 11 2025
2025-01-22T04:06:02
oeisdata/seq/A380/A380064.seq
0e828b8dc915724d280f385d9e25469c
A380065
G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} x^(2*n) * (A(x) - x^(2*n+1))^(n-1).
[ "1", "3", "14", "98", "785", "6702", "59968", "554872", "5266164", "50982561", "501511295", "4998413255", "50366515829", "512257729704", "5251739403578", "54216242355803", "563112825354739", "5880229017352112", "61697782946493598", "650137346153943901", "6877281106762452016", "73003969200802059386", "777423197278368997747" ]
[ "nonn" ]
12
0
2
[ "A379765", "A380065" ]
null
Paul D. Hanna, Jan 24 2025
2025-01-25T05:39:13
oeisdata/seq/A380/A380065.seq
b68597559fe74b03380d496bebca76f1
A380066
G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} x^n*A(x)^n * (A(x)^n + x)^(n-1) * (A(x) + x^n)^(n-1).
[ "1", "6", "62", "826", "13562", "254846", "5214422", "113062754", "2559413794", "59941050914", "1443598614402", "35601934520718", "896388775541106", "22991857186720770", "599842769589183382", "15901090578161918966", "428007773140084378006", "11693991740550538593478", "324291504285820478308174", "9129716934077168140311170" ]
[ "nonn" ]
10
0
2
[ "A380066", "A381362", "A381363", "A381364", "A381365" ]
null
Paul D. Hanna, Feb 01 2025
2025-02-21T14:36:17
oeisdata/seq/A380/A380066.seq
cc344b521b34dfb4597faa9564e4139b
A380067
G.f. A(x) satisfies 0 = Sum_{n=-oo..+oo} (-x)^n * (A(x) - (-x)^n)^(3*n+1).
[ "1", "2", "9", "76", "605", "5351", "49789", "480401", "4766086", "48292018", "497690157", "5200558352", "54971657745", "586748531155", "6315126497084", "68461134239364", "746869322310992", "8193320926852194", "90327637946283912", "1000230167386765676", "11120012336000921992", "124071390413266176706", "1388854343860145268801" ]
[ "nonn" ]
6
0
2
[ "A380067", "A380068" ]
null
Paul D. Hanna, Jan 23 2025
2025-01-23T12:29:22
oeisdata/seq/A380/A380067.seq
b406df2b923c4f3a2e919fc47ace933a
A380068
G.f. A(x) satisfies 1/2 = Sum_{n=-oo..+oo} x^n * (A(x) + x^n)^(2*n-1).
[ "1", "4", "36", "312", "3440", "40956", "518160", "6806320", "92021528", "1271748364", "17886165344", "255159368504", "3683262020928", "53700117957756", "789606760314200", "11696040806690484", "174362944317804916", "2614112736300210308", "39388817610142696848", "596167096482669128248", "9059675614901834999980", "138177866602598729509112" ]
[ "nonn" ]
8
0
2
[ "A379763", "A379765", "A380068" ]
null
Paul D. Hanna, Jan 23 2025
2025-01-23T11:52:52
oeisdata/seq/A380/A380068.seq
3f13f08d38b46c6fce7791fb72c9823b
A380069
Semiprime 12-gonal numbers.
[ "33", "217", "793", "4681", "6697", "9073", "22177", "58969", "80137", "96049", "113401", "132193", "197209", "221761", "289441", "382537", "470017", "607609", "671977", "694153", "935713", "1042417", "1069993", "1493857", "1627921", "1803601", "1876393", "2181961", "2261953", "2510569", "2639737", "2727649", "3093697", "3285361", "3383353" ]
[ "nonn" ]
17
1
1
[ "A000384", "A001358", "A051624", "A380069" ]
null
Massimo Kofler, Jan 11 2025
2025-02-04T19:29:48
oeisdata/seq/A380/A380069.seq
a17fd630aa2d8d5fd170e1d38cad22a1
A380070
Square pyramidal numbers sp(n) with a zeroless decimal representation such that (product of decimal digits of sp(n)) / n is an integer.
[ "1", "55", "385", "5525", "7714", "9455", "31395", "116795", "3382596", "6597495", "14352975", "38381931", "63866976", "67938794", "151289984", "726434136", "2733212496", "2769972525", "6477521344", "13765386816", "16149163995", "17585156875", "19598599944", "78466472175", "129166736265", "371557934784", "597944938275", "982218617856" ]
[ "nonn", "base" ]
17
1
2
[ "A000330", "A007954", "A052382", "A380070" ]
null
Ctibor O. Zizka, Jan 11 2025
2025-01-12T09:13:16
oeisdata/seq/A380/A380070.seq
047b5f1f494a88a73590bbae0381a77a
A380071
Integers with at least 1 instance of 2 or more Pythagorean proper factorizations that yield the same diagonal length.
[ "880", "1344", "3120", "3240", "3840", "4032", "4400", "5184", "5280", "6144", "6300", "6480", "6720", "7680", "8448", "8640", "10752", "11520", "11880", "12096", "14080", "14592", "14784", "14960", "15120", "15360", "16128", "16200", "16560", "17820", "18240", "18432", "19200", "19440", "20700", "21120", "21504", "21840", "22000" ]
[ "nonn" ]
10
1
1
[ "A380071", "A380436" ]
null
Charles L. Hohn, Jan 11 2025
2025-03-11T16:21:15
oeisdata/seq/A380/A380071.seq
2d3643bcbb26e1c98e7613163fd43753
A380072
Ordered hypotenuses of Pythagorean triangles having legs that add up to a square.
[ "35", "41", "140", "164", "205", "221", "315", "369", "389", "391", "560", "656", "689", "775", "820", "875", "884", "1025", "1189", "1260", "1476", "1556", "1564", "1565", "1625", "1715", "1739", "1781", "1845", "1855", "1989", "2009", "2240", "2624", "2756", "2835", "3100", "3280", "3321", "3500", "3501", "3519", "3536", "3865", "3869", "4100", "4105" ]
[ "nonn" ]
10
1
1
[ "A000290", "A007913", "A009000", "A088319", "A379830", "A380072", "A380073", "A380074" ]
null
Felix Huber, Jan 18 2025
2025-01-25T23:01:34
oeisdata/seq/A380/A380072.seq
0dc5b6f0bd584d0c867c8f7c9594d73f
A380073
Long legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.
[ "28", "40", "112", "160", "156", "204", "252", "360", "340", "345", "448", "640", "561", "744", "624", "700", "816", "1000", "861", "1008", "1440", "1360", "1380", "1173", "1624", "1372", "1645", "1581", "1404", "1729", "1836", "1960", "1792", "2560", "2244", "2268", "2976", "2496", "3240", "2800", "3060", "3105", "3264", "3577", "3285", "4000", "3816" ]
[ "nonn" ]
9
1
1
[ "A000290", "A007913", "A046084", "A089548", "A379830", "A380072", "A380073", "A380074" ]
null
Felix Huber, Jan 18 2025
2025-01-25T19:04:32
oeisdata/seq/A380/A380073.seq
242816293c59b9c41fb2edd6cb208f01
A380074
Short legs of Pythagorean triangles having legs that add up to a square ordered by increasing hypotenuse.
[ "21", "9", "84", "36", "133", "85", "189", "81", "189", "184", "336", "144", "400", "217", "532", "525", "340", "225", "820", "756", "324", "756", "736", "1036", "57", "1029", "564", "820", "1197", "672", "765", "441", "1344", "576", "1600", "1701", "868", "2128", "729", "2100", "1701", "1656", "1360", "1464", "2044", "900", "1513", "2541", "781", "2340", "3280" ]
[ "nonn" ]
9
1
1
[ "A000290", "A007913", "A046083", "A089547", "A379830", "A380072", "A380073", "A380074" ]
null
Felix Huber, Jan 18 2025
2025-01-25T23:01:39
oeisdata/seq/A380/A380074.seq
f36cb1a5f0940f3e1d173fa14d388242
A380075
Records in A379899.
[ "2", "3", "7", "11", "13", "17", "29", "37", "41", "53", "59", "67", "71", "79", "83", "103", "107", "127", "131", "139", "151", "163", "167", "179", "181", "193", "197", "229", "233", "241", "257", "269", "277", "281", "293", "313", "317", "337", "349", "353", "373", "389", "397", "401", "409", "421", "433", "449", "457", "461", "509", "521", "541", "557", "569", "571" ]
[ "nonn" ]
10
1
1
[ "A379899", "A380075", "A380076" ]
null
Paolo Xausa, Jan 11 2025
2025-01-11T18:47:24
oeisdata/seq/A380/A380075.seq
525e53ef9164b4766a0084af9c1cffc7
A380076
Indices of records in A379899.
[ "1", "2", "3", "4", "6", "7", "8", "9", "10", "11", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114" ]
[ "nonn" ]
6
1
2
[ "A379899", "A380075", "A380076" ]
null
Paolo Xausa, Jan 11 2025
2025-01-11T18:47:31
oeisdata/seq/A380/A380076.seq
1912ed6574f868d4851be087bf54c577
A380077
Expansion of e.g.f. (1/x) * Series_Reversion( x * sqrt(1 - 2*x*exp(x)) ).
[ "1", "1", "7", "87", "1621", "40485", "1271841", "48220207", "2143450009", "109350344745", "6298638659245", "404371344546411", "28633701543626037", "2217105596852342989", "186362307297569836993", "16901012222196104542695", "1644911203243501609414321", "171017059743998995011125457", "18916512667390427993433246357" ]
[ "nonn" ]
10
0
3
[ "A213644", "A380035", "A380077", "A380078" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-12T07:56:04
oeisdata/seq/A380/A380077.seq
919c378b973c63084bc9d7ab82f97685
A380078
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - 3*x*exp(x))^(1/3) ).
[ "1", "1", "8", "115", "2484", "72005", "2626846", "115688349", "5974568552", "354154378249", "23704428986010", "1768459611322481", "145525743200753356", "13095070459815108141", "1279226572751177845718", "134827003107939467441845", "15250595677663579282034256", "1842758049329907303778372625" ]
[ "nonn" ]
12
0
3
[ "A213644", "A380039", "A380077", "A380078" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-12T07:56:32
oeisdata/seq/A380/A380078.seq
5d55171e9ff8422b256d78436ad6ac94
A380079
Start with a list of the positive integers L in increasing order. Then, at turn n>=1, element n jumps from its current position, m, to position m+n. Then a(n) = L(m+1).
[ "2", "1", "2", "5", "3", "7", "4", "5", "10", "6", "7", "13", "8", "15", "9", "10", "18", "11", "20", "12", "13", "23", "14", "15", "26", "16", "28", "17", "18", "31", "19", "20", "34", "21", "36", "22", "23", "39", "24", "41", "25", "26", "44", "27", "28", "47", "29", "49", "30", "31", "52", "32", "54", "33", "34", "57", "35", "36", "60", "37", "62", "38", "39", "65", "40", "41", "68", "42", "70", "43", "44", "73", "45", "75" ]
[ "nonn" ]
49
1
1
[ "A003622", "A368050", "A380079" ]
null
Ali Sada and David Nacin, Jan 11 2025
2025-04-02T04:13:37
oeisdata/seq/A380/A380079.seq
40d73003d6fd8ce7e7f4b97ce4d839b4
A380080
Expansion of e.g.f. (1/x) * Series_Reversion( x / sqrt(1 + 2*x*exp(x)) ).
[ "1", "1", "3", "15", "109", "1045", "12501", "179599", "3015657", "57988809", "1257058585", "30337358491", "806837271021", "23448335293981", "739379851041573", "25143044445680295", "917252832237053521", "35735484803144976145", "1480838869407287923569", "65038486139094829172275", "3017945328547452509505045" ]
[ "nonn" ]
9
0
3
[ "A161633", "A380050", "A380080", "A380081" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-12T07:56:27
oeisdata/seq/A380/A380080.seq
cc3c57b24f4a0ed255a7693cf0d94f4c
A380081
Expansion of e.g.f. (1/x) * Series_Reversion( x / (1 + 3*x*exp(x))^(1/3) ).
[ "1", "1", "2", "7", "36", "245", "2086", "21357", "255704", "3507625", "54258570", "934600601", "17743468612", "368146983789", "8288468950958", "201258635444245", "5243025162331056", "145871455305823697", "4316920830720239122", "135408946029576741297", "4487574630295937337500", "156686063319198543135061" ]
[ "nonn" ]
10
0
3
[ "A161633", "A380051", "A380080", "A380081" ]
null
Seiichi Manyama, Jan 11 2025
2025-01-12T07:54:39
oeisdata/seq/A380/A380081.seq
64a22dd5ebb711d0a311a5149eb49c51
A380082
Number of Boolean intervals of rank 2 in the weak order of the Coxeter group of type C_n, for n >= 2
[ "0", "12", "288", "5760", "115200", "2419200", "54190080", "1300561920", "33443020800", "919683072000", "26977370112000", "841693947494400", "27852417898905600", "974834626461696000", "35993893900124160000", "1398619877261967360000", "57063690992288268288000", "2439472789920323469312000", "109058783549379166863360000" ]
[ "nonn" ]
34
2
2
null
null
J. Carlos Martínez Mori, Feb 18 2025
2025-02-19T10:16:33
oeisdata/seq/A380/A380082.seq
cf1dcc4dc1b557d26099d4cfbbcdb5b1
A380084
a(n) is the smallest k such that tau(k*2^n + 1) is equal to 2^n where tau = A000005.
[ "0", "1", "5", "13", "59", "502", "3086", "32728", "421769", "8386552", "65004026", "2038040548", "35000607914", "1421414035177", "16443388379486", "254428547171833", "8299070462599934", "414388820258496592", "12913991195998809671", "269894765095528969273", "9577265986738655465699", "486911530180828201016287" ]
[ "nonn" ]
25
0
3
[ "A000005", "A377634", "A380084" ]
null
Juri-Stepan Gerasimov, Jan 11 2025
2025-02-03T23:05:05
oeisdata/seq/A380/A380084.seq
7d93e11afa82503d84bc62be28ef06df
A380085
The largest unitary divisor of n that is a term in A276078.
[ "1", "2", "3", "1", "5", "6", "7", "1", "9", "10", "11", "3", "13", "14", "15", "1", "17", "18", "19", "5", "21", "22", "23", "3", "25", "26", "1", "7", "29", "30", "31", "1", "33", "34", "35", "9", "37", "38", "39", "5", "41", "42", "43", "11", "45", "46", "47", "3", "49", "50", "51", "13", "53", "2", "55", "7", "57", "58", "59", "15", "61", "62", "63", "1", "65", "66", "67", "17", "69", "70", "71" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A000720", "A077610", "A276078", "A325127", "A377515", "A380085", "A380086", "A380087", "A380088" ]
null
Amiram Eldar, Jan 11 2025
2025-01-12T03:52:10
oeisdata/seq/A380/A380085.seq
188228b3ecf60f2edc5fe3775be27f96
A380086
The number of unitary divisors of n that are terms in A276078.
[ "1", "2", "2", "1", "2", "4", "2", "1", "2", "4", "2", "2", "2", "4", "4", "1", "2", "4", "2", "2", "4", "4", "2", "2", "2", "4", "1", "2", "2", "8", "2", "1", "4", "4", "4", "2", "2", "4", "4", "2", "2", "8", "2", "2", "4", "4", "2", "2", "2", "4", "4", "2", "2", "2", "4", "2", "4", "4", "2", "4", "2", "4", "4", "1", "4", "8", "2", "2", "4", "8", "2", "2", "2", "4", "4", "2", "4", "8", "2", "2", "1", "4", "2", "4", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
11
1
2
[ "A000720", "A005117", "A034444", "A077610", "A276078", "A325127", "A377516", "A380085", "A380086", "A380087", "A380089" ]
null
Amiram Eldar, Jan 11 2025
2025-01-12T03:55:01
oeisdata/seq/A380/A380086.seq
f26308c352c5cb944d4a0053d7ce2c25
A380087
The sum of the unitary divisors of n that are terms in A276078.
[ "1", "3", "4", "1", "6", "12", "8", "1", "10", "18", "12", "4", "14", "24", "24", "1", "18", "30", "20", "6", "32", "36", "24", "4", "26", "42", "1", "8", "30", "72", "32", "1", "48", "54", "48", "10", "38", "60", "56", "6", "42", "96", "44", "12", "60", "72", "48", "4", "50", "78", "72", "14", "54", "3", "72", "8", "80", "90", "60", "24", "62", "96", "80", "1", "84", "144", "68", "18", "96", "144" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A000720", "A005117", "A034448", "A077610", "A276078", "A377517", "A380085", "A380086", "A380087", "A380090" ]
null
Amiram Eldar, Jan 11 2025
2025-01-12T03:54:33
oeisdata/seq/A380/A380087.seq
07414c325eff02dfe77944369c13f417
A380088
The largest unitary divisor of n that is a term in A207481.
[ "1", "2", "3", "4", "5", "6", "7", "1", "9", "10", "11", "12", "13", "14", "15", "1", "17", "18", "19", "20", "21", "22", "23", "3", "25", "26", "27", "28", "29", "30", "31", "1", "33", "34", "35", "36", "37", "38", "39", "5", "41", "42", "43", "44", "45", "46", "47", "3", "49", "50", "51", "52", "53", "54", "55", "7", "57", "58", "59", "60", "61", "62", "63", "1", "65", "66", "67", "68", "69", "70" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A005117", "A054743", "A077610", "A185359", "A207481", "A377518", "A380085", "A380088", "A380089", "A380090" ]
null
Amiram Eldar, Jan 12 2025
2025-01-12T03:53:28
oeisdata/seq/A380/A380088.seq
b460cd3ecebde70a2217c2062ca07080
A380089
The number of unitary divisors of n that are terms in A207481.
[ "1", "2", "2", "2", "2", "4", "2", "1", "2", "4", "2", "4", "2", "4", "4", "1", "2", "4", "2", "4", "4", "4", "2", "2", "2", "4", "2", "4", "2", "8", "2", "1", "4", "4", "4", "4", "2", "4", "4", "2", "2", "8", "2", "4", "4", "4", "2", "2", "2", "4", "4", "4", "2", "4", "4", "2", "4", "4", "2", "8", "2", "4", "4", "1", "4", "8", "2", "4", "4", "8", "2", "2", "2", "4", "4", "4", "4", "8", "2", "2", "1", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A005117", "A054743", "A077610", "A185359", "A207481", "A377519", "A380086", "A380088", "A380089", "A380090" ]
null
Amiram Eldar, Jan 12 2025
2025-01-12T03:52:58
oeisdata/seq/A380/A380089.seq
6f1752d3cf46b341f605de7ddea825a3
A380090
The sum of the unitary divisors of n that are terms in A207481.
[ "1", "3", "4", "5", "6", "12", "8", "1", "10", "18", "12", "20", "14", "24", "24", "1", "18", "30", "20", "30", "32", "36", "24", "4", "26", "42", "28", "40", "30", "72", "32", "1", "48", "54", "48", "50", "38", "60", "56", "6", "42", "96", "44", "60", "60", "72", "48", "4", "50", "78", "72", "70", "54", "84", "72", "8", "80", "90", "60", "120", "62", "96", "80", "1", "84", "144", "68", "90", "96" ]
[ "nonn", "easy", "mult" ]
8
1
2
[ "A005117", "A054743", "A077610", "A185359", "A207481", "A371242", "A377520", "A380087", "A380088", "A380089", "A380090" ]
null
Amiram Eldar, Jan 12 2025
2025-01-12T03:52:30
oeisdata/seq/A380/A380090.seq
c6fceb0fe76bca90fe5e6510f86a636c
A380091
Primes p such that phi(p+1) = 2*phi(p-1) where phi = A000010.
[ "2", "3", "7", "31", "991", "1951", "2521", "7411", "23431", "26731", "37441", "92431", "131071", "396631", "489061", "532141", "830551", "2811691", "3319171", "3698941", "4247167", "5239411", "6829681", "8326711", "8997871", "12625831", "12889231", "14756743", "15891121", "16125721", "16446301", "21203071" ]
[ "nonn" ]
16
1
1
[ "A000010", "A066812", "A067890", "A258454", "A380091" ]
null
Juri-Stepan Gerasimov, Jan 11 2025
2025-02-03T23:05:18
oeisdata/seq/A380/A380091.seq
00b32a42832f595959e34452e6c11576
A380092
Number of consecutive primes after prime(n) before their concatenation fails to produce a prime.
[ "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "1", "2", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "0" ]
[ "easy", "nonn", "base" ]
10
1
11
[ "A000040", "A030459", "A219271", "A309191", "A380092" ]
null
Robert G. Wilson v, Jan 12 2025
2025-01-23T12:37:21
oeisdata/seq/A380/A380092.seq
0644dba5b9147e6f4ef6e6223ce8231b
A380093
E.g.f. A(x) satisfies A(x) = sqrt( 1 + 2*x*exp(x*A(x)) ).
[ "1", "1", "1", "6", "13", "180", "501", "13720", "34777", "2014992", "2512585", "491642976", "-564313947", "181714012480", "-836832558275", "95473740036480", "-856984734161999", "68029327826567424", "-954950936641491951", "63368301861354866176", "-1238053892876418633155", "74904417332353810338816" ]
[ "sign" ]
9
0
4
[ "A161631", "A380035", "A380050", "A380093", "A380094" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-12T07:54:36
oeisdata/seq/A380/A380093.seq
68fb39ecaebf827e92542f142b7c66e5
A380094
E.g.f. A(x) satisfies A(x) = ( 1 + 3*x*exp(x*A(x)) )^(1/3).
[ "1", "1", "0", "7", "-28", "405", "-4514", "75313", "-1336824", "28494793", "-672782950", "17874984501", "-521966931716", "16702822898749", "-579928752836874", "21736834275178345", "-874384126286848624", "37581186999500130321", "-1718628399364227445070", "83327485224351815544925" ]
[ "sign" ]
8
0
4
[ "A161631", "A380051", "A380093", "A380094" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-12T07:54:33
oeisdata/seq/A380/A380094.seq
818ec175258c923d7d33886bff28198c
A380095
E.g.f. A(x) satisfies A(x) = 1/sqrt( 1 - 2*x*A(x)^2*exp(x*A(x)^2) ).
[ "1", "1", "9", "156", "4129", "147880", "6696591", "367141306", "23648581713", "1750754472840", "146492770433095", "13672570280741086", "1408330043282040825", "158697952371711709060", "19420527592823261136519", "2564857285665551372127570", "363619232307437704055993761", "55079007956127598819416831088" ]
[ "nonn" ]
10
0
3
[ "A213644", "A379688", "A380042", "A380095", "A380096" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-12T07:56:23
oeisdata/seq/A380/A380095.seq
f31345672a16c1038f910e5d06350ec6
A380096
E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*A(x)^3*exp(x*A(x)^3) )^(1/3).
[ "1", "1", "12", "289", "10724", "540745", "34551886", "2676439507", "243782162408", "25535467766593", "3024360522754010", "399665508962874451", "58301379215119084012", "9305724270031402836337", "1613262216112899513140630", "301870732625016111841693795", "60639884085040694650040518736" ]
[ "nonn" ]
12
0
3
[ "A213644", "A380043", "A380095", "A380096", "A380097" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-12T07:56:19
oeisdata/seq/A380/A380096.seq
dd23b6819bfe76c8fbae4327ff13fe66
A380097
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - 3*x*exp(x)) ).
[ "1", "3", "42", "1089", "42132", "2182335", "142084818", "11159447943", "1027313395944", "108517938075387", "12940759400071710", "1719811206219287643", "252076045285741340700", "40398758175398949144039", "7028240082095865121961514", "1319141702032289451776382975", "265703833060229155917857703888" ]
[ "nonn" ]
12
0
2
[ "A213644", "A379688", "A380096", "A380097" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-12T07:56:13
oeisdata/seq/A380/A380097.seq
1ec7fd0f35c9add4b5cd7ed8f73d09e5
A380098
Numbers whose sum of cubes of distinct prime factors is prime.
[ "165", "210", "390", "399", "420", "462", "495", "561", "570", "595", "615", "630", "651", "780", "798", "825", "840", "924", "957", "1050", "1085", "1140", "1170", "1173", "1197", "1218", "1235", "1245", "1260", "1302", "1386", "1435", "1470", "1482", "1485", "1495", "1554", "1560", "1596", "1615", "1680", "1683", "1705", "1710", "1767", "1771", "1815", "1845", "1848", "1885", "1890", "1938", "1950", "1953" ]
[ "nonn" ]
10
1
1
[ "A005064", "A114522", "A114989", "A380098" ]
null
Rafik Khalfi, Jan 12 2025
2025-01-14T10:26:32
oeisdata/seq/A380/A380098.seq
2ac5c02fbfc92d94644b14f50ed97d1e
A380099
a(n) is the n-digit numerator of the fraction h/k with h and k coprime positive integers at which abs((h/k)^4-Pi) is minimal.
[ "4", "97", "888", "9551", "13549", "505311", "4601995", "87956765", "298132602" ]
[ "nonn", "base", "frac", "more", "changed" ]
33
1
1
[ "A000796", "A092040", "A130773", "A210621", "A355622", "A364844", "A380099", "A380100" ]
null
Stefano Spezia, Jan 12 2025
2025-04-21T10:44:40
oeisdata/seq/A380/A380099.seq
eafdd8b054f2195b58759a34fcec81e9
A380100
a(n) is the denominator of the fraction h/k with h and k coprime positive integers at which abs((h/k)^4-Pi) is minimal, with the numerator h of n digits.
[ "3", "73", "667", "7174", "10177", "379552", "3456676", "66066573", "223935013" ]
[ "nonn", "base", "frac", "more", "changed" ]
29
1
1
[ "A000583", "A000796", "A130773", "A210621", "A355623", "A364845", "A380099", "A380100" ]
null
Stefano Spezia, Jan 12 2025
2025-04-21T10:44:49
oeisdata/seq/A380/A380100.seq
2ad12e30a30d63ea52ec1a57b45e3630
A380101
Numbers k such that omega(k-th triangular number) = 2, where omega = A001221.
[ "3", "4", "5", "6", "7", "8", "9", "10", "13", "16", "17", "18", "22", "25", "26", "31", "37", "46", "49", "53", "58", "61", "73", "81", "82", "97", "106", "121", "127", "157", "162", "166", "178", "193", "226", "241", "242", "250", "256", "262", "277", "313", "337", "346", "358", "361", "382", "397", "421", "457", "466", "478", "486", "502", "541", "562", "577", "586", "613" ]
[ "nonn" ]
22
1
1
[ "A000217", "A001221", "A077065", "A119663", "A178490", "A380101" ]
null
Juri-Stepan Gerasimov, Jan 12 2025
2025-03-13T02:54:42
oeisdata/seq/A380/A380101.seq
28255c16b9c704d6652806ce3bd67e5d
A380102
Minimal absolute discriminants |d| of imaginary quadratic number fields K = Q(sqrt(d)), d < 0, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned even coclass cc(M)=2,4,6,8,...
[ "3896", "27156", "423640", "99888340" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A242862", "A242863", "A379524", "A380102" ]
null
Daniel Constantin Mayer, Jan 12 2025
2025-01-25T23:01:11
oeisdata/seq/A380/A380102.seq
be129c8f04485a78ccd09322c62df41e