sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A380203
With given points 0,1 on the x-axis, a(n) is the number of ways to construct n with m circles where 2^(m-1)<n<=2^m.
[ "1", "1", "1", "1", "1", "2", "1", "1", "2", "4", "2", "4", "1", "2", "1", "1", "5", "9", "6", "10", "4", "8", "4", "8", "1", "4", "2", "4", "1", "2", "1", "1", "15", "28", "15", "31", "13", "25", "14", "28", "10", "19", "11", "22", "8", "15", "9", "17", "2", "8", "4", "12", "2", "8", "4", "8", "1", "4", "2", "4", "1", "2", "1", "1", "50", "94", "56", "99", "45", "91", "51", "97", "39", "74", "41", "92", "31", "74", "40", "85", "26", "61" ]
[ "nonn" ]
17
1
6
[ "A379972", "A380203" ]
null
Gerhard Kirchner, Jan 16 2025
2025-02-07T14:18:39
oeisdata/seq/A380/A380203.seq
977a47eca2c57fa19e2fc046724314bd
A380204
A version of the Josephus problem: a(n) is the surviving integer under the spelling version of the elimination process.
[ "1", "1", "2", "2", "1", "6", "7", "3", "5", "3", "5", "6", "10", "9", "2", "13", "3", "16", "10", "2", "15", "6", "15", "6", "21", "1", "7", "23", "26", "6", "20", "12", "27", "29", "7", "2", "36", "11", "6", "7", "32", "6", "32", "43", "10", "31", "7", "5", "42", "1", "17", "48", "7", "31", "53", "25", "42", "43", "29", "39", "51", "25", "43", "7", "26", "59", "15", "10", "60", "69", "13", "57", "54", "66", "57", "30", "9", "35", "64", "9", "65", "1", "15", "3", "79", "47", "86", "7" ]
[ "nonn", "word" ]
16
1
3
[ "A005589", "A006257", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 16 2025
2025-02-23T11:27:40
oeisdata/seq/A380/A380204.seq
1d7726d67c4116c8d41ed0b1658e0ee4
A380205
Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 4 Pi/3} (negated).
[ "4", "2", "6", "0", "2", "8", "8", "7", "3", "9", "1", "5", "1", "0", "6", "3", "1", "7", "4", "3", "2", "2", "6", "5", "2", "9", "5", "3", "7", "3", "0", "5", "0", "0", "5", "3", "4", "9", "8", "8", "8", "8", "7", "8", "7", "5", "8", "6", "9", "7", "8", "0", "1", "3", "8", "1", "5", "3", "9", "1", "6", "2", "5", "7", "7", "2", "7", "1", "3", "4", "5", "1", "4", "4", "4", "4", "1", "5", "2", "8", "1", "5", "0", "8", "7", "4", "1", "4", "4", "1", "4", "4", "2", "9", "5", "0", "2", "2", "1", "5" ]
[ "nonn", "cons" ]
13
1
1
[ "A379042", "A379273", "A380205", "A380206" ]
null
Detlef Meya, Jan 16 2025
2025-01-30T05:07:03
oeisdata/seq/A380/A380205.seq
c5e786db962bc2982fb04bf3f462d219
A380206
Decimal expansion of the generalized log-sine integral with k = 0, n = 3, m = 3, from {0 .. 5 Pi/3} (negated).
[ "4", "8", "4", "1", "9", "0", "0", "1", "3", "2", "8", "9", "6", "4", "4", "8", "6", "2", "6", "6", "5", "3", "7", "1", "3", "7", "5", "5", "3", "6", "4", "8", "3", "0", "5", "8", "0", "6", "4", "4", "9", "1", "6", "3", "9", "3", "7", "5", "1", "3", "5", "3", "4", "7", "7", "2", "7", "8", "2", "7", "7", "8", "8", "5", "9", "6", "5", "4", "7", "4", "8", "7", "9", "4", "5", "5", "8", "6", "1", "0", "0", "9", "5", "9", "1", "7", "4", "1", "6", "3", "5", "3", "4", "7", "5", "9", "2", "3", "1", "0" ]
[ "nonn", "cons" ]
10
1
1
[ "A379042", "A379273", "A380205", "A380206" ]
null
Detlef Meya, Jan 16 2025
2025-02-07T16:48:17
oeisdata/seq/A380/A380206.seq
3e0df7c985f6669bc46a2e92da719920
A380207
Rank of the partition of n formed by the terms of its binary expansion from largest to smallest.
[ "1", "2", "2", "5", "6", "9", "10", "22", "29", "40", "51", "70", "88", "114", "141", "231", "296", "383", "485", "620", "779", "981", "1220", "1530", "1890", "2337", "2866", "3516", "4280", "5210", "6299", "8349", "10142", "12308", "14878", "17970", "21624", "25994", "31150", "37293", "44515", "53075", "63117", "74973", "88849", "105164", "124211", "146589" ]
[ "nonn", "base" ]
15
1
2
[ "A000041", "A000079", "A193073", "A380207" ]
null
Darío Clavijo, Jan 16 2025
2025-01-31T09:31:21
oeisdata/seq/A380/A380207.seq
cd1a7078320c3ab3771e0847f9919ca6
A380208
Expansion of e.g.f. exp( (1+3*x)^(1/3) - 1 ).
[ "1", "1", "-1", "5", "-39", "421", "-5809", "97609", "-1933455", "44107881", "-1138752449", "32820576141", "-1044523471991", "36379398867085", "-1376300966184689", "56200996031812241", "-2463713702730471199", "115400572452587463249", "-5751849729149085927425", "303954806150664749166101" ]
[ "sign" ]
22
0
4
[ "A000806", "A373713", "A380208", "A380215", "A380229", "A380307" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-21T04:59:54
oeisdata/seq/A380/A380208.seq
01400505ad3c4e19ece444bacd815c5f
A380209
Expansion of e.g.f. exp( (1+2*x)^(3/2) - 1 ).
[ "1", "3", "12", "51", "243", "1188", "6399", "33561", "207468", "1013769", "9226629", "6480972", "997054353", "-13211542341", "359483683932", "-8602977403413", "235389825828531", "-6809489816432796", "211363316786680047", "-6976456643635495839", "244258757298601120476", "-9039628059778792352367", "352612224537284537865477" ]
[ "sign" ]
10
0
2
[ "A380209", "A380210" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-17T09:05:49
oeisdata/seq/A380/A380209.seq
7071cb060f74b60e7ce3a8973c614fe7
A380210
Expansion of e.g.f. exp( (1+2*x)^(5/2) - 1 ).
[ "1", "5", "40", "365", "3835", "44420", "559375", "7569875", "108989500", "1659791375", "26571465625", "445392932000", "7785570546625", "141513486039125", "2666916967144000", "52000124771091125", "1046623556362721875", "21712732294602537500", "463350533965622059375", "10162009318486049571875" ]
[ "changed", "sign" ]
11
0
2
[ "A380209", "A380210" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-17T09:05:54
oeisdata/seq/A380/A380210.seq
5f2c0e45994f8d7c80986aa0c60b65c5
A380211
Number of rooted binary normal unlabeled galled trees with n leaves.
[ "0", "1", "1", "2", "6", "20", "72", "272", "1064", "4271", "17497", "72843", "307307", "1310792", "5643555", "24493270", "107043258", "470668034", "2080681402", "9242180923", "41229189089", "184634145428", "829732117279", "3740636883361", "16912812764736", "76673344515050", "348449086540653", "1587154540744158" ]
[ "nonn" ]
21
0
4
[ "A001190", "A380211" ]
null
Noah A Rosenberg, Jan 16 2025
2025-03-22T08:38:59
oeisdata/seq/A380/A380211.seq
fde7ce639512a54668708730b57670dd
A380212
Expansion of e.g.f. exp( 1/(1-2*x)^(3/2) - 1 ).
[ "1", "3", "24", "267", "3771", "64188", "1273599", "28784997", "728619516", "20389690953", "624380711769", "20749726230192", "743217114278241", "28526465892902643", "1167521852585583504", "50735768950040355747", "2332267950561718237011", "113040281313704744222148", "5759890462485002871029439" ]
[ "nonn" ]
13
0
2
[ "A049118", "A380212", "A380213" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-23T05:43:11
oeisdata/seq/A380/A380212.seq
7a955d54a039ca064ce167746e350ccf
A380213
Expansion of e.g.f. exp( 1/(1-2*x)^(5/2) - 1 ).
[ "1", "5", "60", "965", "19315", "459420", "12597775", "389902175", "13410470700", "506509866575", "20811096098725", "923085833362500", "43921261488000625", "2229827043134538125", "120239258292160027500", "6859351794101350278125", "412554191158956599261875", "26080572238227541202917500" ]
[ "nonn" ]
10
0
2
[ "A049118", "A380212", "A380213" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-17T09:05:42
oeisdata/seq/A380/A380213.seq
0c515ca9ccfd0ee6175ec85275e34812
A380214
Expansion of e.g.f. exp( 1/(1-3*x)^(2/3) - 1 ).
[ "1", "2", "14", "148", "2076", "36152", "750344", "18055088", "493688976", "15108697632", "511379579104", "18959550197568", "763909806479296", "33227876172374912", "1551519044372535424", "77391560357497815808", "4106518327272819159296", "230931323981550384824832", "13718006864544800838290944" ]
[ "nonn" ]
17
0
2
[ "A049119", "A380214", "A380257" ]
null
Seiichi Manyama, Jan 16 2025
2025-03-31T22:01:53
oeisdata/seq/A380/A380214.seq
ce44fff174351b7a41d6127a605f2179
A380215
Expansion of e.g.f. exp( (1+3*x)^(2/3) - 1 ).
[ "1", "2", "2", "4", "-12", "152", "-2056", "34064", "-663792", "14890656", "-378083936", "10721383488", "-335898007232", "11523599785856", "-429685396446848", "17303743585216768", "-748494039183318784", "34612915914568045056", "-1704065501541830102528", "88989595986614229074944", "-4913365756826406035999744" ]
[ "sign" ]
15
0
2
[ "A380208", "A380215", "A380261" ]
null
Seiichi Manyama, Jan 16 2025
2025-01-19T06:48:26
oeisdata/seq/A380/A380215.seq
e150c59aa61400090f4fe1781b4729cb
A380216
Numbers whose prime indices have (product)/(sum) equal to an integer > 1.
[ "49", "63", "65", "81", "125", "150", "154", "165", "169", "190", "198", "259", "273", "333", "351", "361", "364", "385", "390", "435", "442", "468", "481", "490", "495", "506", "525", "561", "580", "595", "609", "630", "658", "675", "700", "714", "741", "765", "781", "783", "810", "840", "841", "846", "874", "900", "918", "925", "931", "935", "952", "988" ]
[ "nonn" ]
8
1
1
[ "A000720", "A001055", "A001222", "A003963", "A025147", "A028422", "A036844", "A056239", "A057567", "A057568", "A096276", "A111133", "A112798", "A114324", "A301987", "A301988", "A318029", "A319000", "A319005", "A324850", "A324851", "A325037", "A325038", "A325044", "A326149", "A326150", "A326151", "A326153", "A326154", "A326155", "A326156", "A326158", "A379319", "A379666", "A379720", "A379721", "A379722", "A379733", "A379735", "A379736", "A379844", "A380216", "A380217", "A380219" ]
null
Gus Wiseman, Jan 23 2025
2025-01-25T19:27:52
oeisdata/seq/A380/A380216.seq
05f4542d9f7efbb38e68a5a94c80e94f
A380217
Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.
[ "1", "15", "42", "54", "75", "77", "95", "99", "100", "132", "182", "195", "221", "234", "245", "253", "290", "312", "315", "329", "350", "357", "405", "420", "423", "437", "450", "459", "476", "494", "510", "540", "555", "559", "560", "612", "627", "665", "715", "720", "740", "798", "816", "833", "854", "855", "858", "893", "897", "899", "979", "1026", "1064" ]
[ "nonn" ]
10
1
2
[ "A001055", "A025147", "A028422", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A301988", "A318029", "A318950", "A319000", "A319005", "A324851", "A325037", "A325038", "A325041", "A325044", "A326149", "A326155", "A379318", "A379319", "A379320", "A379671", "A379720", "A379721", "A379722", "A379733", "A379734", "A379735", "A379736", "A379844", "A379845", "A380217", "A380218" ]
null
Gus Wiseman, Jan 18 2025
2025-01-21T13:11:12
oeisdata/seq/A380/A380217.seq
e02c51de03696a5c9c4b30b401928660
A380218
Number of integer partitions of n with product n+1.
[ "1", "0", "0", "0", "0", "1", "0", "2", "1", "1", "0", "3", "0", "1", "1", "4", "0", "3", "0", "3", "1", "1", "0", "6", "1", "1", "2", "3", "0", "4", "0", "6", "1", "1", "1", "8", "0", "1", "1", "6", "0", "4", "0", "3", "3", "1", "0", "11", "1", "3", "1", "3", "0", "6", "1", "6", "1", "1", "0", "10", "0", "1", "3", "10", "1", "4", "0", "3", "1", "4", "0", "15", "0", "1", "3", "3", "1", "4", "0", "11", "4", "1", "0", "10", "1", "1", "1", "6", "0", "10", "1", "3", "1", "1", "1", "18", "0", "3", "3", "8", "0", "4", "0", "6", "4", "1" ]
[ "nonn" ]
13
0
8
[ "A000009", "A000041", "A001055", "A003963", "A025147", "A028422", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A318029", "A318950", "A319000", "A319005", "A319916", "A325037", "A325038", "A325041", "A325042", "A325044", "A326149", "A326152", "A326155", "A326156", "A379319", "A379320", "A379666", "A379720", "A379721", "A379722", "A379733", "A379734", "A379736", "A380216", "A380217", "A380218", "A380219" ]
null
Gus Wiseman, Jan 21 2025
2025-01-28T20:51:42
oeisdata/seq/A380/A380218.seq
d59be9f92375d3df1b018f09d934df65
A380219
Number of integer partitions of n whose product is a proper multiple of n.
[ "0", "0", "0", "0", "0", "0", "0", "3", "3", "3", "0", "18", "0", "9", "21", "75", "0", "109", "0", "146", "83", "43", "0", "730", "224", "82", "806", "722", "0", "1782", "0", "4254", "733", "258", "1923", "9558", "0", "435", "1875", "16395", "0", "14625", "0", "9857", "33053", "1150", "0", "102070", "19391", "57326", "10157", "30702", "0", "207699", "47925", "200645" ]
[ "nonn" ]
8
1
8
[ "A000009", "A000041", "A001055", "A003963", "A025147", "A028422", "A057567", "A057568", "A096276", "A111133", "A114324", "A301987", "A318029", "A318950", "A319000", "A319005", "A319916", "A325037", "A325038", "A325044", "A326149", "A326152", "A326155", "A326156", "A379319", "A379320", "A379666", "A379671", "A379720", "A379721", "A379722", "A379733", "A379734", "A379735", "A379736", "A380216", "A380217", "A380218", "A380219", "A380221" ]
null
Gus Wiseman, Jan 21 2025
2025-01-22T06:39:49
oeisdata/seq/A380/A380219.seq
17e616cf369a2d9e52f41e1257ce4fcf
A380220
Least positive integer whose prime indices satisfy (product) - (sum) = n. Position of first appearance of n in A325036.
[ "2", "1", "21", "25", "39", "35", "57", "55", "49", "65", "75", "77", "129", "95", "91", "105", "183", "119", "125", "143", "133", "185", "147", "161", "169", "195", "175", "209", "339", "217", "255", "253", "259", "305", "247", "285", "273", "245", "301", "299", "345", "323", "325", "357", "371", "435", "669", "391", "361", "403", "399", "473", "343", "469", "481" ]
[ "nonn", "look" ]
6
0
1
[ "A000040", "A000720", "A001055", "A001223", "A003963", "A028422", "A045778", "A055396", "A056239", "A061395", "A096276", "A112798", "A114324", "A175508", "A178503", "A301987", "A318029", "A318950", "A319000", "A319005", "A325034", "A325036", "A325037", "A325038", "A325041", "A325042", "A325044", "A326151", "A326153", "A326154", "A379319", "A379681", "A379682", "A379721", "A379722", "A380220" ]
null
Gus Wiseman, Jan 21 2025
2025-01-22T22:26:30
oeisdata/seq/A380/A380220.seq
52531e46adea054b34916cfd1f1fae3b
A380221
Number of strict integer partitions of n containing 1 whose product of parts is a multiple of n.
[ "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "2", "0", "2", "3", "3", "0", "4", "0", "9", "6", "4", "0", "22", "5", "6", "15", "28", "0", "54", "0", "49", "30", "14", "57", "134", "0", "22", "58", "219", "0", "242", "0", "180", "349", "44", "0", "722", "113", "369", "196", "404", "0", "994", "556", "1363", "338", "111", "0", "3016", "0", "150", "2569", "3150", "1485", "2815", "0" ]
[ "nonn" ]
6
1
12
[ "A000009", "A000040", "A000041", "A001055", "A003963", "A025147", "A057567", "A057568", "A069016", "A096276", "A111133", "A114324", "A301987", "A318029", "A319000", "A319005", "A319916", "A325037", "A325038", "A325042", "A325044", "A326149", "A326150", "A326152", "A326155", "A326156", "A379319", "A379320", "A379666", "A379671", "A379678", "A379720", "A379721", "A379722", "A379733", "A379734", "A379735", "A379736", "A379845", "A380216", "A380217", "A380218", "A380219", "A380221" ]
null
Gus Wiseman, Jan 22 2025
2025-01-23T00:18:52
oeisdata/seq/A380/A380221.seq
22c25c511a8e2169e84fa8f4a14cc60e
A380222
Highest integer k such that the multiplicative group modulo k is a subgroup of the symmetric group S_n.
[ "2", "6", "6", "12", "18", "30", "42", "60", "90", "126", "210", "252", "420", "630", "840", "1260", "1680", "2730", "3276", "5460", "8190", "10920", "16380", "21840", "32760", "40950", "65520", "90090", "120120", "180180", "253890", "360360", "507780", "720720", "1015560", "1332240", "2031120", "2792790", "3996720", "5585580" ]
[ "nonn" ]
19
1
1
[ "A034891", "A380222", "A380827" ]
null
Asher Gray, Jan 17 2025
2025-02-13T14:17:42
oeisdata/seq/A380/A380222.seq
cd2036e57699c8eeaa0fe7ad1d2eabf8
A380223
Positions of ones in A379880.
[ "8", "11", "14", "18", "22", "26", "29", "32", "38", "40", "41", "45", "49", "50", "55", "56", "61", "64", "67", "76", "80", "84", "85", "90", "91", "96", "97", "116", "127", "128", "129", "139", "150", "172", "173", "174", "175", "197", "198", "199", "200", "202", "203", "204", "207", "222", "223", "246", "247", "250", "262", "264", "276", "289", "290", "301", "302", "304", "307", "313" ]
[ "nonn" ]
12
1
1
[ "A377091", "A379880", "A380223", "A380224", "A380225" ]
null
Paolo Xausa, Jan 18 2025
2025-01-20T09:07:05
oeisdata/seq/A380/A380223.seq
7c94531ff2db3212d3914e11a8acabe2
A380224
Terms b(k) (for k > 0, and in order of appearance) such that both |b(k) - b(k-1)| and |b(k+1) - b(k)| are greater than 1, where b is A377091.
[ "13", "18", "25", "24", "-40", "-50", "-60", "-72", "-71", "-84", "-80", "98", "113", "104", "128", "119", "145", "162", "181", "-200", "-220", "-242", "-226", "-264", "-248", "-288", "-272", "-314", "-339", "337", "321", "-338", "366", "394", "369", "365", "374", "-422", "419", "403", "399", "393", "402", "398", "404", "452", "427", "-482", "479", "451", "478", "-512" ]
[ "sign" ]
27
1
1
[ "A377091", "A379880", "A380223", "A380224", "A380225" ]
null
Paolo Xausa, Jan 18 2025
2025-01-25T02:48:14
oeisdata/seq/A380/A380224.seq
6903608c3c7ba67b3a27e2488e656fdd
A380225
Numbers k > 0 such that both |b(k) - b(k-1)| and |b(k+1) - b(k)| are greater than 1, where b is A377091.
[ "21", "32", "43", "52", "74", "91", "112", "133", "147", "161", "162", "184", "211", "212", "242", "243", "273", "308", "343", "381", "422", "463", "464", "508", "509", "553", "554", "602", "651", "652", "653", "678", "704", "758", "759", "760", "761", "813", "814", "815", "816", "820", "821", "822", "828", "872", "873", "931", "932", "938", "966", "998" ]
[ "nonn" ]
13
1
1
[ "A377091", "A379880", "A380223", "A380224", "A380225" ]
null
Paolo Xausa, Jan 18 2025
2025-01-22T18:27:40
oeisdata/seq/A380/A380225.seq
a6dc32057a6762fbe1fc21301a5e03e9
A380226
10^n-th perfect power.
[ "1", "49", "6400", "804357", "90706576", "9565035601", "979846576384", "99066667994176", "9956760243243489", "997995681331086244", "99907048030216445041", "9995687853365470311364", "999799911985804802176144", "99990714485941936439363361", "9999569051610812899059355921", "999979998395643044466222682969" ]
[ "nonn" ]
22
0
2
[ "A001597", "A380226" ]
null
Chai Wah Wu, Jan 25 2025
2025-01-26T20:54:16
oeisdata/seq/A380/A380226.seq
b4809a61832c578a68b30a46cf091d17
A380227
Beginning with 11, least prime such that concatenation of first n terms and its digit reversal both are primes.
[ "11", "3", "11", "31", "59", "463", "131", "103", "599", "3253", "7649", "439", "12791", "2953", "17321", "16651", "10007", "51787", "4871", "1483", "6857", "15649", "53051", "61441", "84449", "35533", "19913", "39097", "23081", "206527", "44939", "189517", "32369", "106657", "606899", "117703", "222977", "220903", "69779", "12007", "95063", "136471", "43973" ]
[ "base", "nonn" ]
10
1
1
[ "A111382", "A111383", "A113584", "A379354", "A379355", "A379761", "A380227" ]
null
J.W.L. (Jan) Eerland, Jan 17 2025
2025-01-24T16:50:41
oeisdata/seq/A380/A380227.seq
d84f177109af9dd828bb85debe2e0701
A380228
Expansion of e.g.f. exp( exp( (exp(2*x)-1)/2 ) - 1 ).
[ "1", "1", "4", "21", "139", "1108", "10287", "108699", "1285228", "16783395", "239571125", "3706900992", "61746357449", "1100827515921", "20902202270580", "420903243601485", "8955301860908499", "200664408693149164", "4721693823656357303", "116370390417335016731", "2997078741899026174972", "80492590654279893652283" ]
[ "nonn" ]
10
0
3
[ "A000258", "A346417", "A380228", "A380229" ]
null
Seiichi Manyama, Jan 17 2025
2025-01-17T09:05:25
oeisdata/seq/A380/A380228.seq
7b1463f9b78173f72bf90fca3bef22e7
A380229
Expansion of e.g.f. exp( exp( (exp(3*x)-1)/3 ) - 1 ).
[ "1", "1", "5", "32", "258", "2518", "28733", "374188", "5465748", "88364877", "1564525351", "30076618014", "623362069525", "13846300701886", "327952448024833", "8246654495001815", "219323630123687561", "6148716950721967215", "181171993247893669702", "5595764936875993028696", "180742802515427561158060", "6092097271225726649472555" ]
[ "nonn" ]
11
0
3
[ "A000258", "A369783", "A380228", "A380229" ]
null
Seiichi Manyama, Jan 17 2025
2025-01-17T09:05:21
oeisdata/seq/A380/A380229.seq
4fa4fbb0b0e427bfccf4cf9bf348cecf
A380230
a(n) = n*A070939(n).
[ "0", "1", "4", "6", "12", "15", "18", "21", "32", "36", "40", "44", "48", "52", "56", "60", "80", "85", "90", "95", "100", "105", "110", "115", "120", "125", "130", "135", "140", "145", "150", "155", "192", "198", "204", "210", "216", "222", "228", "234", "240", "246", "252", "258", "264", "270", "276", "282", "288", "294", "300", "306", "312", "318", "324", "330", "336", "342" ]
[ "nonn", "base" ]
11
0
3
[ "A070939", "A110803", "A168160", "A380230" ]
null
Paolo Xausa, Jan 17 2025
2025-01-17T09:04:09
oeisdata/seq/A380/A380230.seq
23d2a7086737e3dc58655558f6476124
A380231
Alternating row sums of triangle A237591.
[ "1", "2", "1", "2", "1", "4", "3", "4", "5", "4", "3", "6", "5", "4", "7", "8", "7", "8", "7", "10", "9", "8", "7", "10", "11", "10", "9", "12", "11", "14", "13", "14", "13", "12", "15", "16", "15", "14", "13", "16", "15", "18", "17", "16", "19", "18", "17", "20", "21", "22", "21", "20", "19", "22", "21", "24", "23", "22", "21", "24", "23", "22", "25", "26", "25", "28", "27", "26", "25", "28", "27", "32", "31", "30", "29", "28", "31", "30", "29" ]
[ "nonn", "new" ]
72
1
2
[ "A000004", "A000203", "A000593", "A001065", "A004125", "A024916", "A033879", "A033880", "A048050", "A067742", "A074400", "A120444", "A146076", "A153485", "A175254", "A196020", "A211343", "A221529", "A231345", "A231347", "A235791", "A235794", "A235796", "A236104", "A236106", "A236112", "A236540", "A237048", "A237270", "A237271", "A237591", "A237593", "A239050", "A239313", "A239446", "A239662", "A240542", "A245092", "A249120", "A252117", "A262612", "A262626", "A266537", "A271343", "A271344", "A272026", "A272027", "A322141", "A336305", "A353690", "A380231" ]
null
Omar E. Pol, Jan 17 2025
2025-04-18T21:13:41
oeisdata/seq/A380/A380231.seq
b55959b350682000d47dcefaef8dee5d
A380232
Odd abundant numbers that are also doublets (cf. A020338).
[ "105105", "135135", "153153", "165165", "171171", "189189", "195195", "207207", "225225", "243243", "255255", "261261", "279279", "285285", "297297", "315315", "345345", "351351", "375375", "405405", "435435", "459459", "465465", "495495", "513513", "525525", "555555", "567567", "585585", "615615", "621621", "645645", "675675", "705705", "729729", "735735", "765765", "783783", "795795", "825825", "837837" ]
[ "nonn", "base" ]
20
1
1
[ "A005101", "A005231", "A020338", "A064001", "A380232", "A380233" ]
null
Omar E. Pol, Jan 17 2025
2025-01-18T09:37:55
oeisdata/seq/A380/A380232.seq
3181c4f4e37a785e073413e976e909a0
A380233
Odd abundant numbers not divisible by 5 that are also doublets (cf. A020338).
[ "153153", "171171", "189189", "207207", "243243", "261261", "279279", "297297", "351351", "459459", "513513", "567567", "621621", "729729", "783783", "837837", "891891", "999999", "1392313923", "1556115561", "1719917199", "1883718837", "2034920349", "2211322113", "2375123751", "2538925389", "2702727027", "3194131941", "4176941769", "4668346683" ]
[ "nonn", "base" ]
40
1
1
[ "A005101", "A005231", "A020338", "A047201", "A064001", "A380233" ]
null
Omar E. Pol, Jan 17 2025
2025-01-18T09:35:38
oeisdata/seq/A380/A380233.seq
a344de176ce8181489c9a693f59082d5
A380234
Triangle read by rows: T(n,k) is the number of achiral combinatorial maps with n edges and genus k, 0 <= k <= floor(n/2).
[ "1", "2", "4", "1", "14", "6", "47", "34", "4", "184", "188", "46", "761", "1040", "408", "33", "3314", "5756", "3220", "538", "14997", "32069", "23824", "6489", "398", "69886", "179408", "169336", "66150", "8506", "333884", "1009234", "1170654", "611278", "129030", "6405", "1626998", "5700548", "7930892", "5279172", "1608172", "168702", "8067786", "32341002", "52930196", "43429578", "17758601", "3080190", "128448" ]
[ "nonn", "tabf" ]
7
0
2
[ "A006443", "A170947", "A379438", "A379439", "A380234" ]
null
Andrew Howroyd, Jan 17 2025
2025-01-17T12:16:02
oeisdata/seq/A380/A380234.seq
56773e83992cc2bacb4c68d26279fd21
A380235
Triangle read by rows: T(n,k) is the number of n edge non-orientable genus k maps.
[ "1", "4", "2", "19", "16", "8", "106", "137", "128", "47", "709", "1254", "1890", "1372", "473", "5356", "12597", "27036", "31007", "22556", "7190", "44558", "133518", "379491", "611322", "704066", "469632", "144904", "397146", "1464725", "5229092", "11017122", "17691240", "18521632", "11990766", "3534490", "3716039", "16373700", "70805740", "186044902", "387965547", "563764626", "571333104", "352456980", "100895667" ]
[ "nonn", "tabl" ]
11
1
2
[ "A267180", "A348802", "A348803", "A348804", "A348805", "A348806", "A348807", "A348808", "A348809", "A348810", "A348811", "A379439", "A380235", "A380236" ]
null
Andrew Howroyd, Jan 17 2025
2025-01-26T23:50:06
oeisdata/seq/A380/A380235.seq
e9d706c32e8569b3da014348b7cb1522
A380236
Number of non-orientable genus n maps with n edges.
[ "1", "2", "8", "47", "473", "7190", "144904", "3534490", "100895667", "3276228298", "119465644032", "4827606232542", "214282994249825", "10361526316840074" ]
[ "nonn", "more" ]
5
1
2
[ "A380235", "A380236" ]
null
Andrew Howroyd, Jan 17 2025
2025-01-17T12:15:49
oeisdata/seq/A380/A380236.seq
8629f186111abeca07f2bb3f8d960153
A380237
Number of sensed planar maps with n vertices and 2 faces.
[ "1", "2", "5", "14", "42", "140", "473", "1670", "5969", "21679", "79419", "293496", "1091006", "4078213", "15312150", "57721030", "218333832", "828408842", "3151769615", "12020870753", "45949957412", "176001205559", "675384194565", "2596119292840", "9994894356158", "38535398284100", "148772774499015", "575079507042663" ]
[ "nonn" ]
10
1
2
[ "A000108", "A000346", "A060404", "A103943", "A210736", "A379430", "A380237", "A380238", "A380239" ]
null
Andrew Howroyd, Jan 19 2025
2025-01-21T21:29:50
oeisdata/seq/A380/A380237.seq
a7a0c1705fa99526490992fe1d96827e
A380238
Number of achiral planar maps with n vertices and 2 faces.
[ "1", "2", "5", "12", "28", "68", "157", "372", "845", "1949", "4367", "9880", "21858", "48679", "106612", "234546", "509246", "1109352", "2391299", "5167423", "11070598", "23762557", "50641725", "108085708", "229303142", "487039228", "1029167119", "2176808877", "4583856878", "9660020146", "20279242545", "42599286814" ]
[ "nonn" ]
8
1
2
[ "A379431", "A380237", "A380238", "A380239" ]
null
Andrew Howroyd, Jan 19 2025
2025-01-21T21:29:47
oeisdata/seq/A380/A380238.seq
08a603d617e0dcbe021f25fae78e855f
A380239
Number of unsensed planar maps with n vertices and 2 faces.
[ "1", "2", "5", "13", "35", "104", "315", "1021", "3407", "11814", "41893", "151688", "556432", "2063446", "7709381", "28977788", "109421539", "414759097", "1577080457", "6013019088", "22980514005", "88012484058", "337717418145", "1298113689274", "4997561829650", "19267942661664", "74386901833067", "287540841925770" ]
[ "nonn" ]
9
1
2
[ "A277741", "A380237", "A380238", "A380239" ]
null
Andrew Howroyd, Jan 19 2025
2025-01-21T21:29:43
oeisdata/seq/A380/A380239.seq
d064094b55871a56ccee677aca580448
A380240
Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces including one distinguished outside face, n >= 1, k >= 1.
[ "1", "1", "2", "3", "1", "4", "12", "8", "2", "10", "48", "64", "25", "3", "26", "196", "412", "314", "78", "6", "80", "798", "2458", "2976", "1478", "270", "14", "246", "3248", "13452", "23588", "18844", "6748", "926", "34", "810", "13184", "70330", "166050", "192096", "110714", "30168", "3305", "95", "2704", "53416", "353716", "1074472", "1676668", "1397484", "613884", "132734", "11868", "280", "9252" ]
[ "nonn", "tabl" ]
10
1
3
[ "A002995", "A003239", "A060404", "A103937", "A103943", "A269920", "A379430", "A380240" ]
null
Andrew Howroyd, Jan 21 2025
2025-01-22T15:46:13
oeisdata/seq/A380/A380240.seq
f109c43cb254cf2d511f8de965cd6a97
A380241
Array read by antidiagonals: T(n,k) is the number of rooted (2k)-regular planar maps with n vertices, n >= 0, k >= 0.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "5", "9", "1", "1", "1", "14", "100", "54", "1", "1", "1", "42", "1225", "3000", "378", "1", "1", "1", "132", "15876", "171500", "110000", "2916", "1", "1", "1", "429", "213444", "10001880", "30012500", "4550000", "24057", "1", "1", "1", "1430", "2944656", "591666768", "7981500240", "5987493750", "204000000", "208494", "1", "1" ]
[ "nonn", "tabl" ]
14
0
8
[ "A000012", "A000108", "A000168", "A060150", "A269920", "A380241", "A380242", "A380243" ]
null
Andrew Howroyd, Jan 22 2025
2025-01-22T17:33:01
oeisdata/seq/A380/A380241.seq
c8f564962e5e23c03f6eda47b8551871
A380242
Number of rooted 6-regular planar maps with n vertices.
[ "1", "5", "100", "3000", "110000", "4550000", "204000000", "9690000000", "480700000000", "24667500000000", "1300650000000000", "70122000000000000", "3851316000000000000", "214878980000000000000", "12151776800000000000000", "695297229000000000000000", "40193385270000000000000000", "2344614140750000000000000000" ]
[ "nonn" ]
9
0
2
[ "A000168", "A380241", "A380242", "A380243" ]
null
Andrew Howroyd, Jan 22 2025
2025-01-22T17:32:56
oeisdata/seq/A380/A380242.seq
8afe7e4c6174df83a916574262ba3b0f
A380243
Number of rooted 2n-regular planar maps with 3 vertices.
[ "1", "54", "3000", "171500", "10001880", "591666768", "35371207872", "2131746903000", "129299660919000", "7883256659941520", "482689850761774656", "29661047546558142624", "1828220386252351000000", "112982297841774018000000", "6998159395715622920640000", "434337846995341921726638000", "27004842919501042631643927000" ]
[ "nonn" ]
8
1
2
[ "A000984", "A002897", "A380241", "A380242", "A380243" ]
null
Andrew Howroyd, Jan 22 2025
2025-01-22T17:32:52
oeisdata/seq/A380/A380243.seq
3dcb92fd625978264eb146fcccb80c62
A380244
The Collatz (or 3x+1) trajectory starting at a(n) contains exactly n odd integers and a(n) is the n-th number with this property.
[ "1", "10", "12", "68", "45", "30", "72", "101", "134", "179", "237", "314", "422", "551", "723", "509", "1282", "887", "1170", "1535", "2021", "1509", "1899", "2412", "1780", "2217", "3170", "3867", "2819", "3728", "2511", "3155", "3972", "2802", "3578", "2623", "3444", "4302", "3087", "3968", "2690", "1806", "2336", "1593", "2084", "2757", "1884", "2477" ]
[ "nonn" ]
24
1
2
[ "A006577", "A006667", "A078719", "A337144", "A354236", "A380244" ]
null
Alois P. Heinz, Jan 17 2025
2025-01-18T19:49:37
oeisdata/seq/A380/A380244.seq
e7a2f4bdb563a9b9a619762bbc5db053
A380245
a(n) = A379343(A378684(n)).
[ "1", "5", "2", "4", "3", "6", "14", "9", "12", "7", "11", "8", "13", "10", "15", "27", "20", "25", "18", "23", "16", "22", "17", "24", "19", "26", "21", "28", "44", "35", "42", "33", "40", "31", "38", "29", "37", "30", "39", "32", "41", "34", "43", "36", "45", "65", "54", "63", "52", "61", "50", "59", "48", "57", "46", "56", "47", "58", "49", "60", "51", "62", "53", "64", "55", "66" ]
[ "nonn", "tabf" ]
21
1
2
[ "A000027", "A000384", "A016813", "A376214", "A378684", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664" ]
null
Boris Putievskiy, Jan 17 2025
2025-04-02T15:07:59
oeisdata/seq/A380/A380245.seq
786a3d0ec906b23a0af84c9993fe436f
A380246
Elimination order of the first person in a variation of the Josephus problem, where the number of skipped people correspond to the number of letters in consecutive numbers, called SpellUnder-Down.
[ "1", "2", "1", "2", "5", "4", "2", "5", "6", "4", "6", "10", "3", "12", "6", "8", "15", "4", "13", "19", "14", "17", "5", "22", "18", "26", "6", "20", "13", "17", "19", "23", "7", "25", "21", "31", "22", "32", "8", "31", "38", "20", "29", "9", "27", "18", "43", "10", "15", "50", "37", "20", "16", "41", "11", "21", "39", "36", "34", "32", "29", "12", "36", "50", "27", "53", "35", "19", "45", "67", "13", "20", "70", "59", "74", "26", "21", "40", "65", "14", "49", "82", "33", "43", "28", "34", "53", "15" ]
[ "nonn", "word" ]
17
1
2
[ "A005589", "A006257", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 17 2025
2025-02-23T11:28:44
oeisdata/seq/A380/A380246.seq
b28cbcf51fd7085cbbbf1f5ed561fb76
A380247
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the variation of the Josephus elimination process for n people, where the number of people skipped correspond to the number of letters in the next number in English alphabet.
[ "1", "2", "1", "1", "3", "2", "4", "1", "3", "2", "4", "3", "2", "5", "1", "4", "2", "5", "1", "3", "6", "4", "1", "2", "3", "6", "5", "7", "4", "8", "7", "6", "1", "2", "5", "3", "4", "8", "6", "3", "2", "1", "9", "7", "5", "4", "8", "5", "1", "9", "6", "10", "7", "2", "3", "4", "8", "3", "10", "6", "1", "2", "7", "11", "9", "5", "4", "8", "2", "9", "3", "10", "7", "11", "12", "1", "5", "6", "4", "8", "1", "7", "13", "6", "3", "2", "12", "11", "5", "9", "10", "4", "8", "14", "6", "12", "3", "13", "10", "7", "2", "11", "1", "5", "9", "4" ]
[ "nonn", "word", "tabl" ]
26
1
2
[ "A005589", "A006257", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 17 2025
2025-02-23T11:28:05
oeisdata/seq/A380/A380247.seq
f76c420483b072489a35b1f042079155
A380248
The order of the 13 cards of one suit such that after the SpellUnder-Down deal the cards are in order; a(n) is the n-th card in the deck.
[ "3", "8", "7", "1", "12", "6", "4", "2", "11", "13", "10", "9", "5" ]
[ "nonn", "fini", "full" ]
13
1
1
[ "A005589", "A006257", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 17 2025
2025-01-31T11:55:15
oeisdata/seq/A380/A380248.seq
d6f8db70029f31b9aeb5a1230ac8fbf6
A380249
a(n) = 4^n - binomial(n,2)*3^(n-2).
[ "1", "4", "15", "55", "202", "754", "2881", "11281", "45124", "183412", "753331", "3111739", "12879982", "53291398", "220074325", "906337909", "3721011016", "15228417832", "62133328423", "252794939071", "1025901734866", "4153971603034", "16786738847785", "67722274817305", "272813804258572" ]
[ "nonn", "easy" ]
19
0
2
[ "A086443", "A380024", "A380249", "A380651" ]
null
Enrique Navarrete, Feb 06 2025
2025-03-15T12:31:26
oeisdata/seq/A380/A380249.seq
11f0e97fac5f22d71af8a01500fb056e
A380250
a(n) is the maximum value of A377091(k) with k in 0..n.
[ "0", "1", "2", "2", "2", "3", "4", "5", "5", "5", "6", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "13", "13", "13", "13", "13", "13", "13", "13", "13", "13", "13", "18", "18", "18", "18", "18", "18", "18", "18", "18", "18", "18", "25", "25", "25", "25", "25", "25", "26", "27", "28", "28", "28", "28", "28", "28", "28", "28", "28", "28", "32", "32", "32", "32", "33", "34", "35", "36", "37" ]
[ "nonn" ]
9
0
3
[ "A377091", "A380250", "A380251" ]
null
Rémy Sigrist, Jan 17 2025
2025-02-06T07:53:53
oeisdata/seq/A380/A380250.seq
cd18d846fd555406836016c40064d365
A380251
a(n) is the minimum value, negated, of A377091(k) with k in 0..n.
[ "0", "0", "0", "2", "2", "2", "2", "2", "4", "4", "4", "4", "4", "8", "8", "8", "8", "9", "10", "11", "12", "12", "12", "12", "12", "12", "13", "14", "15", "16", "17", "18", "18", "18", "18", "18", "18", "19", "20", "21", "22", "23", "24", "24", "24", "24", "24", "24", "24", "24", "24", "24", "24", "25", "26", "27", "28", "29", "30", "31", "32", "32", "32", "32", "32", "32", "32", "32", "32", "32" ]
[ "nonn" ]
8
0
4
[ "A377091", "A380250", "A380251" ]
null
Rémy Sigrist, Jan 17 2025
2025-02-06T07:54:12
oeisdata/seq/A380/A380251.seq
b3f768a48b89ce0ea2b138bd3abde813
A380252
Triangular array read by rows: T(n,k) is the number of labeled acyclic digraphs on n vertices with exactly k weakly connected components, n>=0, 0<=k<=n.
[ "1", "0", "1", "0", "2", "1", "0", "18", "6", "1", "0", "446", "84", "12", "1", "0", "26430", "2590", "240", "20", "1", "0", "3596762", "175200", "8970", "540", "30", "1", "0", "1111506858", "26568374", "678930", "24010", "1050", "42", "1", "0", "774460794326", "9127077036", "112393736", "2007600", "54740", "1848", "56", "1", "0", "1206342801843750", "7057099207134", "42191272116", "357391608", "5013540", "111636", "3024", "72", "1" ]
[ "nonn", "tabl" ]
19
0
5
[ "A000007", "A003024", "A082402", "A082403", "A380252" ]
null
Geoffrey Critzer, Jan 17 2025
2025-01-18T09:35:58
oeisdata/seq/A380/A380252.seq
9a5d10ecd21c6f924902b2f4c873490d
A380253
Numbers k such that (25^k + 2^k)/27 is prime.
[ "19", "109", "967", "2143", "11471", "11939" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A380253" ]
null
Robert Price, Jan 17 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380253.seq
7dce7a53cd7b7f76b1e569ac8120b874
A380254
Number of powerful numbers (in A001694) that do not exceed primorial A002110(n).
[ "1", "1", "2", "7", "22", "85", "330", "1433", "6450", "31555", "172023", "964560", "5891154", "37807505", "248226019", "1702890101", "12401685616", "95277158949", "744210074157", "6091922351106", "51332717836692", "438592279944173", "3898316990125822", "35515462315592564", "335052677538616216", "3299888425002527366" ]
[ "nonn", "hard" ]
24
0
3
[ "A001694", "A002110", "A062762", "A118896", "A380254", "A380337" ]
null
Michael De Vlieger, Jan 19 2025
2025-01-25T02:43:29
oeisdata/seq/A380/A380254.seq
632a267dc876a72f1ae378df0132cfb7
A380255
Number of cyclic edge cuts in the n-dipyramidal graph.
[ "0", "4", "70", "750", "6426", "48548", "338832" ]
[ "nonn", "more" ]
21
3
2
null
null
Eric W. Weisstein, Jan 22 2025
2025-02-14T14:25:21
oeisdata/seq/A380/A380255.seq
a743be77306ee934c0f29658048c5107
A380256
Number of rooted binary normal unlabeled galled trees with n leaves and exactly 1 gall.
[ "0", "0", "0", "1", "4", "15", "48", "148", "435", "1250", "3512", "9726", "26587", "71975", "193200", "515051", "1364896", "3598794", "9447028", "24704031", "64382465", "167288460", "433512724", "1120719444", "2891035926", "7443225226", "19129208972", "49082742607", "125752279124", "321744111359", "822165920924", "2098475215237" ]
[ "nonn" ]
16
0
5
[ "A001190", "A086317", "A240943", "A380211", "A380256" ]
null
Noah A Rosenberg, Jan 17 2025
2025-01-19T12:58:14
oeisdata/seq/A380/A380256.seq
32c5855ecc94d55505c6cdcd270f36c5
A380257
Expansion of e.g.f. exp( (1/(1-3*x)^(2/3) - 1)/2 ).
[ "1", "1", "6", "56", "706", "11186", "213156", "4742256", "120571676", "3447128796", "109427729096", "3818008773536", "145196289453656", "5976489668054296", "264685744187399536", "12548508890339297856", "634022724191046592016", "34007862777419093053456", "1929842567333195106456416" ]
[ "nonn" ]
17
0
3
[ "A004211", "A049376", "A375173", "A380214", "A380257", "A380258" ]
null
Seiichi Manyama, Jan 18 2025
2025-03-31T22:01:59
oeisdata/seq/A380/A380257.seq
81a5553b5e408f303f4d4290a30340d3
A380258
Expansion of e.g.f. exp( (1/(1-5*x)^(2/5) - 1)/2 ).
[ "1", "1", "8", "106", "1954", "46082", "1323064", "44750644", "1741897340", "76672512316", "3764746706176", "203976645319448", "12086590557877144", "777464693554778776", "53948773488864143072", "4016672567726156437744", "319379204127841984947472", "27010128651142535536409360", "2420802590890201251989984128" ]
[ "nonn" ]
15
0
3
[ "A004211", "A025168", "A049376", "A375173", "A380257", "A380258" ]
null
Seiichi Manyama, Jan 18 2025
2025-03-31T22:02:07
oeisdata/seq/A380/A380258.seq
7ac1809f4ec778fb4dffea1259ac09d3
A380259
Expansion of e.g.f. exp( (1/(1-2*x)^(3/2) - 1)/3 ).
[ "1", "1", "6", "51", "561", "7566", "120711", "2221311", "46269126", "1075249881", "27560477331", "771948530046", "23446574573841", "767288588019201", "26905482997736526", "1006166248423254171", "39962774633459923881", "1679677496419394133846", "74471142324541556576151" ]
[ "nonn" ]
15
0
3
[ "A049377", "A380212", "A380259" ]
null
Seiichi Manyama, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380259.seq
4d69a8d0e34a7979a8520592ad7ce3c3
A380260
Expansion of e.g.f. exp( ((1+2*x)^(3/2) - 1)/3 ).
[ "1", "1", "2", "3", "9", "6", "111", "-573", "7638", "-95751", "1450431", "-24643134", "468589617", "-9843336567", "226448287794", "-5662061186949", "152892006728841", "-4434211761771978", "137468475061977663", "-4536657554920874181", "158788359466681092966", "-5875324355407515077439", "229142457698060305226367" ]
[ "sign" ]
14
0
3
[ "A049425", "A380259", "A380260" ]
null
Seiichi Manyama, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380260.seq
f8473d31f8ed5a611b294da10c7d5ada
A380261
Expansion of e.g.f. exp( ((1+3*x)^(2/3) - 1)/2 ).
[ "1", "1", "0", "2", "-14", "146", "-1944", "31620", "-608068", "13502076", "-340052704", "9579145016", "-298455813160", "10191129869272", "-378469678855904", "15187759126892976", "-654936026064200944", "30203464484648818960", "-1483333523694819075328", "77291514214052885054496" ]
[ "sign" ]
14
0
4
[ "A000085", "A002119", "A004211", "A380261", "A380262" ]
null
Seiichi Manyama, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380261.seq
49de734ac34f123b67d42f1d4ad78cb9
A380262
Expansion of e.g.f. exp( ((1+5*x)^(2/5) - 1)/2 ).
[ "1", "1", "-2", "16", "-206", "3682", "-84236", "2348704", "-77241380", "2926735516", "-125540336024", "6013069027648", "-318093606114536", "18418565715581656", "-1158626159228481488", "78679416565851286144", "-5736477278907382585328", "446936684375920051751440", "-37056888825921886749507872" ]
[ "sign" ]
12
0
3
[ "A000085", "A002119", "A380261", "A380262" ]
null
Seiichi Manyama, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380262.seq
2f798f9aea48081cd499f0174a71d8c6
A380263
a(n) is the minimum number of elements to add to the set {A377091(k), k = 0..n} in order to obtain an integer interval.
[ "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "3", "2", "1", "0", "0", "0", "0", "0", "4", "3", "2", "1", "0", "0", "0", "0", "0", "0", "0", "4", "3", "2", "1", "0", "0", "0", "0", "0", "0", "0", "6", "5", "4", "3", "2", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "3", "2", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "7", "6", "5", "4", "3", "2", "1", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
22
0
14
[ "A377091", "A380250", "A380251", "A380263" ]
null
Rémy Sigrist, Jan 18 2025
2025-02-06T12:42:27
oeisdata/seq/A380/A380263.seq
8eea76a9bce907ae23d3aedac15cb5ea
A380264
a(n) is the numerator of the mean value of A051903(k) at the range k = 1..n.
[ "0", "1", "2", "1", "1", "1", "1", "5", "4", "13", "14", "4", "17", "9", "19", "23", "24", "13", "27", "29", "10", "31", "32", "35", "37", "19", "41", "43", "44", "3", "46", "51", "52", "53", "54", "14", "57", "29", "59", "31", "63", "32", "65", "67", "23", "35", "71", "25", "11", "79", "80", "41", "83", "43", "87", "45", "91", "46", "93", "19", "96", "97", "11", "105", "106", "107", "108", "55" ]
[ "nonn", "easy", "frac" ]
11
1
3
[ "A033150", "A051903", "A129132", "A359071", "A359072", "A380264", "A380265" ]
null
Amiram Eldar, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380264.seq
87b855327e97c2e54f95a1a993132a3a
A380265
a(n) is the denominator of the mean value of A051903(k) at the range k = 1..n.
[ "1", "2", "3", "1", "1", "1", "1", "4", "3", "10", "11", "3", "13", "7", "15", "16", "17", "9", "19", "20", "7", "22", "23", "24", "25", "13", "27", "28", "29", "2", "31", "32", "33", "34", "35", "9", "37", "19", "39", "20", "41", "21", "43", "44", "15", "23", "47", "16", "7", "50", "51", "26", "53", "27", "55", "28", "57", "29", "59", "12", "61", "62", "7", "64", "65", "66", "67", "34", "23", "5", "71" ]
[ "nonn", "easy", "frac" ]
8
1
2
[ "A051903", "A380264", "A380265" ]
null
Amiram Eldar, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380265.seq
a78886291e8c600bf544856b17c28a91
A380266
a(n) is the numerator of the mean value of A051904(k) at the range k = 1..n.
[ "0", "1", "2", "1", "1", "1", "1", "5", "4", "13", "14", "5", "16", "17", "6", "11", "23", "4", "25", "13", "9", "14", "29", "5", "32", "33", "4", "37", "38", "13", "40", "45", "46", "47", "48", "25", "51", "26", "53", "27", "55", "4", "57", "29", "59", "30", "61", "31", "64", "13", "22", "67", "68", "23", "14", "71", "24", "73", "74", "5", "76", "77", "26", "21", "17", "43", "87", "22", "89", "9" ]
[ "nonn", "easy", "frac" ]
9
1
3
[ "A051904", "A090699", "A380266", "A380267" ]
null
Amiram Eldar, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380266.seq
1347dccfb5cdf58fd2d83b5676d53fc8
A380267
a(n) is the denominator of the mean value of A051904(k) at the range k = 1..n.
[ "1", "2", "3", "1", "1", "1", "1", "4", "3", "10", "11", "4", "13", "14", "5", "8", "17", "3", "19", "10", "7", "11", "23", "4", "25", "26", "3", "28", "29", "10", "31", "32", "33", "34", "35", "18", "37", "19", "39", "20", "41", "3", "43", "22", "45", "23", "47", "24", "49", "10", "17", "52", "53", "18", "11", "56", "19", "58", "59", "4", "61", "62", "21", "16", "13", "33", "67", "17", "69", "7" ]
[ "nonn", "easy", "frac" ]
10
1
2
[ "A051904", "A380266", "A380267" ]
null
Amiram Eldar, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380267.seq
99c0bf6f79749443522d20ad53ae0f3d
A380268
a(n) is the number of positive values minus the number of negative values in the set {A377091(k), k = 0..n}.
[ "0", "1", "2", "1", "0", "1", "2", "3", "2", "1", "2", "3", "4", "3", "2", "1", "0", "-1", "-2", "-3", "-4", "-3", "-2", "-1", "0", "1", "0", "-1", "-2", "-3", "-4", "-5", "-4", "-3", "-2", "-1", "0", "-1", "-2", "-3", "-4", "-5", "-6", "-5", "-4", "-3", "-2", "-1", "0", "1", "2", "3", "4", "3", "2", "1", "0", "-1", "-2", "-3", "-4", "-3", "-2", "-1", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "8", "7" ]
[ "sign" ]
7
0
3
[ "A377091", "A380268" ]
null
Rémy Sigrist, Jan 18 2025
2025-01-18T09:07:46
oeisdata/seq/A380/A380268.seq
e5a0633970ed1329644ae17b5d1d3331
A380269
The minimal rank of an n-universal Z-lattice.
[ "4", "5", "6", "7", "8", "13", "15", "16", "28", "30" ]
[ "nonn", "hard", "more" ]
8
1
1
[ "A054911", "A380269" ]
null
Robin Visser, Jan 18 2025
2025-01-23T00:42:37
oeisdata/seq/A380/A380269.seq
da80539457f3c718e30867e028ff0228
A380270
Decimal expansion of Integral_{x=1..A070769} li(x) dx (negated), where li(x) is the logarithmic integral.
[ "5", "0", "0", "1", "0", "2", "3", "3", "6", "2", "7", "0", "1", "7", "0", "6", "0", "6", "4", "1", "1", "9", "5", "8", "3", "7", "3", "3", "8", "1", "9", "2", "6", "8", "1", "2", "7", "8", "0", "1", "7", "7", "7", "2", "5", "2", "0", "1", "4", "6", "9", "6", "1", "7", "7", "8", "2", "8", "6", "4", "0", "4", "4", "9", "3", "8", "0", "9", "6", "7", "1", "4", "7", "3", "0", "3", "0", "9", "2", "3", "8", "7", "2", "9", "5", "3", "0", "7", "1", "1", "1", "6", "5", "2", "0", "6", "8", "2", "9", "8", "9", "1", "4", "9", "1" ]
[ "cons", "nonn" ]
9
0
1
[ "A069284", "A070769", "A084945", "A091723", "A244067", "A257817", "A257818", "A257819", "A257820", "A257821", "A270857", "A380270" ]
null
Artur Jasinski, Jan 18 2025
2025-02-03T23:01:49
oeisdata/seq/A380/A380270.seq
b23580056d15702ae6c5a889c31fbe28
A380271
Denominators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).
[ "1", "1", "2", "6", "24", "120", "720", "1008", "40320", "72576", "3628800", "39916800", "95800320", "6227020800", "3487131648", "1307674368000", "20922789888000", "2845499424768", "6402373705728000", "24329020081766400", "187146308321280000", "51090942171709440000", "224800145555521536000", "25852016738884976640000" ]
[ "nonn", "frac" ]
4
0
3
[ "A000041", "A017666", "A058892", "A066186", "A067653", "A098988", "A380171", "A380271" ]
null
Ilya Gutkovskiy, Jan 18 2025
2025-01-18T09:28:17
oeisdata/seq/A380/A380271.seq
cd606f1b2a221715601b928811778fad
A380272
a(n) is the number of integers k in 0..n such that the nonadjacent forms for n-k and k can be added without carries (see Comments section for exact definition).
[ "1", "2", "2", "2", "4", "4", "2", "2", "6", "4", "4", "2", "4", "4", "2", "6", "12", "8", "4", "6", "10", "8", "2", "2", "6", "4", "4", "2", "4", "4", "6", "10", "22", "12", "8", "6", "10", "8", "6", "6", "16", "8", "8", "2", "4", "4", "2", "6", "12", "8", "4", "6", "10", "8", "2", "2", "6", "4", "4", "10", "16", "12", "10", "22", "44", "24", "12", "14", "22", "16", "6", "6", "16", "8", "8", "10", "16", "12", "6" ]
[ "nonn", "base" ]
9
0
2
[ "A001316", "A352502", "A380272", "A380273" ]
null
Rémy Sigrist, Jan 18 2025
2025-01-19T09:28:56
oeisdata/seq/A380/A380272.seq
1dbd93c5d5388a800f3605198fd1fdfa
A380273
Irregular table T(n, k), n >= 0, k = 1..A380272(n), read by rows; the n-th row lists the integers m in 0..n such that the nonadjacent forms for m-n and m can be added without carries.
[ "0", "0", "1", "0", "2", "0", "3", "0", "1", "3", "4", "0", "1", "4", "5", "0", "6", "0", "7", "0", "1", "2", "6", "7", "8", "0", "1", "8", "9", "0", "2", "8", "10", "0", "11", "0", "1", "11", "12", "0", "1", "12", "13", "0", "14", "0", "3", "4", "11", "12", "15", "0", "1", "2", "3", "4", "5", "11", "12", "13", "14", "15", "16", "0", "1", "4", "5", "12", "13", "16", "17", "0", "2", "16", "18", "0", "3", "4", "15", "16", "19" ]
[ "nonn", "base", "tabf" ]
7
0
5
[ "A295989", "A353174", "A380272", "A380273" ]
null
Rémy Sigrist, Jan 18 2025
2025-01-19T09:28:52
oeisdata/seq/A380/A380273.seq
56500cc42995f9c21e30c43e660666f9
A380274
Sum of cubes of coefficients of q in the q-factorials.
[ "1", "1", "2", "18", "522", "34986", "4524240", "1003172616", "351349509504", "182985164256000", "135303274820730372", "136936922140937021688", "184146557651652262521738", "321051865325352021467189658", "710866983641078174204266934736", "1964068265459581480020247325821224" ]
[ "nonn" ]
11
0
3
[ "A008302", "A127728", "A380274", "A380275" ]
null
Vaclav Kotesovec, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380274.seq
474c3dde575d52bfa0f80e53290fa1c1
A380275
Sum of the fourth powers of the coefficients of q in the q-factorials.
[ "1", "1", "2", "34", "2710", "669142", "403186412", "504370709488", "1170803949124848", "4644277674894466168", "29557755573424568318844", "287158619888775996039794756", "4090368591132420991019182924018", "82628355729998755756059701468470738", "2301817961412922763844330401786521588244" ]
[ "nonn" ]
11
0
3
[ "A008302", "A127728", "A380274", "A380275" ]
null
Vaclav Kotesovec, Jan 18 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380275.seq
12a073600ec95479add65a2de3df4e1d
A380276
Decimal expansion of infinite sum of reciprocals Sum_{n>=1} 1/A357934(n).
[ "4", "7", "7", "9", "9", "9", "3" ]
[ "nonn", "cons", "hard", "more" ]
24
0
1
[ "A001359", "A209328", "A342714", "A356793", "A357934", "A380276" ]
null
Artur Jasinski, Jan 18 2025
2025-02-03T23:02:50
oeisdata/seq/A380/A380276.seq
d32dd3b4c622dfd3b51d492dc4f91cb2
A380277
A version of the array A229607 without duplicates, read by antidiagonals: each row starts with the least prime not in a previous row, and each number p in a row is followed by the greatest prime q in the interval p < q < 2*p not in a previous row (or 0 if no such q exists).
[ "2", "3", "11", "5", "19", "17", "7", "37", "31", "29", "13", "73", "61", "53", "41", "23", "139", "113", "103", "79", "47", "43", "277", "223", "199", "157", "89", "59", "83", "547", "443", "397", "313", "173", "109", "67", "163", "1093", "883", "787", "619", "337", "211", "131", "71", "317", "2179", "1759", "1571", "1237", "673", "421", "257", "137", "97" ]
[ "nonn", "tabl" ]
12
1
1
[ "A000720", "A006992", "A104272", "A229607", "A380277" ]
null
Pontus von Brömssen, Jan 18 2025
2025-01-20T22:54:08
oeisdata/seq/A380/A380277.seq
c258ab5d04d59af5622a00f5f609f35e
A380278
Lexicographically earliest infinite sequence of positive integers such that consecutive occurrences of k are separated by exactly k terms and each subsequence enclosed by consecutive equal values is distinct.
[ "1", "2", "1", "3", "1", "4", "1", "3", "5", "6", "4", "3", "7", "8", "5", "3", "6", "9", "10", "3", "5", "11", "8", "3", "12", "13", "5", "3", "14", "10", "15", "3", "5", "11", "16", "3", "17", "12", "5", "3", "10", "18", "19", "3", "5", "11", "15", "3", "20", "21", "5", "3", "22", "23", "17", "3", "5", "11", "24", "3", "18", "25", "5", "3", "26", "27", "28", "3", "5", "11", "29", "3", "17", "30", "5", "3", "31" ]
[ "nonn" ]
15
1
2
[ "A026272", "A380278" ]
null
Neal Gersh Tolunsky, Jan 18 2025
2025-01-24T19:40:52
oeisdata/seq/A380/A380278.seq
b2c20e5eec4b6391ab769d9290c85dbb
A380279
Numbers k such that A377091(k) corresponds to a tie.
[ "1", "7", "21", "43", "73", "111", "160", "211", "273", "343", "421", "507", "577", "600", "758", "842", "872", "960", "1060", "1086", "1191", "1370", "1521", "1641", "1807", "1937", "1980", "2210", "2353", "2400", "2551", "2760", "2973", "3193", "3423", "3661", "3907", "4161", "4423", "4693", "4971", "5257", "5551", "5853", "6163", "6484", "6807" ]
[ "nonn" ]
9
1
2
[ "A377091", "A380279", "A380280" ]
null
Rémy Sigrist, Jan 18 2025
2025-01-20T09:10:49
oeisdata/seq/A380/A380279.seq
e3742c5d9222c9f34447614462df6350
A380280
Values corresponding to ties in A377091, in order of appearance.
[ "1", "5", "13", "25", "41", "61", "85", "113", "145", "181", "221", "265", "290", "312", "394", "420", "452", "481", "544", "549", "613", "684", "761", "841", "925", "970", "1012", "1105", "1201", "1205", "1301", "1405", "1513", "1625", "1741", "1861", "1985", "2113", "2245", "2381", "2521", "2665", "2813", "2965", "3121", "3281", "3445", "3613", "3785" ]
[ "nonn" ]
7
1
2
[ "A377091", "A380279", "A380280" ]
null
Rémy Sigrist, Jan 19 2025
2025-01-20T09:10:45
oeisdata/seq/A380/A380280.seq
b5a97490a28259d183351e0524efa570
A380281
Triangle T(n, k) read by rows: T(n, k) = 2^n*binomial(2*n + 1, 2*k + 1) * Pochhammer(1/2, n - k) * Pochhammer(1/2, k).
[ "1", "3", "1", "15", "10", "3", "105", "105", "63", "15", "945", "1260", "1134", "540", "105", "10395", "17325", "20790", "14850", "5775", "945", "135135", "270270", "405405", "386100", "225225", "73710", "10395", "2027025", "4729725", "8513505", "10135125", "7882875", "3869775", "1091475", "135135", "34459425", "91891800", "192972780", "275675400", "268017750", "175429800", "74220300", "18378360", "2027025" ]
[ "nonn", "tabl" ]
48
0
2
[ "A000457", "A001147", "A001881", "A076729", "A103327", "A173424", "A380281" ]
null
Thomas Scheuerle, Jan 18 2025
2025-01-22T11:34:13
oeisdata/seq/A380/A380281.seq
baadee92fc2d8c388a0724dcec0c110f
A380282
Irregular triangle read by rows: T(n,k) is the number of free polyominoes with n cells having k regions between the polyominoes and their bounding boxes, n >= 1, k >= 0.
[ "1", "1", "1", "1", "2", "1", "2", "1", "4", "5", "1", "1", "2", "6", "18", "7", "2", "1", "13", "50", "34", "10", "2", "25", "144", "146", "50", "2", "2", "48", "402", "574", "240", "18", "1", "2", "97", "1168", "2142", "1120", "122", "4", "1", "201", "3368", "7813", "4920", "738", "32", "3", "420", "9977", "28010", "20946", "4015", "225", "4", "1", "904", "29856", "99610", "86400", "20221", "1561", "37", "1" ]
[ "nonn", "tabf" ]
47
1
5
[ "A000105", "A038548", "A379623", "A379627", "A379628", "A379637", "A380282", "A380283", "A380284", "A380285", "A380286" ]
null
Omar E. Pol, Jan 18 2025
2025-02-14T23:16:45
oeisdata/seq/A380/A380282.seq
89d51865ac2686f8eb4f8e72e1d4a921
A380283
Irregular triangle read by rows: T(n,k) is the number of regions between the free polyominoes, with n cells and width k, and their bounding boxes, n >= 1, 1 <= k <= ceiling(n/2).
[ "0", "0", "0", "1", "0", "5", "0", "7", "14", "0", "19", "52", "0", "34", "173", "48", "0", "74", "503", "384", "0", "134", "1368", "1918", "210", "0", "282", "3642", "7742", "2307", "0", "524", "9552", "26843", "16267", "752", "0", "1064", "24889", "87343", "84789", "11556", "0", "2017", "64200", "272599", "370799", "103336", "2833", "0", "4009", "164826", "838160", "1445347", "678863", "52437" ]
[ "nonn", "tabf" ]
36
1
6
[ "A000004", "A000105", "A110654", "A379623", "A379625", "A379626", "A379627", "A379628", "A379637", "A380283", "A380284", "A380285" ]
null
Omar E. Pol, Jan 18 2025
2025-03-11T16:05:59
oeisdata/seq/A380/A380283.seq
565e3536bdc4701fcbcc6697441fd7af
A380284
Triangle read by rows: T(n,k) is the number of regions between the free polyominoes, with n cells and length k, and their bounding boxes, n >= 1, k >= 1.
[ "0", "0", "0", "0", "1", "0", "0", "0", "5", "0", "0", "0", "16", "5", "0", "0", "0", "14", "48", "9", "0", "0", "0", "12", "145", "89", "9", "0", "0", "0", "3", "354", "453", "138", "13", "0", "0", "0", "0", "608", "1930", "876", "203", "13", "0", "0", "0", "0", "804", "6348", "4930", "1598", "276", "17", "0", "0", "0", "0", "721", "17509", "22575", "10197", "2554", "365", "17", "0", "0", "0", "0", "454", "40067", "91007", "54691", "18984", "3955", "462", "21", "0" ]
[ "nonn", "tabl" ]
37
1
9
[ "A000004", "A000105", "A063524", "A379624", "A379625", "A379627", "A379628", "A379629", "A379638", "A380282", "A380283", "A380284", "A380285" ]
null
Omar E. Pol, Jan 18 2025
2025-02-14T18:06:58
oeisdata/seq/A380/A380284.seq
4869b29bd744e599b63513abddab6152
A380285
Total number of regions between the free polyominoes with n cells and their bounding boxes.
[ "0", "0", "1", "5", "21", "71", "255", "961", "3630", "13973", "53938", "209641", "815784", "3183642", "12439291", "48686549", "190787588", "748645732" ]
[ "nonn", "more" ]
27
1
4
[ "A000105", "A057766", "A379623", "A379624", "A379625", "A379626", "A379627", "A379628", "A379629", "A379637", "A379638", "A380282", "A380283", "A380284", "A380285" ]
null
Omar E. Pol, Jan 18 2025
2025-02-14T10:47:29
oeisdata/seq/A380/A380285.seq
0fc394c41ae759edb94afd9b33cc076c
A380286
Number of distinct values of the number of regions between the free polyominoes with n cells and their bounding boxes.
[ "1", "1", "2", "3", "5", "5", "5", "6", "7", "7", "7", "8", "9", "9", "9", "10", "11", "11", "11", "12", "13", "13", "13", "14", "15", "15", "15", "16", "17", "17", "17", "18", "19", "19", "19", "20", "21", "21", "21", "22", "23", "23", "23", "24", "25", "25", "25", "26", "27", "27", "27", "28", "29", "29", "29", "30", "31", "31", "31", "32", "33", "33", "33", "34", "35", "35", "35", "36", "37", "37", "37" ]
[ "nonn", "easy" ]
41
1
3
[ "A000105", "A379627", "A379628", "A380282", "A380283", "A380284", "A380285", "A380286" ]
null
Omar E. Pol, Jan 24 2025
2025-03-03T10:43:33
oeisdata/seq/A380/A380286.seq
d8fbfd8786e24d930a34e1a92e44eb83
A380287
Sum of the perimeters of the free polyominoes with n cells.
[ "4", "6", "16", "48", "142", "472", "1670", "6364", "24604", "97668", "390070", "1570560", "6334644", "25617062", "103669288", "419930444", "1701635046", "6898183050" ]
[ "nonn", "more" ]
24
1
1
[ "A000105", "A027709", "A057730", "A130622", "A131482", "A135942", "A342243", "A380287", "A380575" ]
null
Omar E. Pol, Jan 25 2025
2025-03-02T23:19:14
oeisdata/seq/A380/A380287.seq
4544dc9fbdd1a5099c73f300366fc963
A380288
a(n) is the number of divisors d of n such that 2^d - 1 is not prime.
[ "1", "1", "1", "2", "1", "2", "1", "3", "2", "2", "2", "4", "1", "2", "2", "4", "1", "4", "1", "4", "2", "3", "2", "6", "2", "2", "3", "4", "2", "5", "1", "5", "3", "2", "2", "7", "2", "2", "2", "6", "2", "5", "2", "5", "4", "3", "2", "8", "2", "4", "2", "4", "2", "6", "3", "6", "2", "3", "2", "9", "1", "2", "4", "6", "2", "6", "2", "4", "3", "5", "2", "10", "2", "3", "4", "4", "3", "5", "2", "8", "4", "3", "2", "9", "2", "3", "3", "7", "1", "9", "2", "5", "2", "3", "2", "10", "2", "4", "5", "7" ]
[ "nonn" ]
11
1
4
[ "A000005", "A000043", "A379590", "A380288" ]
null
Juri-Stepan Gerasimov, Jan 18 2025
2025-02-03T23:05:35
oeisdata/seq/A380/A380288.seq
c0218436df4a66dfa3c7c07c57f868d1
A380289
Unitary Double Zumkeller numbers: numbers whose set of unitary divisors can be partitioned into two disjoint sets with equal sums and equal cardinalities.
[ "30", "42", "66", "78", "102", "114", "138", "150", "174", "186", "210", "222", "246", "258", "282", "294", "318", "330", "354", "366", "390", "402", "420", "426", "438", "462", "474", "498", "510", "534", "546", "570", "582", "606", "618", "630", "642", "654", "660", "678", "690", "714", "726", "750", "762", "770", "780", "786", "798", "822", "834", "858", "870", "894", "906", "910", "930", "942", "966", "978", "990" ]
[ "nonn" ]
7
1
1
[ "A083207", "A290466", "A342398", "A347063", "A380289" ]
null
Ivan N. Ianakiev, Jan 19 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380289.seq
4e0499762106483c4d2839df5a5f8a0d
A380290
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} 1/(1 - x^k)^(k^2) is the g.f. of A023871.
[ "1", "1", "11", "73", "539", "3976", "30107", "229811", "1771803", "13749742", "107305836", "841211966", "6619647419", "52258136399", "413682035393", "3282569032273", "26101575743771", "207930807629248", "1659134361686186", "13258065574274885", "106084302933126364", "849845499077000534", "6815530442695480418", "54712839001004065090" ]
[ "nonn", "easy" ]
18
0
3
[ "A001158", "A023871", "A023873", "A283263", "A380290", "A380291", "A380581", "A380582", "A380583" ]
null
Peter Bala, Jan 19 2025
2025-01-31T09:25:22
oeisdata/seq/A380/A380290.seq
73b716fa4ed2a4c1babb33f6431c91b8
A380291
a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.
[ "1", "1", "9", "64", "425", "3026", "21672", "157095", "1149289", "8464240", "62683134", "466307865", "3482008904", "26083955002", "195932407939", "1475267031164", "11131100990825", "84140066313620", "637054366975740", "4830417047590165", "36674477204674750", "278779034863684377", "2121418004609211361", "16159262748227985561" ]
[ "nonn", "easy" ]
8
0
3
[ "A027998", "A078307", "A380290", "A380291" ]
null
Peter Bala, Jan 19 2025
2025-01-21T09:02:22
oeisdata/seq/A380/A380291.seq
3c63ccf6e955e1c3241c3f95721ccd3c
A380292
Lagged Fibonacci Generator: a(n) = (100003 - 200003*n + 300007*n^3) mod 10^6 for n <= 55, a(n) = (a(n-24) + a(n-55)) mod 10^6.
[ "200007", "100053", "600183", "500439", "600863", "701497", "602383", "103563", "5079", "106973", "209287", "112063", "615343", "519169", "623583", "728627", "634343", "140773", "47959", "155943", "264767", "174473", "685103", "596699", "709303", "822957", "737703", "253583", "170639", "288913", "408447" ]
[ "nonn", "easy" ]
27
1
1
null
null
Do Thanh Nhan, Jan 19 2025
2025-02-02T21:18:34
oeisdata/seq/A380/A380292.seq
189752009c1b37276d3e80819efa9917
A380293
Triangle read by rows: T(n, k) (2 <= k <= n) is the smallest positive integer m >= k such that the digits of m expressed in base n are the same as the first digits in base k.
[ "2", "9", "3", "4", "265", "4", "5", "117032", "2123333591", "5", "7", "44", "291720", "10757067", "6", "57", "449", "16879", "18042", "19032324921", "7", "8", "332930", "64", "2180306", "174631931663663360", "51981761666123", "8", "9", "9", "93", "839", "407917265", "50732175", "197761284636128964", "9", "10", "10", "133302001", "124343", "155133423353", "102616333034", "13663722656306465044", "1066338786883726756382", "10" ]
[ "nonn", "base", "tabl" ]
50
2
1
[ "A379651", "A380293", "A381088" ]
null
Yifan Xie, Jan 19 2025
2025-03-17T07:01:50
oeisdata/seq/A380/A380293.seq
2e5b340aa5a3b1ff5954e17b4fea6fc5
A380294
The Golomb-Rice encoding of n, with M = A070939(A070939(n)).
[ "1", "2", "3", "8", "9", "10", "11", "16", "17", "18", "19", "20", "21", "22", "23", "48", "49", "50", "51", "52", "53", "54", "55", "112", "113", "114", "115", "116", "117", "118", "119", "240", "241", "242", "243", "244", "245", "246", "247", "496", "497", "498", "499", "500", "501", "502", "503", "1008", "1009", "1010", "1011", "1012", "1013", "1014", "1015", "2032" ]
[ "nonn", "base" ]
36
1
2
[ "A000079", "A000225", "A070939", "A380294" ]
null
Darío Clavijo, Jan 19 2025
2025-02-03T21:16:06
oeisdata/seq/A380/A380294.seq
c58aeda6d7ba2a914fb1e0c93fedc905
A380295
Numbers that can be written as a^2 + 3*b^2 for some a, b in A155716 and also as c^2 + 6*d^2 for some c, d in A092572.
[ "1552", "1975", "4753", "5047", "5425", "7825", "8167", "9175", "10096", "11025", "11536", "12007", "16528", "16807", "16993", "18823", "19600", "23863", "24832", "25633", "25767", "26983", "27223", "29200", "30919", "31600", "31927", "32791", "33175", "35329", "35623", "41953", "43063", "43687", "51943", "54775", "57303", "59575", "60016", "61783", "63175", "71575", "72103" ]
[ "nonn" ]
7
1
1
[ "A092572", "A155712", "A155716", "A380295" ]
null
Robert Israel, Jan 19 2025
2025-01-19T12:00:39
oeisdata/seq/A380/A380295.seq
e9ef7e18a6c784adfd69f56bccdee631
A380296
Number of transfer systems for the Dihedral group of order 2p^n, with p an odd prime.
[ "2", "9", "56", "416", "3457", "31063", "295834", "2948082", "30471080", "324580196", "3546142551", "39588702271", "450277384320", "5205233568669", "61037153047708", "724817556942798", "8704492269996637", "105591602247646356", "1292561576650363350", "15952703801125660022", "198359915092340815084" ]
[ "nonn" ]
28
0
1
null
null
Ben Spitz, Jan 22 2025
2025-01-27T15:39:43
oeisdata/seq/A380/A380296.seq
07b55d0cea03c71e3af3c2cf68e08e3a
A380297
Denominators of the determinant of matrix (M(n) - H(n)), where H(n) is the n-th Hilbert matrix and M(n) is an n X n matrix with i,j-th entry i+j-1.
[ "1", "1", "4", "135", "403200", "2778300000", "483930961920000", "7180239749742259200000", "5799315033741817236160512000000", "6429886152366060611794081018183680000000", "466736302504188801174703321606427057848320000000000", "23001739511849592885668155296556060490333421994770432000000000" ]
[ "nonn", "frac" ]
6
0
3
[ "A061913", "A380297" ]
null
Stefano Spezia, Jan 19 2025
2025-01-20T12:51:06
oeisdata/seq/A380/A380297.seq
78b51d9046a4c27b0ed62a1486767510
A380298
Lexicographically earliest sequence of positive integers such that any value in the sequence, say v, appears at most twice, and in case v appears twice, then the decimal expansion of v appears in the concatenation of the values surrounded by the two occurrences of v.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "11", "12", "2", "13", "3", "14", "4", "15", "5", "16", "6", "17", "7", "18", "8", "19", "9", "20", "21", "22", "12", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "13", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "14", "43", "44", "34", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "15" ]
[ "nonn", "base" ]
8
1
2
[ "A380298", "A380300" ]
null
Rémy Sigrist, Jan 19 2025
2025-01-24T11:58:59
oeisdata/seq/A380/A380298.seq
32132d7f92a025e95f1c8671eff814ed
A380299
Sequence of primitive Pythagorean triples beginning with the triple (3,4,5), with each subsequent triple having as its inradius the area of the previous triple, and with the long leg and the hypotenuse of each triple being consecutive natural numbers.
[ "3", "4", "5", "13", "84", "85", "1093", "597324", "597325", "652875133", "213122969644883844", "213122969644883845", "139142687152258502421051253", "9680343693975641657052402486887446135645084826435004", "9680343693975641657052402486887446135645084826435005" ]
[ "nonn", "tabf", "easy" ]
14
1
1
[ "A365577", "A365578", "A365796", "A378395", "A378963", "A379506", "A380299" ]
null
Miguel-Ángel Pérez García-Ortega, Jan 19 2025
2025-02-04T15:12:45
oeisdata/seq/A380/A380299.seq
84c4d8649fbf381d9b9c4a6503366409
A380300
Lexicographically earliest sequence of positive integers such that any value in the sequence, say v, appears at most twice, and in case v appears twice, then v divides the product of the values surrounded by the two occurrences of v.
[ "1", "1", "2", "3", "4", "2", "5", "6", "3", "4", "6", "7", "8", "9", "10", "5", "11", "12", "8", "10", "13", "14", "7", "15", "9", "12", "14", "16", "17", "18", "19", "20", "15", "21", "18", "16", "20", "22", "11", "23", "24", "22", "25", "26", "13", "27", "28", "21", "24", "26", "28", "29", "30", "27", "31", "32", "33", "34", "17", "35", "25", "30", "34", "36", "32", "37", "38", "19", "39", "40" ]
[ "nonn" ]
7
1
3
[ "A380298", "A380300" ]
null
Rémy Sigrist, Jan 19 2025
2025-01-24T11:58:50
oeisdata/seq/A380/A380300.seq
f9e9eb4c2f7f0fb05e3243ed4b0beb35
A380301
Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.
[ "20", "42", "72", "156", "210", "342", "420", "600", "930", "1056", "1482", "1806", "1980", "2352", "2970", "3660", "3906", "4692", "5256", "5550", "6480", "7140", "8190", "9702", "10506", "10920", "11772", "12210", "13110", "16512", "17556", "19182", "19740", "22650", "23256", "25122", "27060", "28392", "30450", "32580", "33306", "37056", "37830", "39402" ]
[ "nonn", "easy" ]
9
0
1
[ "A367335", "A377016", "A378380", "A378965", "A379506", "A380301" ]
null
Miguel-Ángel Pérez García-Ortega, Jan 19 2025
2025-02-03T23:09:28
oeisdata/seq/A380/A380301.seq
02e3c31b66a22636d59d39427723d159
A380302
Area of the unique primitive Pythagorean triple whose inradius is the n-th odd prime and whose short leg is an even number.
[ "60", "210", "504", "1716", "2730", "5814", "7980", "13800", "26970", "32736", "54834", "74046", "85140", "110544", "157410", "215940", "238266", "314364", "373176", "405150", "511920", "592620", "728910", "941094", "1061106", "1124760", "1259604", "1330890", "1481430", "2097024", "2299836", "2627934", "2743860", "3374850", "3511656", "3944154" ]
[ "nonn", "easy" ]
10
0
1
[ "A367335", "A377017", "A378386", "A378966", "A380301", "A380302" ]
null
Miguel-Ángel Pérez García-Ortega, Jan 19 2025
2025-02-03T23:09:39
oeisdata/seq/A380/A380302.seq
b6194ee9904f00c85387c0efc85679e6