sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A380104
Minimal conductors c of complex dihedral normal closures K = L(zeta_3) of pure cubic number fields L = Q(d^1/3), d > 1 cubefree, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=0,1,2,3,...
[ "30", "90", "418", "1626" ]
[ "nonn", "hard", "more" ]
9
1
1
[ "A379524", "A380104" ]
null
Daniel Constantin Mayer, Jan 15 2025
2025-01-25T23:01:19
oeisdata/seq/A380/A380104.seq
8186c90404367db9acfd9babf36ff9bf
A380105
Perimeter-magic triangles of order 3 with magic sum n, bracelet symmetry, and minimum term 1.
[ "1", "3", "5", "12", "11", "20", "24", "33", "33", "52", "51", "68", "70", "90", "93", "117", "115", "143", "147", "175", "174", "210", "210", "245", "248", "285", "287", "330", "328", "375", "378", "423", "423", "477", "478", "530", "532", "588", "590", "652", "649", "713", "717", "780", "781", "852", "852", "923", "925", "1000", "1001", "1080", "1078", "1160", "1165", "1245", "1245", "1335", "1335" ]
[ "nonn" ]
9
9
2
[ "A380105", "A380853" ]
null
R. J. Mathar, Mar 11 2025
2025-03-19T05:53:45
oeisdata/seq/A380/A380105.seq
a151984dd1502279e8619a4d37d3cbf5
A380106
a(1) = 0; for n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and let a(n+1) be the number of runs in the subsequence a(m)..a(n-1). Otherwise, a(n+1) = 0.
[ "0", "0", "1", "0", "2", "0", "2", "2", "1", "5", "0", "4", "0", "2", "6", "0", "3", "0", "2", "5", "10", "0", "4", "11", "0", "3", "9", "0", "3", "3", "1", "21", "0", "4", "10", "13", "0", "4", "4", "1", "8", "0", "4", "4", "1", "4", "2", "25", "0", "6", "32", "0", "3", "21", "20", "0", "4", "11", "31", "0", "4", "4", "1", "17", "0", "4", "4", "1", "4", "2", "21", "15", "0", "7", "0", "2", "6", "25", "28", "0", "5", "56" ]
[ "nonn" ]
17
1
5
[ "A181391", "A380037", "A380106", "A380107" ]
null
Neal Gersh Tolunsky, Jan 12 2025
2025-01-25T09:16:55
oeisdata/seq/A380/A380106.seq
e1ddee9d84588002f8c01b494a77344b
A380107
a(1) = 0; for n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and let a(n+1) be the number of distinct runs in the subsequence a(m)..a(n-1). Otherwise, a(n+1) = 0.
[ "0", "0", "1", "0", "2", "0", "2", "2", "1", "4", "0", "4", "2", "4", "2", "2", "1", "5", "0", "6", "0", "2", "5", "4", "7", "0", "5", "4", "4", "1", "8", "0", "5", "5", "1", "4", "5", "3", "0", "6", "11", "0", "3", "4", "6", "5", "6", "2", "12", "0", "7", "13", "0", "3", "9", "0", "3", "3", "1", "13", "6", "10", "0", "6", "3", "6", "2", "11", "14", "0", "6", "5", "14", "4", "15", "0", "6", "6", "1", "13", "13", "1", "2", "11", "11" ]
[ "nonn" ]
22
1
5
[ "A268755", "A380106", "A380107" ]
null
Neal Gersh Tolunsky, Jan 12 2025
2025-01-24T19:40:59
oeisdata/seq/A380/A380107.seq
542b4ffe8e6d1267b59f11843803dc85
A380108
Number of distinct partitions of length n binary strings into maximal constant substrings up to permutation.
[ "1", "2", "3", "6", "10", "18", "29", "48", "75", "118", "179", "272", "403", "596", "865", "1252", "1786", "2538", "3566", "4990", "6918", "9552", "13086", "17856", "24205", "32684", "43881", "58698", "78125", "103618", "136820", "180064", "236031", "308432", "401585", "521340", "674579", "870446", "1119786", "1436798", "1838405", "2346480", "2987204" ]
[ "nonn" ]
32
0
2
[ "A000712", "A114921", "A342528", "A380108" ]
null
Yaroslav Deryavko, Jan 12 2025
2025-02-02T08:48:53
oeisdata/seq/A380/A380108.seq
ec29c0ae624af8e6036fa2dcc217478b
A380109
Decimal expansion of 223/71.
[ "3", "1", "4", "0", "8", "4", "5", "0", "7", "0", "4", "2", "2", "5", "3", "5", "2", "1", "1", "2", "6", "7", "6", "0", "5", "6", "3", "3", "8", "0", "2", "8", "1", "6", "9", "0", "1", "4", "0", "8", "4", "5", "0", "7", "0", "4", "2", "2", "5", "3", "5", "2", "1", "1", "2", "6", "7", "6", "0", "5", "6", "3", "3", "8", "0", "2", "8", "1", "6", "9", "0", "1", "4", "0", "8", "4", "5", "0", "7", "0", "4", "2", "2", "5", "3", "5", "2", "1", "1", "2", "6", "7", "6", "0", "5", "6", "3", "3", "8", "0" ]
[ "nonn", "cons", "easy" ]
14
1
1
[ "A000796", "A021075", "A068028", "A380109" ]
null
Stefano Spezia, Jan 12 2025
2025-01-27T16:50:28
oeisdata/seq/A380/A380109.seq
c816687e4e20bf5fbf83d6f9d4fd442c
A380110
In the base 4 expansion of n: map 0->0, 1->1, 2->1, 3->2.
[ "0", "1", "1", "2", "4", "5", "5", "6", "4", "5", "5", "6", "8", "9", "9", "10", "16", "17", "17", "18", "20", "21", "21", "22", "20", "21", "21", "22", "24", "25", "25", "26", "16", "17", "17", "18", "20", "21", "21", "22", "20", "21", "21", "22", "24", "25", "25", "26", "32", "33", "33", "34", "36", "37", "37", "38", "36", "37", "37", "38", "40", "41", "41", "42", "64", "65", "65", "66", "68", "69" ]
[ "nonn", "base", "easy" ]
74
0
4
[ "A000079", "A000695", "A063695", "A213173", "A380110" ]
null
Darío Clavijo, Feb 14 2025
2025-02-27T07:57:09
oeisdata/seq/A380/A380110.seq
a26e5e30ef4570d125fc449f169fa9f1
A380111
a(n) is the least number whose fourth power is an n-digit fourth power which has the maximum sum of digits (A373914(n)).
[ "1", "3", "4", "8", "16", "26", "47", "74", "118", "308", "518", "659", "1768", "2868", "5396", "8256", "14482", "28871", "55368", "97063", "147768", "228558", "562341", "835718", "1727156", "2878406", "5458722", "8175708", "16234882", "27831542", "53129506", "98665756", "166025442", "315265896", "510466356", "904245732", "1188893858", "2298249374", "5106312756" ]
[ "nonn", "base" ]
15
1
2
[ "A373914", "A379650", "A379869", "A380111", "A380567", "A380797" ]
null
Zhining Yang, Jan 12 2025
2025-03-29T02:29:23
oeisdata/seq/A380/A380111.seq
61f2552604f825e0518044052062decd
A380112
Lexicographically earliest infinite sequence of positive integers whose XOR difference triangle contains only distinct values.
[ "1", "2", "4", "8", "16", "32", "9", "18", "64", "128", "39", "75", "156", "256", "76", "137", "269", "407", "512", "180", "78", "606", "432", "1024", "63", "771", "1037", "604", "789", "1144", "2048", "31", "564", "1661", "772", "2176", "1286", "2044", "3105", "1638", "377", "2606", "4096", "662", "1857", "4124", "536", "1463", "4188", "2242", "6453", "5302" ]
[ "nonn", "base" ]
9
1
2
[ "A099884", "A338047", "A346298", "A378141", "A380112", "A380148" ]
null
Rémy Sigrist, Jan 12 2025
2025-01-17T09:12:13
oeisdata/seq/A380/A380112.seq
ffc6e708eed052e9a3f81b9b5834aec8
A380113
Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).
[ "1", "1", "1", "3", "4", "1", "10", "15", "6", "1", "35", "56", "28", "8", "1", "126", "210", "120", "45", "10", "1", "462", "792", "495", "220", "66", "12", "1", "1716", "3003", "2002", "1001", "364", "91", "14", "1", "6435", "11440", "8008", "4368", "1820", "560", "120", "16", "1", "24310", "43758", "31824", "18564", "8568", "3060", "816", "153", "18", "1" ]
[ "nonn", "tabl" ]
32
0
4
[ "A000007", "A002674", "A005810", "A008311", "A081294", "A088218", "A094527", "A110556", "A370707", "A380113" ]
null
Peter Luschny, Jan 12 2025
2025-04-25T23:39:51
oeisdata/seq/A380/A380113.seq
525873214b1b81c10c3ea427194c92c8
A380114
Triangle read by rows: The convolution triangle of 2^n, where the convolution triangle of a sequence is defined in A357368.
[ "1", "0", "2", "0", "4", "4", "0", "8", "16", "8", "0", "16", "48", "48", "16", "0", "32", "128", "192", "128", "32", "0", "64", "320", "640", "640", "320", "64", "0", "128", "768", "1920", "2560", "1920", "768", "128", "0", "256", "1792", "5376", "8960", "8960", "5376", "1792", "256", "0", "512", "4096", "14336", "28672", "35840", "28672", "14336", "4096", "512" ]
[ "nonn", "tabl" ]
16
0
3
[ "A038207", "A081294", "A097805", "A357368", "A380114", "A380115" ]
null
Peter Luschny, Feb 03 2025
2025-02-05T02:17:54
oeisdata/seq/A380/A380114.seq
39c86b2ef085ef1c866ee0adc275e6c9
A380115
a(n) = max{A380114(n, k) : k = 0..n}.
[ "1", "2", "4", "16", "48", "192", "640", "2560", "8960", "35840", "129024", "516096", "1892352", "7569408", "28114944", "112459776", "421724160", "1686896640", "6372720640", "25490882560", "96865353728", "387461414912", "1479398129664", "5917592518656", "22684104654848", "90736418619392", "348986225459200", "1395944901836800" ]
[ "nonn" ]
5
0
2
[ "A109388", "A357368", "A380114", "A380115" ]
null
Peter Luschny, Feb 03 2025
2025-02-03T19:57:15
oeisdata/seq/A380/A380115.seq
3e974562686a12539b6df83aa19a3323
A380116
a(n) = Sum_{k=0..n} A011971(n, k)*k. The Aitken-Bell triangle considered as a linear transform applied to the nonnegative numbers.
[ "0", "2", "13", "72", "393", "2202", "12850", "78488", "502327", "3366648", "23597297", "172691956", "1317276400", "10455135350", "86200363093", "737106122656", "6527505175609", "59780020466870", "565446090755746", "5517274559079820", "55470610206913511", "574043981110581992", "6108574536700411929", "66779470651426032840" ]
[ "nonn" ]
5
0
2
[ "A011971", "A278677", "A380116" ]
null
Peter Luschny, Feb 01 2025
2025-02-02T10:08:51
oeisdata/seq/A380/A380116.seq
37723d449f2c43ffb35959ce64779d9e
A380117
a(n) = n - A380118(n).
[ "0", "1", "2", "1", "2", "2", "3", "2", "0", "0", "1", "1", "2", "2", "2", "1", "2", "2", "3", "3", "3", "3", "4", "4", "0", "0", "-2", "-2", "-1", "-1", "0", "-1", "-1", "-1", "-1", "-1", "0", "0", "0", "0", "1", "1", "2", "2", "2", "2", "3", "3", "-3", "-3", "-3", "-3", "-2", "-2", "-2", "-2", "-2", "-2", "-1", "-1", "0", "0", "0", "-1", "-1", "-1", "0", "0", "0", "0", "1", "1", "2", "2", "2", "2", "2", "2", "3" ]
[ "sign" ]
10
1
3
[ "A182936", "A380117", "A380118" ]
null
Peter Luschny, Jan 30 2025
2025-01-31T07:19:53
oeisdata/seq/A380/A380117.seq
99df8760e90fb239e92e90a64ffb4be6
A380118
a(n) = Sum_{k=1..n} (A014963(k) - A061397(k)).
[ "1", "1", "1", "3", "3", "4", "4", "6", "9", "10", "10", "11", "11", "12", "13", "15", "15", "16", "16", "17", "18", "19", "19", "20", "25", "26", "29", "30", "30", "31", "31", "33", "34", "35", "36", "37", "37", "38", "39", "40", "40", "41", "41", "42", "43", "44", "44", "45", "52", "53", "54", "55", "55", "56", "57", "58", "59", "60", "60", "61", "61", "62", "63", "65", "66", "67", "67", "68", "69", "70" ]
[ "nonn" ]
15
1
4
[ "A010051", "A014963", "A034387", "A048671", "A061397", "A072107", "A182936", "A380117", "A380118" ]
null
Peter Luschny, Jan 30 2025
2025-01-31T07:07:33
oeisdata/seq/A380/A380118.seq
ef3aa6bde4aac5b576e464c0e69634e3
A380119
Triangle read by rows: T(n, k) is the number of walks of length 2*n on the N X N grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the common value of the x- and the y-coordinate of the endpoint of the walk.
[ "1", "2", "2", "10", "16", "6", "70", "140", "90", "20", "588", "1344", "1134", "448", "70", "5544", "13860", "13860", "7392", "2100", "252", "56628", "151008", "169884", "109824", "42900", "9504", "924", "613470", "1717716", "2108106", "1561560", "750750", "231660", "42042", "3432", "6952660", "20225920", "26546520", "21781760", "12155000", "4667520", "1191190", "183040", "12870" ]
[ "nonn", "tabl", "walk" ]
14
0
2
[ "A000984", "A005568", "A151403", "A253487", "A380119", "A380120" ]
null
Peter Luschny, Jan 19 2025
2025-01-21T13:33:50
oeisdata/seq/A380/A380119.seq
b7bdcdd7bf1a3f775c117baace033032
A380120
Triangle read by rows: T(n, k) is the number of walks of length n on the Z X Z grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the absolute value of the x-coordinate of the endpoint of the walk.
[ "1", "2", "2", "6", "8", "2", "20", "30", "12", "2", "70", "112", "56", "16", "2", "252", "420", "240", "90", "20", "2", "924", "1584", "990", "440", "132", "24", "2", "3432", "6006", "4004", "2002", "728", "182", "28", "2", "12870", "22880", "16016", "8736", "3640", "1120", "240", "32", "2", "48620", "87516", "63648", "37128", "17136", "6120", "1632", "306", "36", "2" ]
[ "nonn", "tabl", "walk" ]
21
0
2
[ "A000302", "A000984", "A006659", "A040000", "A052174", "A068551", "A162551", "A378067", "A379822", "A380119", "A380120" ]
null
Peter Luschny, Jan 17 2025
2025-05-27T07:28:38
oeisdata/seq/A380/A380120.seq
dc74505b041031bb37fc3d31e513c1b3
A380121
a(n) = C(n, Q(n+3, 4)-1)*C(n, Q(n+1, 4)) + C(n, Q(3*n+1, 4))*C(n, Q(3*n+3, 4)) where C = binomial and Q(x, y) = floor(x/y).
[ "1", "2", "3", "6", "20", "50", "126", "294", "1008", "2592", "7425", "18150", "62920", "163592", "496860", "1242150", "4331600", "11328800", "35581680", "90140256", "315490896", "828163602", "2658338298", "6793531206", "23836951600", "62728820000", "204451146900", "525731520600", "1848025951200", "4872068416800", "16059866355000" ]
[ "nonn" ]
8
0
2
[ "A378067", "A380121" ]
null
Peter Luschny, Jan 17 2025
2025-01-19T07:38:45
oeisdata/seq/A380/A380121.seq
093f7ec0553ee0d27757873abcfee596
A380122
a(n) is the number of integers m (possibly negative) such that the nonzero digits in the nonadjacent form for m appear in the nonadjacent form for n.
[ "1", "2", "2", "4", "2", "4", "4", "4", "2", "4", "4", "8", "4", "8", "4", "4", "2", "4", "4", "8", "4", "8", "8", "8", "4", "8", "8", "8", "4", "8", "4", "4", "2", "4", "4", "8", "4", "8", "8", "8", "4", "8", "8", "16", "8", "16", "8", "8", "4", "8", "8", "16", "8", "16", "8", "8", "4", "8", "8", "8", "4", "8", "4", "4", "2", "4", "4", "8", "4", "8", "8", "8", "4", "8", "8", "16", "8", "16", "8", "8", "4", "8", "8", "16", "8" ]
[ "nonn", "base" ]
8
0
2
[ "A000120", "A001316", "A184617", "A380122", "A380123" ]
null
Rémy Sigrist, Jan 12 2025
2025-01-14T09:06:38
oeisdata/seq/A380/A380122.seq
3901f03802c0ab4e6054fa4067f86bd5
A380123
Irregular table T(n, k), n >= 0, k = 1..A380122(n), read by rows; the n-th row lists the integers m (possibly negative) such that the nonzero digits in the nonadjacent form for m appear in the nonadjacent form for n.
[ "0", "0", "1", "0", "2", "-1", "0", "3", "4", "0", "4", "0", "1", "4", "5", "-2", "0", "6", "8", "-1", "0", "7", "8", "0", "8", "0", "1", "8", "9", "0", "2", "8", "10", "-5", "-4", "-1", "0", "11", "12", "15", "16", "-4", "0", "12", "16", "-4", "-3", "0", "1", "12", "13", "16", "17", "-2", "0", "14", "16", "-1", "0", "15", "16", "0", "16", "0", "1", "16", "17", "0", "2", "16", "18", "-1", "0", "3", "4", "15", "16", "19", "20" ]
[ "sign", "base", "tabf" ]
10
0
5
[ "A184616", "A295989", "A380122", "A380123" ]
null
Rémy Sigrist, Jan 12 2025
2025-01-14T09:06:43
oeisdata/seq/A380/A380123.seq
2d8896b429593454d003970f600358a6
A380124
Total number of ways of partitioning n and any natural number less than n into the same number of parts.
[ "0", "1", "3", "8", "17", "40", "78", "162", "308", "591", "1068", "1975", "3445", "6067", "10366", "17683", "29375", "48886", "79487", "129220", "206457", "328782", "516286", "808903", "1251135", "1929061", "2944622", "4478131", "6749574", "10139972", "15110286", "22440924", "33099258", "48645223", "71056244", "103449482", "149757609" ]
[ "nonn" ]
18
1
3
[ "A008284", "A072233", "A380124", "A380125", "A380126" ]
null
Aidan Markey, Jan 12 2025
2025-02-20T06:33:28
oeisdata/seq/A380/A380124.seq
2ee8cd4d352db7799eeaf28593cb3adf
A380125
Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, treating partitions of n and itself in a different order as distinct.
[ "1", "3", "6", "15", "28", "65", "119", "244", "450", "851", "1504", "2760", "4732", "8266", "13958", "23642", "38886", "64339", "103755", "167785", "266295", "422014", "658875", "1027992", "1581983", "2429719", "3692762", "5595987", "8401561", "12581456", "18682756", "27664577", "40675705", "59616335", "86831979", "126099127", "182065162" ]
[ "nonn" ]
21
1
2
[ "A008284", "A072233", "A238312", "A380124", "A380125", "A380126" ]
null
Aidan Markey, Jan 12 2025
2025-02-20T06:33:21
oeisdata/seq/A380/A380125.seq
f3e3e3f2237d1769a600fa1f18f8931f
A380126
Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, not treating partitions of n and itself in a different order as distinct.
[ "1", "3", "6", "14", "26", "58", "106", "214", "394", "742", "1314", "2406", "4139", "7234", "12250", "20778", "34279", "56805", "91866", "148816", "236772", "375899", "588208", "919235", "1417538", "2180608", "3320197", "5038918", "7577850", "11363516", "16899942", "25056925", "36892553", "54136934", "78951553", "114783293", "165922204" ]
[ "nonn" ]
19
1
2
[ "A008284", "A072233", "A380124", "A380125", "A380126" ]
null
Aidan Markey, Jan 12 2025
2025-02-20T06:33:03
oeisdata/seq/A380/A380126.seq
d221e15efb81b4e21dfe3266b857e30e
A380127
Number of connected unlabeled graphs with n nodes and minimum vertex degree >= 4.
[ "0", "0", "0", "0", "1", "4", "29", "424", "15471", "1249972", "187095836", "48211095992", "21124789189703", "15899588477573380", "20900616544566305160", "48843531771541430977365", "206305644374013971584957120", "1597725697294349735784472597650", "22957145992821363656862872542094876", "617791721556546579087246090934406095676" ]
[ "nonn" ]
18
1
6
[ "A007112", "A324227", "A380127" ]
null
Eric W. Weisstein, Mar 11 2025
2025-05-25T20:42:48
oeisdata/seq/A380/A380127.seq
aeae487d92fc52be597e8e2d8caac313
A380128
Triangle read by rows: Riordan array (1/(C(x)*sqrt(1-4*x)), x/C(x)) where C(x) is g.f. of A000108.
[ "1", "1", "1", "3", "0", "1", "10", "1", "-1", "1", "35", "4", "0", "-2", "1", "126", "15", "1", "0", "-3", "1", "462", "56", "5", "0", "1", "-4", "1", "1716", "210", "21", "1", "0", "3", "-5", "1", "6435", "792", "84", "6", "0", "0", "6", "-6", "1", "24310", "3003", "330", "28", "1", "0", "-1", "10", "-7", "1", "92378", "11440", "1287", "120", "7", "0", "0", "-4", "15", "-8", "1", "352716", "43758", "5005", "495", "36", "1", "0", "0", "-10", "21", "-9", "1" ]
[ "sign", "easy", "tabl" ]
6
0
4
[ "A000007", "A000108", "A001764", "A001791", "A088218", "A380128" ]
null
Werner Schulte, Jan 12 2025
2025-01-25T12:57:24
oeisdata/seq/A380/A380128.seq
0c2250ab7f062a35a83fc9182455b275
A380129
Strong Birthday Problem: Number of people needed so that probability of everyone sharing a birthday out of n possible days is at least 1/2.
[ "2", "4", "8", "12", "16", "21", "26", "31", "36", "41", "47", "52", "58", "64", "69", "75", "81", "87", "93", "100", "106", "112", "119", "125", "131", "138", "144", "151", "158", "164", "171", "178", "184", "191", "198", "205", "212", "219", "226", "233", "240", "247", "254", "261", "268", "275", "283", "290", "297", "304", "312", "319", "326", "334", "341", "348", "356" ]
[ "nonn" ]
42
1
1
[ "A014088", "A033810", "A380129" ]
null
Mike Sheppard, Jan 13 2025
2025-01-24T16:28:57
oeisdata/seq/A380/A380129.seq
a159dc15ecc87210829bc027596db85e
A380130
For n >= 2, let b(n) = 1 if A379784(n) is 3 mod 4, 0 if A379784(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
[ "1", "6", "13", "34", "87", "229", "581", "1591", "4268", "11637", "31944", "88526", "246105", "688982", "1936129", "5463517", "15470445" ]
[ "nonn", "more" ]
19
1
2
[ "A091237", "A379652", "A379783", "A379784", "A379785", "A380130" ]
null
Robert C. Lyons, Jan 12 2025
2025-01-13T11:32:05
oeisdata/seq/A380/A380130.seq
5653180543acf24b83a63c6ee5d1bd00
A380131
Numbers k such that (45^k + 2^k)/47 is prime.
[ "17", "281", "463", "5393", "12809", "19031", "53173" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A380131" ]
null
Robert Price, Jan 12 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380131.seq
b5f27d26a5deb54fc3305f788712ee94
A380132
Numbers k such that (47^k + 2^k)/49 is prime.
[ "11", "13", "103", "15383" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A380132" ]
null
Robert Price, Jan 12 2025
2025-02-16T08:34:07
oeisdata/seq/A380/A380132.seq
cf4f9e1d86475eb73773593e9840ff63
A380133
Expansion of e.g.f. sqrt(1 + 2*x*exp(x)).
[ "1", "1", "1", "0", "1", "0", "-9", "70", "-335", "504", "11935", "-182094", "1525833", "-4911764", "-99495473", "2430329070", "-29988416159", "158542630224", "2868272912511", "-102775471991126", "1714422613948345", "-13166449628575404", "-209400601689898289", "10598981162761786950", "-227206614609529433199" ]
[ "sign" ]
7
0
7
[ "A028310", "A380015", "A380050", "A380093", "A380133", "A380134" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-13T02:27:18
oeisdata/seq/A380/A380133.seq
a3aa1597bfeff1fce5d13bbe64b1d0d4
A380134
Expansion of e.g.f. (1 + 3*x*exp(x))^(1/3).
[ "1", "1", "0", "1", "-4", "25", "-194", "1813", "-19816", "248113", "-3502630", "55052701", "-953576876", "18048491305", "-370623627178", "8207063150245", "-194950421191504", "4944881412682081", "-133394451535683278", "3813510163227155245", "-115170227064335439700", "3663942710200202043481" ]
[ "sign" ]
8
0
5
[ "A028310", "A380017", "A380051", "A380094", "A380133", "A380134" ]
null
Seiichi Manyama, Jan 12 2025
2025-01-13T02:27:33
oeisdata/seq/A380/A380134.seq
3e2c7452969cf98bb2315a7567dfc9e7
A380135
High water marks for number of primes between prime(n)^2 and prime(n+1)^2.
[ "2", "5", "6", "15", "22", "27", "47", "57", "80", "90", "106", "114", "163", "354", "356", "463", "479", "512", "735", "784", "934", "995", "1513", "1652", "1772", "1808", "2648", "2821", "3551", "6357", "6815", "8280", "10424", "11328", "12113", "15399", "17121", "18692", "20769", "22358", "23404", "24561", "26123", "26764", "27871", "31916", "37558" ]
[ "nonn" ]
10
1
1
[ "A050216", "A380135", "A380136" ]
null
Eric W. Weisstein, Jan 13 2025
2025-01-13T09:26:46
oeisdata/seq/A380/A380135.seq
29385988c8198567c1bd3d25446e3630
A380136
Positions of high water marks for the numbers of primes between prime(n)^2 and prime(n+1)^2.
[ "1", "2", "3", "4", "6", "8", "9", "11", "15", "18", "21", "23", "24", "30", "42", "46", "47", "61", "62", "66", "91", "97", "99", "137", "146", "150", "154", "180", "189", "217", "327", "367", "429", "462", "574", "590", "650", "708", "738", "842", "890", "928", "985", "1006", "1051", "1059", "1183", "1409", "1457", "1532", "1663", "1831", "2191", "2225", "2810" ]
[ "nonn" ]
13
1
2
[ "A050216", "A380135", "A380136" ]
null
Eric W. Weisstein, Jan 13 2025
2025-01-27T04:42:01
oeisdata/seq/A380/A380136.seq
be15361894e9e905a0b1ecb2cbb3cbc4
A380137
The conjectured maximum multiplicative persistence for bases b >= 2.
[ "1", "3", "3", "6", "5", "8", "6", "7", "11", "13", "7", "15", "13", "11", "8", "17", "10", "18", "14", "14", "14", "19", "9" ]
[ "nonn", "base", "more" ]
10
2
2
[ "A007954", "A031346", "A031347", "A380137" ]
null
Ctibor O. Zizka, Jan 13 2025
2025-01-15T08:44:00
oeisdata/seq/A380/A380137.seq
2acd22a64a46d57482aba6c8be7a0ec5
A380138
a(n) is the largest value in the '3x+1' trajectory of starting points producing a record number of steps.
[ "1", "2", "16", "16", "52", "52", "52", "88", "9232", "9232", "9232", "9232", "9232", "9232", "9232", "9232", "9232", "9232", "250504", "190996", "190996", "250504", "250504", "250504", "481624", "975400", "975400", "497176", "11003416", "11003416", "106358020", "18976192", "41163712", "106358020", "21933016", "104674192", "593279152" ]
[ "nonn" ]
13
1
2
[ "A006877", "A006878", "A006884", "A006885", "A025586", "A380138" ]
null
Hugo Pfoertner, Jan 13 2025
2025-01-13T11:37:59
oeisdata/seq/A380/A380138.seq
da4bad614faea4f55d0c1d3dae6784e1
A380139
Prime gaps between 10^m and 10^(m+1), m>=0, sorted first by falling number of occurrences and then by rising gap size, written as an irregular triangle.
[ "2", "1", "4", "4", "6", "2", "8", "6", "4", "2", "10", "8", "12", "14", "18", "20", "6", "2", "4", "10", "12", "8", "14", "18", "16", "22", "24", "20", "30", "28", "26", "34", "32", "36", "6", "2", "4", "12", "10", "8", "18", "14", "16", "20", "22", "24", "30", "28", "26", "36", "32", "34", "40", "38", "42", "52", "44", "50", "46", "54", "58", "48", "56", "60", "62", "64", "72" ]
[ "nonn", "tabf" ]
16
1
1
[ "A001223", "A005597", "A028334", "A038460", "A173557", "A305444", "A354604", "A380139" ]
null
Hugo Pfoertner based on an idea by Richard Stephen Donovan, Jan 23 2025
2025-01-26T09:08:38
oeisdata/seq/A380/A380139.seq
88cf750a493d0fcde3cb4f02464d8c9a
A380140
Numbers of the form 4*j*k - j - k for j, k >= 2.
[ "12", "19", "26", "30", "33", "40", "41", "47", "52", "54", "56", "61", "63", "68", "71", "74", "75", "82", "85", "86", "89", "90", "96", "101", "103", "107", "109", "110", "116", "117", "118", "124", "128", "129", "131", "132", "138", "140", "145", "146", "147", "151", "152", "155", "159", "161", "162", "166", "173", "176", "178", "180", "182", "184", "185", "187", "191", "194", "195", "201" ]
[ "nonn" ]
6
1
1
[ "A054520", "A380140", "A380509" ]
null
Hugo Pfoertner, Jan 26 2025
2025-01-26T09:08:23
oeisdata/seq/A380/A380140.seq
d96a23591533e6eb97d98df7396a7f10
A380141
Decimal expansion of the real part of (-1)^sqrt(i), negated, where i is the imaginary unit.
[ "0", "6", "5", "6", "8", "9", "7", "6", "4", "7", "3", "5", "1", "5", "3", "5", "3", "2", "0", "9", "0", "2", "6", "6", "8", "7", "9", "9", "6", "7", "6", "6", "1", "0", "1", "0", "3", "3", "6", "5", "0", "8", "9", "1", "5", "3", "4", "7", "5", "0", "3", "9", "9", "9", "6", "8", "5", "7", "0", "0", "4", "6", "9", "9", "0", "6", "3", "7", "1", "3", "2", "9", "1", "5", "2", "3", "9", "9", "2", "2", "9", "0", "3", "5", "6", "0", "4", "6" ]
[ "nonn", "cons", "easy" ]
10
0
2
[ "A247719", "A380141", "A380142" ]
null
Hugo Pfoertner, Jan 23 2025
2025-02-05T22:20:43
oeisdata/seq/A380/A380141.seq
01d8762b8a6ff6f2019e52f727f8355a
A380142
Decimal expansion of the imaginary part of (-1)^sqrt(i), where i is the imaginary unit.
[ "0", "8", "6", "2", "9", "5", "0", "4", "8", "1", "8", "0", "2", "3", "6", "2", "8", "1", "1", "2", "8", "5", "3", "4", "7", "5", "1", "8", "3", "7", "3", "2", "6", "5", "4", "0", "9", "6", "4", "9", "3", "8", "9", "3", "6", "6", "2", "6", "8", "0", "2", "5", "2", "5", "3", "0", "4", "9", "6", "6", "8", "7", "6", "1", "5", "4", "5", "5", "9", "3", "8", "8", "1", "4", "7", "4", "4", "1", "7", "1", "2", "4", "6", "0", "4", "7", "8", "4", "6" ]
[ "nonn", "cons", "easy" ]
11
0
2
[ "A247719", "A380141", "A380142" ]
null
Hugo Pfoertner, Jan 23 2025
2025-02-26T09:42:50
oeisdata/seq/A380/A380142.seq
0b4232c5de7c19a6af7445cef26941b8
A380143
Sum of divisors d | k such that d and k/d share factors but both have a factor that does not divide the other, where k is in A375055.
[ "16", "20", "21", "48", "27", "28", "24", "25", "32", "60", "55", "39", "40", "32", "44", "45", "112", "65", "36", "84", "84", "52", "72", "35", "91", "57", "36", "96", "36", "140", "44", "63", "64", "45", "123", "40", "68", "108", "48", "85", "120", "75", "172", "96", "80", "136", "132", "56", "95", "48", "240", "49", "88", "48", "141", "92", "108", "93", "50", "196", "52", "172" ]
[ "nonn" ]
23
1
1
[ "A007947", "A375055", "A379752", "A380143" ]
null
Michael De Vlieger, Jan 18 2025
2025-01-19T09:29:41
oeisdata/seq/A380/A380143.seq
4e5fcdbc9377b7caae675b5b5d711636
A380144
Sum of divisors d | k such that rad(d) = rad(k/d) where k is in A001694 and rad = A007947.
[ "1", "2", "6", "3", "14", "5", "12", "30", "6", "7", "62", "18", "39", "10", "24", "11", "30", "126", "42", "13", "14", "30", "72", "15", "120", "254", "90", "17", "78", "56", "19", "42", "70", "168", "21", "22", "60", "510", "23", "186", "155", "234", "60", "26", "363", "98", "150", "29", "360", "30", "31", "66", "240", "180", "1022", "33", "90", "378", "34", "35", "546", "84", "132" ]
[ "nonn" ]
24
1
2
[ "A001221", "A001694", "A007947", "A062503", "A151821", "A320966", "A364988", "A380144" ]
null
Michael De Vlieger, Jan 15 2025
2025-01-19T11:03:39
oeisdata/seq/A380/A380144.seq
a63cd2b141517a8d263f0a3ac522a831
A380145
The binary expansion of a(n) is an initial 1 bit then tracks where the swaps occur in the exchange sort algorithm sorting the binary expansion of n into decreasing order.
[ "1", "2", "2", "8", "9", "8", "8", "64", "66", "68", "69", "64", "65", "64", "64", "1024", "1032", "1040", "1042", "1056", "1058", "1060", "1061", "1024", "1026", "1028", "1029", "1024", "1025", "1024", "1024", "32768", "32832", "32896", "32904", "33024", "33032", "33040", "33042", "33280", "33288", "33296", "33298", "33312", "33314", "33316", "33317" ]
[ "nonn", "base" ]
30
1
2
[ "A000079", "A000217", "A006125", "A023758", "A070939", "A380145" ]
null
Darío Clavijo, Jan 13 2025
2025-02-03T12:50:54
oeisdata/seq/A380/A380145.seq
d215d659eb43b9cc70a9b2587339b848
A380146
Numbers that set records in A113901.
[ "1", "2", "4", "6", "12", "24", "30", "48", "60", "120", "210", "240", "420", "480", "840", "1680", "3360", "6720", "13440", "26880", "36960", "53760", "73920", "107520", "147840", "215040", "295680", "591360", "960960", "1182720", "1921920", "2365440", "3843840", "4730880", "7687680", "9461760", "15375360", "30750720", "61501440", "123002880" ]
[ "nonn" ]
8
1
2
[ "A000079", "A001221", "A001222", "A002110", "A025487", "A036041", "A061394", "A113901", "A378630", "A380146" ]
null
Hal M. Switkay, Jan 13 2025
2025-01-23T22:02:01
oeisdata/seq/A380/A380146.seq
092be810bd1e1c49875aee17f490ef8a
A380147
Number of isoclinism classes of groups of order n.
[ "1", "1", "1", "1", "1", "2", "1", "2", "1", "2", "1", "3", "1", "2", "1", "3", "1", "4", "1", "3", "2", "2", "1", "7", "1", "2", "2", "2", "1", "4", "1", "8", "1", "2", "1", "7", "1", "2", "2", "5", "1", "6", "1", "2", "1", "2", "1", "14", "1", "4", "1", "3", "1", "11", "2", "5", "2", "2", "1", "9", "1", "2", "2", "27", "1", "4", "1", "3", "1", "4", "1", "20", "1", "2", "2", "2", "1", "6", "1", "11", "3", "2", "1", "9", "1", "2", "1", "4", "1", "8" ]
[ "nonn" ]
28
1
6
[ "A051532", "A241276", "A318895", "A380147" ]
null
Miles Englezou, Jan 13 2025
2025-01-14T09:54:53
oeisdata/seq/A380/A380147.seq
0dcab9de6dd7257054e598c56a6bca8a
A380148
Triangle T(n, k), n > 0, k = 1..n, read by rows; T(n, 1) = A380112(n), and for any k in 2..n, T(n, k) = T(n, k-1) XOR T(n-1, k-1) (where XOR denotes the bitwise XOR operator).
[ "1", "2", "3", "4", "6", "5", "8", "12", "10", "15", "16", "24", "20", "30", "17", "32", "48", "40", "60", "34", "51", "9", "41", "25", "49", "13", "47", "28", "18", "27", "50", "43", "26", "23", "56", "36", "64", "82", "73", "123", "80", "74", "93", "101", "65", "128", "192", "146", "219", "160", "240", "186", "231", "130", "195", "39", "167", "103", "245", "46", "142", "126", "196", "35", "161", "98" ]
[ "nonn", "base", "tabl" ]
9
1
2
[ "A099884", "A380112", "A380148" ]
null
Rémy Sigrist, Jan 13 2025
2025-01-17T09:29:05
oeisdata/seq/A380/A380148.seq
556f48e66c686b1085298778c206ea0f
A380149
Characteristic polynomial of the tesseract graph: a(n) = n^6*(n^2-16)*(n^2-4)^4.
[ "0", "-1215", "0", "-3189375", "0", "27348890625", "978447237120", "15920336210625", "163074539520000", "1214314872035265", "7134511104000000", "34856907746165505", "146828238520320000", "547377978676010625", "1841813423998894080", "5678883183381890625", "16238028554439229440", "43474602051830210625", "109846357522513920000" ]
[ "sign", "easy" ]
43
0
2
[ "A001014", "A028347", "A028566", "A380149" ]
null
Darío Clavijo, Jan 13 2025
2025-01-21T08:49:27
oeisdata/seq/A380/A380149.seq
f3b0bd1f168bfc3e88a0740310f19bfa
A380150
a(n) is the least k such that there exists a number 1 <= m <= k-1 and exactly n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.
[ "2", "35", "385", "1872", "5670", "30030" ]
[ "nonn", "hard", "more" ]
18
0
1
[ "A094191", "A355812", "A379983", "A380150" ]
null
Jinyuan Wang and Jianing Song, Jan 13 2025
2025-01-21T03:26:50
oeisdata/seq/A380/A380150.seq
ca522b47db86f14c4112bc05d8352b73
A380151
Classification sequence for the Stolarsky array A035506.
[ "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "1" ]
[ "nonn" ]
37
1
null
[ "A007064", "A035487", "A035506", "A380151", "A380804" ]
null
Jeffrey Shallit, Feb 02 2025
2025-02-04T06:47:40
oeisdata/seq/A380/A380151.seq
bd910c3c7d82efb1f1f79558e05256c0
A380152
Decimal expansion of 864/275.
[ "3", "1", "4", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1", "8", "1" ]
[ "nonn", "cons", "easy" ]
4
1
1
[ "A000796", "A068028", "A380109", "A380152" ]
null
Stefano Spezia, Jan 13 2025
2025-01-13T15:39:34
oeisdata/seq/A380/A380152.seq
fe4d8df45bf70e899e56bbfd5befc001
A380153
Numbers m for which the sum of all values of k satisfying the equation: (m - floor((m - k)/k)) mod k = 0 (1 <= k <= m) equals 2*m.
[ "39", "4395", "29055", "57931", "81115", "152571", "164955", "410731", "664747", "877435", "2080875", "2521087", "2539515" ]
[ "nonn", "more" ]
12
1
1
[ "A048158", "A375595", "A378275", "A380153" ]
null
Lechoslaw Ratajczak, Jan 13 2025
2025-02-05T22:18:42
oeisdata/seq/A380/A380153.seq
6b56720da14beac72af48c72c234ad82
A380154
Golden numbers, for the years of the Metonic cycle. Assigned to the full moon days of the year with the standard pattern of a Runic calendar. Days without assignment are represented by zero.
[ "19", "8", "0", "16", "5", "0", "13", "2", "0", "10", "0", "18", "7", "0", "15", "4", "0", "12", "1", "0", "9", "0", "17", "6", "0", "14", "3", "0", "11", "19", "0", "8", "0", "16", "5", "0", "13", "2", "0", "10", "0", "18", "7", "0", "15", "4", "0", "21", "1", "0", "9", "0", "17", "6", "0", "14", "3", "0", "11", "19", "8", "0", "16", "5", "0", "13", "2", "0", "10", "0", "18", "7", "0", "15", "4", "0", "12", "1", "0", "9", "0", "17", "6", "0", "14", "3", "0", "11", "19", "0", "8", "0", "16", "5", "0", "13" ]
[ "nonn", "fini" ]
48
1
1
[ "A057349", "A098476", "A131773", "A348924", "A349710", "A380154" ]
null
Thomas Scheuerle, Jan 13 2025
2025-01-27T21:15:16
oeisdata/seq/A380/A380154.seq
1dd1e08dbfe8f2cd63c478d4be7ddc29
A380155
Expansion of e.g.f. 1/sqrt(1 - 2*x*exp(2*x)).
[ "1", "1", "7", "63", "785", "12545", "244407", "5619775", "148977313", "4473497601", "150078670055", "5563415292479", "225832882678449", "9962766560986369", "474619650950131351", "24283168467229957695", "1327993894505461755713", "77305844496338607597569", "4772660185400974888323015" ]
[ "nonn" ]
10
0
3
[ "A006153", "A380014", "A380015", "A380155", "A380156" ]
null
Seiichi Manyama, Jan 13 2025
2025-01-23T05:22:18
oeisdata/seq/A380/A380155.seq
54d4c0b65b1b15f3dd045ca628b5aa12
A380156
Expansion of e.g.f. 1/(1 - 3*x*exp(3*x))^(1/3).
[ "1", "1", "10", "127", "2260", "52165", "1478098", "49666267", "1930817080", "85253566825", "4214519350750", "230609701370719", "13837049296702228", "903380930924784013", "63754235596937808874", "4836352735401636409795", "392451456493513697671792", "33920902255644870783973201", "3111255003645991777552833718" ]
[ "nonn" ]
11
0
3
[ "A006153", "A380016", "A380017", "A380155", "A380156" ]
null
Seiichi Manyama, Jan 13 2025
2025-01-14T02:31:18
oeisdata/seq/A380/A380156.seq
be43f372b02e39e5b981f26277281d50
A380157
Expansion of e.g.f. (1 + 3*x*exp(3*x))^(1/3).
[ "1", "1", "4", "1", "-44", "265", "2458", "-48419", "-99320", "12598417", "-82133810", "-4205894891", "86494587292", "1457086105657", "-79743685096670", "-88062957588275", "77425160027442832", "-1138977883460384735", "-76951663963327663082", "2978943480750081242629", "64353221406902873516260" ]
[ "sign" ]
8
0
3
[ "A191498", "A380134", "A380157" ]
null
Seiichi Manyama, Jan 13 2025
2025-01-14T01:49:16
oeisdata/seq/A380/A380157.seq
2d8528ab97f78b4a6480601c238bff15
A380158
Expansion of e.g.f. sqrt(exp(-2*x) + 2*x).
[ "1", "0", "2", "-4", "-4", "64", "-8", "-3312", "14352", "267776", "-3403744", "-24119360", "881205184", "-593040384", "-261913919616", "2567414468864", "83291021050112", "-2080429273726976", "-22004502593928704", "1526354137528335360", "-3870482611349750784", "-1112746657730132623360", "18568218633016319670272" ]
[ "sign" ]
9
0
3
[ "A191498", "A380014", "A380158" ]
null
Seiichi Manyama, Jan 13 2025
2025-01-14T01:49:12
oeisdata/seq/A380/A380158.seq
0f8ced50eb3d81c6694f6e2f1403f9de
A380159
Expansion of e.g.f. (exp(-3*x) + 3*x)^(1/3).
[ "1", "0", "3", "-9", "-27", "459", "243", "-58563", "338985", "11581623", "-206336889", "-2610099207", "128764066797", "37135699587", "-90848500643781", "1216300295221749", "68623945856512209", "-2410073970973057809", "-44786917868989757553", "4171855691698864732305", "-8174731579262161250859" ]
[ "sign" ]
8
0
3
[ "A380016", "A380158", "A380159" ]
null
Seiichi Manyama, Jan 13 2025
2025-01-14T01:49:06
oeisdata/seq/A380/A380159.seq
e01edbc314e8476670bf7edf3e741f97
A380160
a(n) is the value of the Euler totient function when applied to the powerful part of n.
[ "1", "1", "1", "2", "1", "1", "1", "4", "6", "1", "1", "2", "1", "1", "1", "8", "1", "6", "1", "2", "1", "1", "1", "4", "20", "1", "18", "2", "1", "1", "1", "16", "1", "1", "1", "12", "1", "1", "1", "4", "1", "1", "1", "2", "6", "1", "1", "8", "42", "20", "1", "2", "1", "18", "1", "4", "1", "1", "1", "2", "1", "1", "6", "32", "1", "1", "1", "2", "1", "1", "1", "24", "1", "1", "20", "2", "1", "1", "1", "8", "54", "1", "1", "2" ]
[ "nonn", "easy", "mult" ]
10
1
4
[ "A000010", "A001694", "A005117", "A057521", "A295294", "A295295", "A323333", "A349379", "A357669", "A380160", "A380161" ]
null
Amiram Eldar, Jan 13 2025
2025-01-14T01:52:16
oeisdata/seq/A380/A380160.seq
78a3ba39e178b0a4bffa9cd81fdab63f
A380161
a(n) is the value of the Euler totient function when applied to the powerfree part of n.
[ "1", "1", "2", "1", "4", "2", "6", "1", "1", "4", "10", "2", "12", "6", "8", "1", "16", "1", "18", "4", "12", "10", "22", "2", "1", "12", "1", "6", "28", "8", "30", "1", "20", "16", "24", "1", "36", "18", "24", "4", "40", "12", "42", "10", "4", "22", "46", "2", "1", "1", "32", "12", "52", "1", "40", "6", "36", "28", "58", "8", "60", "30", "6", "1", "48", "20", "66", "16", "44", "24", "70", "1", "72", "36" ]
[ "nonn", "easy", "mult" ]
8
1
3
[ "A000010", "A005117", "A013661", "A055231", "A056671", "A092261", "A335851", "A380160", "A380161" ]
null
Amiram Eldar, Jan 13 2025
2025-01-14T01:51:41
oeisdata/seq/A380/A380161.seq
815ec9cf51d6adaa5106c7bea68982a5
A380162
a(n) is the value of the Euler totient function when applied to the largest square dividing n.
[ "1", "1", "1", "2", "1", "1", "1", "2", "6", "1", "1", "2", "1", "1", "1", "8", "1", "6", "1", "2", "1", "1", "1", "2", "20", "1", "6", "2", "1", "1", "1", "8", "1", "1", "1", "12", "1", "1", "1", "2", "1", "1", "1", "2", "6", "1", "1", "8", "42", "20", "1", "2", "1", "6", "1", "2", "1", "1", "1", "2", "1", "1", "6", "32", "1", "1", "1", "2", "1", "1", "1", "12", "1", "1", "20", "2", "1", "1", "1", "8", "54", "1", "1", "2", "1" ]
[ "nonn", "easy", "mult" ]
9
1
4
[ "A000010", "A000290", "A002117", "A005117", "A008833", "A013661", "A077591", "A078434", "A365331", "A365332", "A380162", "A380163" ]
null
Amiram Eldar, Jan 13 2025
2025-01-14T01:51:50
oeisdata/seq/A380/A380162.seq
cf5660a30b58bc28293c4d79127dc432
A380163
a(n) is the value of the Euler totient function when applied to the squarefree part of n.
[ "1", "1", "2", "1", "4", "2", "6", "1", "1", "4", "10", "2", "12", "6", "8", "1", "16", "1", "18", "4", "12", "10", "22", "2", "1", "12", "2", "6", "28", "8", "30", "1", "20", "16", "24", "1", "36", "18", "24", "4", "40", "12", "42", "10", "4", "22", "46", "2", "1", "1", "32", "12", "52", "2", "40", "6", "36", "28", "58", "8", "60", "30", "6", "1", "48", "20", "66", "16", "44", "24", "70", "1", "72", "36" ]
[ "nonn", "easy", "mult" ]
9
1
3
[ "A000010", "A005117", "A007913", "A013662", "A028982", "A055076", "A367991", "A380162", "A380163" ]
null
Amiram Eldar, Jan 14 2025
2025-01-14T01:51:51
oeisdata/seq/A380/A380163.seq
f8a1d7291d056d1bf5b3834013d1924b
A380164
a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is a square.
[ "1", "1", "1", "2", "1", "1", "1", "1", "6", "1", "1", "2", "1", "1", "1", "8", "1", "6", "1", "2", "1", "1", "1", "1", "20", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "12", "1", "1", "1", "1", "1", "1", "1", "2", "6", "1", "1", "8", "42", "20", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "6", "32", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "20", "2", "1", "1", "1", "8", "54", "1", "1", "2", "1", "1", "1", "1", "1", "6", "1", "2", "1", "1", "1", "1", "1", "42", "6", "40" ]
[ "nonn", "easy", "mult" ]
8
1
4
[ "A000010", "A000290", "A002117", "A077591", "A268335", "A350388", "A351568", "A365401", "A380164", "A380165" ]
null
Amiram Eldar, Jan 14 2025
2025-01-14T01:51:55
oeisdata/seq/A380/A380164.seq
5da9cc1d4ce416802dd63708dd03478a
A380165
a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.
[ "1", "1", "2", "1", "4", "2", "6", "4", "1", "4", "10", "2", "12", "6", "8", "1", "16", "1", "18", "4", "12", "10", "22", "8", "1", "12", "18", "6", "28", "8", "30", "16", "20", "16", "24", "1", "36", "18", "24", "16", "40", "12", "42", "10", "4", "22", "46", "2", "1", "1", "32", "12", "52", "18", "40", "24", "36", "28", "58", "8", "60", "30", "6", "1", "48", "20", "66", "16", "44", "24", "70", "4", "72" ]
[ "nonn", "easy", "mult" ]
8
1
3
[ "A000010", "A000290", "A013662", "A077591", "A268335", "A350389", "A351569", "A365402", "A374456", "A380164", "A380165" ]
null
Amiram Eldar, Jan 14 2025
2025-01-14T01:52:21
oeisdata/seq/A380/A380165.seq
4f4c28b92917920531b6ee87bc856826
A380166
Triangle read by rows: T(n,k) is the number of sequences in which the games of a fully symmetric single-elimination tournament with 2^n teams can be played if arbitrarily many arenas are available and the number of distinct times at which games are played is k, 1 <= k <= 2^n-1.
[ "1", "0", "1", "2", "0", "0", "1", "22", "102", "160", "80", "0", "0", "0", "1", "672", "45914", "973300", "9396760", "49410424", "155188488", "304369008", "376231680", "284951040", "120806400", "21964800", "0", "0", "0", "0", "1", "458324", "2493351562", "1695612148252", "328854102958150", "26894789756402464", "1153061834890296576", "29635726970329429536" ]
[ "nonn", "tabf" ]
27
1
4
[ "A000325", "A056972", "A379758", "A380166" ]
null
Noah A Rosenberg, Jan 13 2025
2025-03-31T22:58:13
oeisdata/seq/A380/A380166.seq
0d7e22f56d622478b2d2e5a2330e4e46
A380167
Maximum number of sets for the SET card game for n cards with 3 properties where each can take 3 values.
[ "1", "1", "2", "3", "5", "8", "12", "12", "13", "14", "16", "19", "23", "26", "30", "36", "41", "47", "54", "62", "71", "81", "92", "104", "117" ]
[ "nonn", "fini", "full" ]
30
3
3
[ "A090245", "A182240", "A380167" ]
null
Justin Stevens, Jan 22 2025
2025-03-31T12:30:14
oeisdata/seq/A380/A380167.seq
d686e74493bdb61eb4761d1f3f9fad2e
A380168
Nonsquares whose square part is greater than their squarefree part.
[ "8", "12", "18", "27", "32", "45", "48", "50", "54", "63", "72", "75", "80", "96", "98", "108", "112", "125", "128", "147", "150", "160", "162", "175", "176", "180", "192", "200", "208", "216", "224", "240", "242", "243", "245", "250", "252", "275", "288", "294", "300", "320", "325", "338", "343", "350", "360", "363", "375", "384", "392", "396", "405", "425", "432", "448" ]
[ "nonn" ]
9
1
1
[ "A000037", "A000290", "A007913", "A008833", "A056623", "A380168" ]
null
Felix Huber, Jan 25 2025
2025-02-10T11:13:15
oeisdata/seq/A380/A380168.seq
211e1149db786dab2dceca9a7488ae9b
A380169
Table T(r,s) read by rows: the coefficient of [k^s] of the Wynn's r-th converging polynomial p_r(k) of Weber functions, 0<=s<=r.
[ "1", "-1", "1", "1", "-3", "1", "1", "7", "-6", "1", "-13", "-5", "25", "-10", "1", "47", "-83", "-60", "65", "-15", "1", "73", "637", "-203", "-280", "140", "-21", "1", "-2447", "-1425", "3710", "77", "-910", "266", "-28", "1", "16811", "-22341", "-21347", "13146", "2667", "-2394", "462", "-36", "1", "15551", "318149", "-50400", "-137435", "30135", "12999", "-5460", "750", "-45", "1", "-1726511", "-1415491", "2465969", "379940", "-579590", "32109", "43659", "-11220", "1155", "-55" ]
[ "tabl", "sign" ]
6
0
5
[ "A001662", "A001664", "A380169", "A380170" ]
null
R. J. Mathar, Jan 14 2025
2025-01-14T07:40:53
oeisdata/seq/A380/A380169.seq
916e5b79f685c0a2d9a6a3689de47314
A380170
Coefficient [k^1] of Wynn's converging polynomial p_n(k) of Weber functions.
[ "1", "-3", "7", "-5", "-83", "637", "-1425", "-22341", "318149", "-1415491", "-18988393", "444896699", "-3268880739", "-35114352579", "1317630731647", "-14445395761157", "-112227733823435", "7047241310852605", "-108366459009937881", "-487554173851570053", "61301180146129065101", "-1271086841777475748099", "-1158631507880606959729" ]
[ "sign" ]
4
1
2
[ "A001663", "A380169", "A380170" ]
null
R. J. Mathar, Jan 14 2025
2025-01-14T07:41:16
oeisdata/seq/A380/A380170.seq
673776150f82cd63a3e059d0e4a60563
A380171
Numerators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).
[ "1", "1", "5", "31", "265", "2621", "31621", "85319", "6574961", "22334789", "2092318021", "42552808871", "187499032037", "22150499622421", "22390616112461", "15039597200385451", "428293292251548001", "103005657594642373", "407547173842501629061", "2708181047424714819491", "36245898714951203790797" ]
[ "nonn", "frac" ]
8
0
3
[ "A000041", "A017665", "A058892", "A066186", "A067764", "A098987", "A380171", "A380271" ]
null
Ilya Gutkovskiy, Jan 14 2025
2025-01-18T09:28:06
oeisdata/seq/A380/A380171.seq
bd40137487379c4adc205fb9b40022b7
A380172
Second center column of elementary triangular automaton rule 54, starting from a lone 1 cell.
[ "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "1", "1", "0", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1" ]
[ "nonn" ]
26
0
null
[ "A380012", "A380172", "A380173" ]
null
Paul Cousin, Jan 14 2025
2025-06-04T00:30:15
oeisdata/seq/A380/A380172.seq
8ee3e8ec75ab0efd6fc1f627b7d67925
A380173
Third center column of elementary triangular automaton rule 54, starting from a lone 1 cell.
[ "0", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "0", "0", "1", "1", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "1", "1", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "1" ]
[ "nonn" ]
19
0
null
[ "A380012", "A380172", "A380173" ]
null
Paul Cousin, Jan 14 2025
2025-06-04T00:30:19
oeisdata/seq/A380/A380173.seq
56522373e66b69b0891208769194af15
A380174
a(n) is the least integer (in absolute value) not among the n initial terms of A377091; in case of a tie, preference is given to the positive value.
[ "0", "1", "-1", "-1", "-1", "3", "-3", "-3", "-3", "-3", "-5", "-5", "-5", "-5", "-5", "-5", "-5", "9", "9", "9", "9", "9", "9", "10", "11", "12", "-13", "14", "14", "14", "14", "14", "14", "14", "15", "16", "17", "19", "19", "19", "19", "19", "19", "19", "19", "19", "19", "22", "22", "24", "24", "24", "24", "-25", "-26", "-27", "-28", "29", "29", "29", "29", "29", "29", "29", "29", "33" ]
[ "sign" ]
24
0
6
[ "A377091", "A379067", "A379068", "A380174" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T09:10:53
oeisdata/seq/A380/A380174.seq
e8d15265851fd3bb227812dce09e14b6
A380175
Greedy sums of distinct squares.
[ "0", "1", "4", "5", "9", "10", "13", "14", "16", "17", "20", "21", "25", "26", "29", "30", "34", "35", "36", "37", "40", "41", "45", "46", "49", "50", "53", "54", "58", "59", "62", "63", "64", "65", "68", "69", "73", "74", "77", "78", "80", "81", "82", "85", "86", "90", "91", "94", "95", "97", "98", "100", "101", "104", "105", "109", "110", "113", "114", "116", "117", "120", "121", "122", "125", "126", "130" ]
[ "nonn" ]
37
1
3
[ "A003995", "A380175", "A380177" ]
null
Mike Sheppard, Jan 14 2025
2025-02-15T02:06:05
oeisdata/seq/A380/A380175.seq
1efe6a168092745926af59b53bb2dc6c
A380176
Number of pairs of adjacent equal parts in all gap-free compositions of n.
[ "0", "0", "1", "2", "6", "12", "26", "56", "124", "266", "563", "1204", "2573", "5468", "11559", "24370", "51281", "107720", "225867", "472660", "987378", "2059180", "4287932", "8916624", "18517398", "38406486", "79563118", "164636582", "340308519", "702713844", "1449664783", "2987870476", "6152930738", "12660419370", "26030245642" ]
[ "nonn" ]
10
0
4
[ "A011782", "A106356", "A107428", "A107429", "A373306", "A374147", "A374726", "A377823", "A380176" ]
null
John Tyler Rascoe, Jan 14 2025
2025-02-05T22:21:14
oeisdata/seq/A380/A380176.seq
4761603fa0dd0125a7982d29c37443b0
A380177
Numbers that can be written as sum of distinct squares but not if the squares are taken greedily.
[ "38", "39", "42", "51", "52", "55", "56", "57", "61", "66", "70", "71", "75", "79", "83", "84", "87", "88", "89", "93", "99", "102", "103", "106", "107", "111", "115", "118", "119", "123", "124", "127", "129", "132", "133", "136", "139", "140", "143", "146", "147", "150", "151", "152", "155", "156", "159", "162", "163", "166", "167", "168", "171", "172", "175", "176", "177", "180" ]
[ "nonn" ]
16
1
1
[ "A003995", "A380175", "A380177" ]
null
Mike Sheppard, Jan 14 2025
2025-02-01T08:46:07
oeisdata/seq/A380/A380177.seq
70e00be8f4ff0b03af781f0db0eac0cf
A380178
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A162659.
[ "1", "1", "0", "1", "1", "0", "1", "2", "3", "0", "1", "3", "8", "22", "0", "1", "4", "15", "62", "281", "0", "1", "5", "24", "126", "792", "5396", "0", "1", "6", "35", "220", "1641", "14922", "142297", "0", "1", "7", "48", "350", "2960", "30708", "384316", "4865806", "0", "1", "8", "63", "522", "4905", "55604", "777537", "12836406", "207407489", "0", "1", "9", "80", "742", "7656", "93300", "1393720", "25450806", "535396784", "10710044776", "0" ]
[ "nonn", "tabl" ]
68
0
8
[ "A000007", "A162659", "A379168", "A380178" ]
null
Seiichi Manyama, Feb 11 2025
2025-02-27T11:17:15
oeisdata/seq/A380/A380178.seq
5a30337a47fab33c3ac3f23d21d8e0d6
A380179
Triangle T(n,k) read by rows: T(n,k) = -binomial(n+1,k) + Sum_{i=0..k} Sum_{j=0..i+1} (i+1)^(n-i+j)*(-1)^(k-i)/(j!*(k-i)!) for 0 <= k <= n.
[ "1", "1", "1", "1", "5", "1", "1", "14", "14", "1", "1", "33", "68", "30", "1", "1", "72", "257", "218", "55", "1", "1", "151", "873", "1189", "553", "91", "1", "1", "310", "2812", "5734", "4094", "1204", "140", "1", "1", "629", "8802", "25916", "26484", "11598", "2352", "204", "1", "1", "1268", "27107", "112718", "158840", "96702", "28566", "4236", "285", "1" ]
[ "nonn", "tabl" ]
6
0
5
[ "A347420", "A380179" ]
null
Mikhail Kurkov, Jan 14 2025
2025-02-09T14:58:25
oeisdata/seq/A380/A380179.seq
0e12f63d57567cae1c4a6ffbb9a829e0
A380180
Irregular table T(n, k), n >= 0, k = 1..2^A005812(n); the n-th row lists the integers m (possibly negative) such that the nonzero digits in the balanced ternary expansion of m appear in the balanced ternary expansion of n.
[ "0", "0", "1", "-1", "0", "2", "3", "0", "3", "0", "1", "3", "4", "-4", "-3", "-1", "0", "5", "6", "8", "9", "-3", "0", "6", "9", "-3", "-2", "0", "1", "6", "7", "9", "10", "-1", "0", "8", "9", "0", "9", "0", "1", "9", "10", "-1", "0", "2", "3", "8", "9", "11", "12", "0", "3", "9", "12", "0", "1", "3", "4", "9", "10", "12", "13", "-13", "-12", "-10", "-9", "-4", "-3", "-1", "0", "14", "15", "17", "18", "23", "24", "26", "27" ]
[ "sign", "base", "tabf" ]
9
0
6
[ "A005812", "A060372", "A060373", "A368239", "A380123", "A380180", "A380181" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:31:51
oeisdata/seq/A380/A380180.seq
0d2933d1dca9b6c26d65aa49afcf7f35
A380181
Distinct nonpositive values of A380180, negated, in order of appearance and with offset 0.
[ "0", "1", "4", "3", "2", "13", "12", "10", "9", "11", "8", "7", "6", "5", "40", "39", "37", "36", "31", "30", "28", "27", "38", "35", "29", "26", "34", "33", "25", "24", "32", "23", "22", "21", "19", "18", "20", "17", "16", "15", "14", "121", "120", "118", "117", "112", "111", "109", "108", "94", "93", "91", "90", "85", "84", "82", "81", "119", "116", "110", "107", "92", "89", "83", "80" ]
[ "nonn", "base" ]
11
0
3
[ "A380180", "A380181", "A380182" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:31:47
oeisdata/seq/A380/A380181.seq
25fb426b685873d502a668dfe6459214
A380182
Inverse permutation to A380181.
[ "0", "1", "4", "3", "2", "13", "12", "11", "10", "8", "7", "9", "6", "5", "40", "39", "38", "37", "35", "34", "36", "33", "32", "31", "29", "28", "25", "21", "20", "24", "19", "18", "30", "27", "26", "23", "17", "16", "22", "15", "14", "121", "120", "119", "118", "116", "115", "117", "114", "113", "112", "110", "109", "106", "102", "101", "105", "100", "99", "111", "108", "107" ]
[ "nonn", "base" ]
7
0
3
[ "A380181", "A380182" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:31:42
oeisdata/seq/A380/A380182.seq
300e33b5c48c208b46ab56894d1fe9ae
A380183
Distinct nonnegative values of A380123, in order of appearance and with offset 0.
[ "0", "1", "2", "3", "4", "5", "6", "8", "7", "9", "10", "11", "12", "15", "16", "13", "17", "14", "18", "19", "20", "21", "22", "24", "30", "32", "23", "31", "25", "33", "26", "34", "27", "28", "29", "35", "36", "37", "38", "40", "39", "41", "42", "43", "44", "47", "48", "59", "60", "63", "64", "45", "49", "61", "65", "46", "62", "50", "66", "51", "52", "67", "68", "53", "69", "54", "56", "55" ]
[ "nonn", "base" ]
7
0
3
[ "A380123", "A380183", "A380184", "A380185" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:30:45
oeisdata/seq/A380/A380183.seq
0a336ec7801da3c7cab407672ef993d5
A380184
Inverse permutation to A380183.
[ "0", "1", "2", "3", "4", "5", "6", "8", "7", "9", "10", "11", "12", "15", "17", "13", "14", "16", "18", "19", "20", "21", "22", "26", "23", "28", "30", "32", "33", "34", "24", "27", "25", "29", "31", "35", "36", "37", "38", "40", "39", "41", "42", "43", "44", "51", "55", "45", "46", "52", "57", "59", "60", "63", "65", "67", "66", "68", "69", "47", "48", "53", "56", "49", "50", "54", "58", "61" ]
[ "nonn", "base" ]
6
0
3
[ "A380183", "A380184" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:30:30
oeisdata/seq/A380/A380184.seq
e931b3cdd2233c0ea58c5eb7552a42e7
A380185
Distinct nonpositive values of A380123, negated, in order of appearance and with offset 0.
[ "0", "1", "2", "5", "4", "3", "10", "8", "9", "7", "6", "21", "20", "17", "16", "19", "15", "18", "14", "13", "12", "11", "42", "40", "34", "32", "41", "33", "39", "31", "38", "30", "37", "36", "35", "29", "28", "27", "26", "24", "25", "23", "22", "85", "84", "81", "80", "69", "68", "65", "64", "83", "79", "67", "63", "82", "66", "78", "62", "77", "76", "61", "60", "75", "59", "74", "72", "73" ]
[ "nonn", "base" ]
6
0
3
[ "A380123", "A380183", "A380185", "A380186" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:32:07
oeisdata/seq/A380/A380185.seq
9cb986200411d26bdeb8067199bc5d2d
A380186
Inverse permutation to A380185.
[ "0", "1", "2", "5", "4", "3", "10", "9", "7", "8", "6", "21", "20", "19", "18", "16", "14", "13", "17", "15", "12", "11", "42", "41", "39", "40", "38", "37", "36", "35", "31", "29", "25", "27", "24", "34", "33", "32", "30", "28", "23", "26", "22", "85", "84", "83", "82", "80", "78", "77", "81", "79", "76", "75", "74", "73", "71", "72", "70", "64", "62", "61", "58", "54", "50", "49", "56", "53" ]
[ "nonn", "base" ]
6
0
3
[ "A380185", "A380186" ]
null
Rémy Sigrist, Jan 15 2025
2025-01-17T16:31:56
oeisdata/seq/A380/A380186.seq
f5056520aba2e0d393c889aaf8e9cd13
A380187
Smallest integer not yet present in the sequence such that the sum of the first a(n) terms of the sequence is odd for n odd and even for n even.
[ "1", "3", "4", "5", "7", "2", "9", "6", "8", "11", "12", "13", "15", "10", "17", "14", "16", "19", "20", "21", "23", "18", "25", "22", "24", "27", "28", "29", "31", "26", "33", "30", "32", "35", "36", "37", "39", "34", "41", "38", "40", "43", "44", "45", "47", "42", "49", "46", "48", "51", "52", "53", "55", "50", "57", "54", "56", "59", "60", "61", "63", "58", "65", "62", "64", "67", "68", "69" ]
[ "nonn", "easy" ]
38
1
2
[ "A005408", "A005843", "A380187" ]
null
Paolo P. Lava, Jan 15 2025
2025-02-21T08:25:28
oeisdata/seq/A380/A380187.seq
fe72feed53360473ef6093f7030ae256
A380188
a(n) is the maximum number of coincidences of the first n terms of this sequence and a cyclic shift of the first n terms of A380189, i.e., the number of equalities a(k) = A380189((s+k) mod n) for 0 <= k < n, maximized over s.
[ "0", "1", "2", "2", "3", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "6", "6", "6", "7", "7", "7", "7", "8", "8", "9", "10", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12", "12" ]
[ "nonn" ]
9
0
3
[ "A272727", "A276638", "A379265", "A379266", "A380188", "A380189", "A380190" ]
null
Pontus von Brömssen, Jan 15 2025
2025-01-16T20:22:10
oeisdata/seq/A380/A380188.seq
83f5ab4d6e4b0ec46d9869813f68ea6c
A380189
a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A380188 in reverse order, i.e., the number of equalities a(k) = A380188(n-1-k) for 0 <= k < n.
[ "0", "1", "0", "2", "0", "1", "1", "2", "1", "0", "3", "1", "0", "2", "0", "2", "2", "2", "2", "3", "3", "3", "1", "0", "3", "2", "3", "3", "4", "5", "4", "4", "4", "3", "3", "3", "2", "2", "2", "3", "6", "6", "6", "6", "8", "7", "6", "5", "5", "5", "4", "4", "2", "1", "0", "3", "1", "0", "2", "0", "2", "2", "3", "5", "7", "7", "6", "5", "4", "5", "5", "6", "3", "2", "2", "1", "1", "4", "3", "1", "2", "3", "2", "4", "3", "4", "4" ]
[ "nonn", "look" ]
8
0
4
[ "A272727", "A276638", "A379266", "A380188", "A380189", "A380190" ]
null
Pontus von Brömssen, Jan 15 2025
2025-01-16T20:29:53
oeisdata/seq/A380/A380189.seq
a7d68ca29a5a71a6e70d34d82f6c991f
A380190
Indices k where A380188 changes, i.e., such that A380188(k) != A380188(k-1).
[ "1", "2", "4", "11", "21", "22", "25", "29", "31", "32", "33", "45", "225", "226", "227", "256", "355", "2737", "2738", "2740", "2741", "2775", "2779", "2780", "2781", "2790", "2796", "2798", "2802", "2811", "2814", "2817", "2819", "2820", "2900", "2901", "2902", "2903", "2904", "2905", "2906", "2907", "2908", "2909", "2910", "2911", "2912", "2913", "2914" ]
[ "nonn" ]
6
1
2
[ "A379297", "A380188", "A380189", "A380190" ]
null
Pontus von Brömssen, Jan 15 2025
2025-01-17T08:19:25
oeisdata/seq/A380/A380190.seq
b9d4f3c2bfd2a0bb4222931cd3fa6589
A380191
Triangle read by rows: Riordan array (2 - D(x), x * D(x)) where D(x) is g.f. of A001764.
[ "1", "-1", "1", "-3", "0", "1", "-12", "-1", "1", "1", "-55", "-6", "2", "2", "1", "-273", "-33", "5", "6", "3", "1", "-1428", "-182", "13", "22", "11", "4", "1", "-7752", "-1020", "28", "91", "46", "17", "5", "1", "-43263", "-5814", "0", "408", "210", "78", "24", "6", "1", "-246675", "-33649", "-627", "1938", "1020", "380", "119", "32", "7", "1", "-1430715", "-197340", "-6325", "9614", "5187", "1938", "612", "170", "41", "8", "1" ]
[ "sign", "easy", "tabl" ]
6
0
4
[ "A001764", "A110616", "A380191" ]
null
Werner Schulte, Jan 15 2025
2025-01-25T12:58:16
oeisdata/seq/A380/A380191.seq
da662d41416c8f9d82e0819eaf63cc47
A380192
Sum mod(10) of digits of n-th prime.
[ "2", "3", "5", "7", "2", "4", "8", "0", "5", "1", "4", "0", "5", "7", "1", "8", "4", "7", "3", "8", "0", "6", "1", "7", "6", "2", "4", "8", "0", "5", "0", "5", "1", "3", "4", "7", "3", "0", "4", "1", "7", "0", "1", "3", "7", "9", "4", "7", "1", "3", "8", "4", "7", "8", "4", "1", "7", "0", "6", "1", "3", "4", "0", "5", "7", "1", "7", "3", "4", "6", "1", "7", "6", "3", "9", "4", "0", "9", "5", "3", "4", "7", "8", "0", "6", "1", "7", "6", "1", "3", "7", "0", "9" ]
[ "nonn", "base" ]
27
1
1
[ "A007605", "A010879", "A053837", "A158293", "A380192" ]
null
Enrique Navarrete, Jan 15 2025
2025-02-06T08:23:03
oeisdata/seq/A380/A380192.seq
8013da8e983dd8fa0d716c1eda4ef3ae
A380193
a(n) is the largest number whose sixth power is an n-digit sixth power which has the maximum sum of digits (A373994(n)).
[ "1", "2", "3", "4", "6", "7", "12", "19", "31", "46", "68", "96", "143", "206", "304", "461", "677", "977", "1194", "2136", "2896", "4633", "6373", "9763", "13817", "21542", "30643", "43693", "68123", "99812", "144083", "183967", "311296", "463976", "681017", "994333", "1441977", "2150104", "3022731", "4608562", "6765526", "9258023" ]
[ "nonn", "base" ]
29
1
2
[ "A373994", "A379298", "A380052", "A380193", "A380566", "A380567", "A380797" ]
null
Zhining Yang, Jan 15 2025
2025-03-25T08:57:07
oeisdata/seq/A380/A380193.seq
e54dc9c091fb00f5d1cc6688449607c9
A380194
Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(3n+2)=q(3n+1)+q(3n), q(3n+3)=q(3n+2)+q(3n+1), and q(3n+4)=q(3n+2)*(q(3n+2)*q(3n+3)+1).
[ "0", "1", "1", "1", "4", "1", "1", "289", "1", "1", "81126049", "1", "1", "2128359349797626142548649", "1", "1", "38565134716822109850786884343127955049217538196275147632486387905655060249", "1", "1" ]
[ "nonn", "cofr" ]
45
0
5
[ "A003417", "A006280", "A019426", "A380194" ]
null
Khalil Ayadi, Jan 15 2025
2025-02-11T00:01:54
oeisdata/seq/A380/A380194.seq
6f9602cad6f61a1b485b4ca5e8a73277
A380195
Triangle T(n,k) read by rows, where row n is a permutation of the numbers 1 through n, such that if a deck of n cards is prepared in this order, and under-under-down dealing is used, then the resulting cards will be dealt in increasing order.
[ "1", "1", "2", "2", "3", "1", "4", "2", "1", "3", "2", "4", "1", "5", "3", "6", "4", "1", "3", "5", "2", "6", "3", "1", "7", "5", "2", "4", "3", "5", "1", "7", "4", "2", "8", "6", "9", "7", "1", "4", "6", "2", "8", "5", "3", "6", "4", "1", "10", "8", "2", "5", "7", "3", "9", "4", "10", "1", "7", "5", "2", "11", "9", "3", "6", "8", "7", "9", "1", "5", "11", "2", "8", "6", "3", "12", "10", "4", "11", "5", "1", "8", "10", "2", "6", "12", "3", "9", "7", "4", "13" ]
[ "nonn", "tabl" ]
18
1
3
[ "A006257", "A008585", "A054995", "A225381", "A321298", "A378635", "A380195", "A381591", "A381667" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 15 2025
2025-05-10T11:27:52
oeisdata/seq/A380/A380195.seq
c28c83e90513bb0660a714cb6bd3dcb6
A380196
Orders of Origami monoid on n strings constructed from the Jones monoid on n strings.
[ "6", "44", "293", "2179", "19086", "190512" ]
[ "nonn", "more" ]
43
2
1
[ "A000108", "A380196" ]
null
Peter Alspaugh, Jan 15 2025
2025-02-12T13:00:32
oeisdata/seq/A380/A380196.seq
7afc8541f6eadc240099385e097eefc9
A380197
Number of ways to choose a simple labeled graph on [n] and properly color the vertices using the minimum number of colors.
[ "1", "1", "3", "25", "423", "16261", "1266843", "200830225", "65750156223", "42834021462061", "55174125327583923" ]
[ "nonn", "more" ]
35
0
3
[ "A006125", "A084268", "A229048", "A372920", "A380197" ]
null
Geoffrey Critzer, Jan 22 2025
2025-01-23T00:03:40
oeisdata/seq/A380/A380197.seq
9a77c443bd91fa6ef873bb04b9815cd4
A380198
Difference between pi(2^n) and the integer nearest to 2^n / log(2^n).
[ "-2", "-1", "0", "0", "2", "3", "5", "8", "15", "24", "40", "72", "119", "212", "360", "633", "1128", "1989", "3580", "6386", "11537", "20897", "37980", "69354", "127336", "234054", "431877", "799754", "1484440", "2763961", "5156791", "9644970", "18080775", "33959344", "63902732", "120474951", "227515953", "430345298", "815241632" ]
[ "sign" ]
39
1
1
[ "A000720", "A007053", "A050499", "A053622", "A057835", "A380198" ]
null
James C. McMahon, Jan 16 2025
2025-03-31T22:59:10
oeisdata/seq/A380/A380198.seq
de34d501fdaf94596c75f71c31a01a0c
A380199
Smallest number of leading digits of A002110(n) (primorial(n)) that form a prime (or 0 if none exist).
[ "0", "1", "0", "1", "1", "1", "1", "1", "0", "1", "4", "1", "1", "1", "2", "2", "1", "2", "2", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "26", "3", "1", "1", "1", "4", "7", "1", "1", "3", "2", "1", "1", "17", "1", "2", "2", "6", "0", "1", "0", "25", "2", "2", "1", "3", "1", "21", "1", "32", "2", "2", "2", "25", "1", "1", "1", "0", "1", "10", "9", "2", "0", "1", "3", "0", "0", "17", "1", "6" ]
[ "nonn", "base" ]
19
0
11
[ "A000040", "A002110", "A379944", "A380199" ]
null
Jean-Marc Rebert, Jan 16 2025
2025-01-29T16:35:16
oeisdata/seq/A380/A380199.seq
6714e8b32461591222be2f69af5c906f
A380200
a(n) = A379343(A379343(n)).
[ "1", "5", "2", "4", "3", "6", "12", "7", "14", "9", "11", "8", "13", "10", "15", "23", "16", "25", "18", "27", "20", "22", "17", "24", "19", "26", "21", "28", "38", "29", "40", "31", "42", "33", "44", "35", "37", "30", "39", "32", "41", "34", "43", "36", "45", "57", "46", "59", "48", "61", "50", "63", "52", "65", "54", "56", "47", "58", "49", "60", "51", "62", "53", "64", "55", "66" ]
[ "nonn", "tabf" ]
15
1
2
[ "A000384", "A016813", "A379343", "A380200" ]
null
Boris Putievskiy, Jan 16 2025
2025-03-19T10:10:34
oeisdata/seq/A380/A380200.seq
3f82585a797f51422a6d7c0165c71561
A380201
Triangle T(n,k) read by rows, where row n is a permutation of numbers 1 through n, such that if a deck of n cards is prepared in this order, and SpellUnder-Down dealing is used, then the resulting cards are put down in increasing order.
[ "1", "2", "1", "1", "3", "2", "2", "4", "3", "1", "5", "3", "2", "1", "4", "4", "2", "5", "1", "3", "6", "2", "3", "4", "1", "6", "5", "7", "5", "6", "8", "1", "7", "4", "3", "2", "6", "5", "4", "1", "9", "3", "8", "2", "7", "4", "9", "10", "1", "3", "6", "8", "2", "5", "7", "6", "7", "3", "1", "11", "5", "8", "2", "10", "4", "9", "10", "3", "5", "1", "11", "12", "7", "2", "4", "6", "8", "9", "3", "8", "7", "1", "11", "6", "4", "2", "12", "13", "10", "9", "5", "12", "10", "6", "1", "13", "4", "9", "2", "14", "8", "11", "5" ]
[ "nonn", "word", "tabl" ]
19
1
2
[ "A005589", "A006257", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 16 2025
2025-02-23T11:26:52
oeisdata/seq/A380/A380201.seq
191c31ad0fd54b9acd1b94726db4674a
A380202
Number of card moves to deal n cards using the SpellUnder-Down dealing.
[ "4", "8", "14", "19", "24", "28", "34", "40", "45", "49", "56", "63", "72", "81", "89", "97", "107", "116", "125", "136", "146", "156", "168", "179", "190", "200", "212", "224", "235", "246", "256", "266", "278", "289", "300", "310", "322", "334", "345", "355", "364", "373", "384", "394", "404", "413", "424", "435", "445", "455", "464", "473", "484", "494", "504", "513", "524", "535", "545", "555", "564", "573", "584", "594", "604", "613", "624", "635", "645" ]
[ "nonn" ]
9
1
1
[ "A005589", "A006257", "A067278", "A225381", "A321298", "A378635", "A380201", "A380202", "A380204", "A380246", "A380247", "A380248" ]
null
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 16 2025
2025-01-29T22:26:28
oeisdata/seq/A380/A380202.seq
ca09cf3824e49bbadb4d1778645ca1ab
A380203
With given points 0,1 on the x-axis, a(n) is the number of ways to construct n with m circles where 2^(m-1)<n<=2^m.
[ "1", "1", "1", "1", "1", "2", "1", "1", "2", "4", "2", "4", "1", "2", "1", "1", "5", "9", "6", "10", "4", "8", "4", "8", "1", "4", "2", "4", "1", "2", "1", "1", "15", "28", "15", "31", "13", "25", "14", "28", "10", "19", "11", "22", "8", "15", "9", "17", "2", "8", "4", "12", "2", "8", "4", "8", "1", "4", "2", "4", "1", "2", "1", "1", "50", "94", "56", "99", "45", "91", "51", "97", "39", "74", "41", "92", "31", "74", "40", "85", "26", "61" ]
[ "nonn" ]
17
1
6
[ "A379972", "A380203" ]
null
Gerhard Kirchner, Jan 16 2025
2025-02-07T14:18:39
oeisdata/seq/A380/A380203.seq
977a47eca2c57fa19e2fc046724314bd