sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A380104
|
Minimal conductors c of complex dihedral normal closures K = L(zeta_3) of pure cubic number fields L = Q(d^1/3), d > 1 cubefree, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned coclass cc(M)=0,1,2,3,...
|
[
"30",
"90",
"418",
"1626"
] |
[
"nonn",
"hard",
"more"
] | 9 | 1 | 1 |
[
"A379524",
"A380104"
] | null |
Daniel Constantin Mayer, Jan 15 2025
| 2025-01-25T23:01:19 |
oeisdata/seq/A380/A380104.seq
|
8186c90404367db9acfd9babf36ff9bf
|
A380105
|
Perimeter-magic triangles of order 3 with magic sum n, bracelet symmetry, and minimum term 1.
|
[
"1",
"3",
"5",
"12",
"11",
"20",
"24",
"33",
"33",
"52",
"51",
"68",
"70",
"90",
"93",
"117",
"115",
"143",
"147",
"175",
"174",
"210",
"210",
"245",
"248",
"285",
"287",
"330",
"328",
"375",
"378",
"423",
"423",
"477",
"478",
"530",
"532",
"588",
"590",
"652",
"649",
"713",
"717",
"780",
"781",
"852",
"852",
"923",
"925",
"1000",
"1001",
"1080",
"1078",
"1160",
"1165",
"1245",
"1245",
"1335",
"1335"
] |
[
"nonn"
] | 9 | 9 | 2 |
[
"A380105",
"A380853"
] | null |
R. J. Mathar, Mar 11 2025
| 2025-03-19T05:53:45 |
oeisdata/seq/A380/A380105.seq
|
a151984dd1502279e8619a4d37d3cbf5
|
A380106
|
a(1) = 0; for n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and let a(n+1) be the number of runs in the subsequence a(m)..a(n-1). Otherwise, a(n+1) = 0.
|
[
"0",
"0",
"1",
"0",
"2",
"0",
"2",
"2",
"1",
"5",
"0",
"4",
"0",
"2",
"6",
"0",
"3",
"0",
"2",
"5",
"10",
"0",
"4",
"11",
"0",
"3",
"9",
"0",
"3",
"3",
"1",
"21",
"0",
"4",
"10",
"13",
"0",
"4",
"4",
"1",
"8",
"0",
"4",
"4",
"1",
"4",
"2",
"25",
"0",
"6",
"32",
"0",
"3",
"21",
"20",
"0",
"4",
"11",
"31",
"0",
"4",
"4",
"1",
"17",
"0",
"4",
"4",
"1",
"4",
"2",
"21",
"15",
"0",
"7",
"0",
"2",
"6",
"25",
"28",
"0",
"5",
"56"
] |
[
"nonn"
] | 17 | 1 | 5 |
[
"A181391",
"A380037",
"A380106",
"A380107"
] | null |
Neal Gersh Tolunsky, Jan 12 2025
| 2025-01-25T09:16:55 |
oeisdata/seq/A380/A380106.seq
|
e1ddee9d84588002f8c01b494a77344b
|
A380107
|
a(1) = 0; for n >= 1, if there exists an m < n such that a(m) = a(n), take the largest such m and let a(n+1) be the number of distinct runs in the subsequence a(m)..a(n-1). Otherwise, a(n+1) = 0.
|
[
"0",
"0",
"1",
"0",
"2",
"0",
"2",
"2",
"1",
"4",
"0",
"4",
"2",
"4",
"2",
"2",
"1",
"5",
"0",
"6",
"0",
"2",
"5",
"4",
"7",
"0",
"5",
"4",
"4",
"1",
"8",
"0",
"5",
"5",
"1",
"4",
"5",
"3",
"0",
"6",
"11",
"0",
"3",
"4",
"6",
"5",
"6",
"2",
"12",
"0",
"7",
"13",
"0",
"3",
"9",
"0",
"3",
"3",
"1",
"13",
"6",
"10",
"0",
"6",
"3",
"6",
"2",
"11",
"14",
"0",
"6",
"5",
"14",
"4",
"15",
"0",
"6",
"6",
"1",
"13",
"13",
"1",
"2",
"11",
"11"
] |
[
"nonn"
] | 22 | 1 | 5 |
[
"A268755",
"A380106",
"A380107"
] | null |
Neal Gersh Tolunsky, Jan 12 2025
| 2025-01-24T19:40:59 |
oeisdata/seq/A380/A380107.seq
|
542b4ffe8e6d1267b59f11843803dc85
|
A380108
|
Number of distinct partitions of length n binary strings into maximal constant substrings up to permutation.
|
[
"1",
"2",
"3",
"6",
"10",
"18",
"29",
"48",
"75",
"118",
"179",
"272",
"403",
"596",
"865",
"1252",
"1786",
"2538",
"3566",
"4990",
"6918",
"9552",
"13086",
"17856",
"24205",
"32684",
"43881",
"58698",
"78125",
"103618",
"136820",
"180064",
"236031",
"308432",
"401585",
"521340",
"674579",
"870446",
"1119786",
"1436798",
"1838405",
"2346480",
"2987204"
] |
[
"nonn"
] | 32 | 0 | 2 |
[
"A000712",
"A114921",
"A342528",
"A380108"
] | null |
Yaroslav Deryavko, Jan 12 2025
| 2025-02-02T08:48:53 |
oeisdata/seq/A380/A380108.seq
|
ec29c0ae624af8e6036fa2dcc217478b
|
A380109
|
Decimal expansion of 223/71.
|
[
"3",
"1",
"4",
"0",
"8",
"4",
"5",
"0",
"7",
"0",
"4",
"2",
"2",
"5",
"3",
"5",
"2",
"1",
"1",
"2",
"6",
"7",
"6",
"0",
"5",
"6",
"3",
"3",
"8",
"0",
"2",
"8",
"1",
"6",
"9",
"0",
"1",
"4",
"0",
"8",
"4",
"5",
"0",
"7",
"0",
"4",
"2",
"2",
"5",
"3",
"5",
"2",
"1",
"1",
"2",
"6",
"7",
"6",
"0",
"5",
"6",
"3",
"3",
"8",
"0",
"2",
"8",
"1",
"6",
"9",
"0",
"1",
"4",
"0",
"8",
"4",
"5",
"0",
"7",
"0",
"4",
"2",
"2",
"5",
"3",
"5",
"2",
"1",
"1",
"2",
"6",
"7",
"6",
"0",
"5",
"6",
"3",
"3",
"8",
"0"
] |
[
"nonn",
"cons",
"easy"
] | 14 | 1 | 1 |
[
"A000796",
"A021075",
"A068028",
"A380109"
] | null |
Stefano Spezia, Jan 12 2025
| 2025-01-27T16:50:28 |
oeisdata/seq/A380/A380109.seq
|
c816687e4e20bf5fbf83d6f9d4fd442c
|
A380110
|
In the base 4 expansion of n: map 0->0, 1->1, 2->1, 3->2.
|
[
"0",
"1",
"1",
"2",
"4",
"5",
"5",
"6",
"4",
"5",
"5",
"6",
"8",
"9",
"9",
"10",
"16",
"17",
"17",
"18",
"20",
"21",
"21",
"22",
"20",
"21",
"21",
"22",
"24",
"25",
"25",
"26",
"16",
"17",
"17",
"18",
"20",
"21",
"21",
"22",
"20",
"21",
"21",
"22",
"24",
"25",
"25",
"26",
"32",
"33",
"33",
"34",
"36",
"37",
"37",
"38",
"36",
"37",
"37",
"38",
"40",
"41",
"41",
"42",
"64",
"65",
"65",
"66",
"68",
"69"
] |
[
"nonn",
"base",
"easy"
] | 74 | 0 | 4 |
[
"A000079",
"A000695",
"A063695",
"A213173",
"A380110"
] | null |
Darío Clavijo, Feb 14 2025
| 2025-02-27T07:57:09 |
oeisdata/seq/A380/A380110.seq
|
a26e5e30ef4570d125fc449f169fa9f1
|
A380111
|
a(n) is the least number whose fourth power is an n-digit fourth power which has the maximum sum of digits (A373914(n)).
|
[
"1",
"3",
"4",
"8",
"16",
"26",
"47",
"74",
"118",
"308",
"518",
"659",
"1768",
"2868",
"5396",
"8256",
"14482",
"28871",
"55368",
"97063",
"147768",
"228558",
"562341",
"835718",
"1727156",
"2878406",
"5458722",
"8175708",
"16234882",
"27831542",
"53129506",
"98665756",
"166025442",
"315265896",
"510466356",
"904245732",
"1188893858",
"2298249374",
"5106312756"
] |
[
"nonn",
"base"
] | 15 | 1 | 2 |
[
"A373914",
"A379650",
"A379869",
"A380111",
"A380567",
"A380797"
] | null |
Zhining Yang, Jan 12 2025
| 2025-03-29T02:29:23 |
oeisdata/seq/A380/A380111.seq
|
61f2552604f825e0518044052062decd
|
A380112
|
Lexicographically earliest infinite sequence of positive integers whose XOR difference triangle contains only distinct values.
|
[
"1",
"2",
"4",
"8",
"16",
"32",
"9",
"18",
"64",
"128",
"39",
"75",
"156",
"256",
"76",
"137",
"269",
"407",
"512",
"180",
"78",
"606",
"432",
"1024",
"63",
"771",
"1037",
"604",
"789",
"1144",
"2048",
"31",
"564",
"1661",
"772",
"2176",
"1286",
"2044",
"3105",
"1638",
"377",
"2606",
"4096",
"662",
"1857",
"4124",
"536",
"1463",
"4188",
"2242",
"6453",
"5302"
] |
[
"nonn",
"base"
] | 9 | 1 | 2 |
[
"A099884",
"A338047",
"A346298",
"A378141",
"A380112",
"A380148"
] | null |
Rémy Sigrist, Jan 12 2025
| 2025-01-17T09:12:13 |
oeisdata/seq/A380/A380112.seq
|
ffc6e708eed052e9a3f81b9b5834aec8
|
A380113
|
Triangle read by rows: The inverse matrix of the central factorials A370707, row n normalized by (-1)^(n - k)*A370707(n, n).
|
[
"1",
"1",
"1",
"3",
"4",
"1",
"10",
"15",
"6",
"1",
"35",
"56",
"28",
"8",
"1",
"126",
"210",
"120",
"45",
"10",
"1",
"462",
"792",
"495",
"220",
"66",
"12",
"1",
"1716",
"3003",
"2002",
"1001",
"364",
"91",
"14",
"1",
"6435",
"11440",
"8008",
"4368",
"1820",
"560",
"120",
"16",
"1",
"24310",
"43758",
"31824",
"18564",
"8568",
"3060",
"816",
"153",
"18",
"1"
] |
[
"nonn",
"tabl"
] | 32 | 0 | 4 |
[
"A000007",
"A002674",
"A005810",
"A008311",
"A081294",
"A088218",
"A094527",
"A110556",
"A370707",
"A380113"
] | null |
Peter Luschny, Jan 12 2025
| 2025-04-25T23:39:51 |
oeisdata/seq/A380/A380113.seq
|
525873214b1b81c10c3ea427194c92c8
|
A380114
|
Triangle read by rows: The convolution triangle of 2^n, where the convolution triangle of a sequence is defined in A357368.
|
[
"1",
"0",
"2",
"0",
"4",
"4",
"0",
"8",
"16",
"8",
"0",
"16",
"48",
"48",
"16",
"0",
"32",
"128",
"192",
"128",
"32",
"0",
"64",
"320",
"640",
"640",
"320",
"64",
"0",
"128",
"768",
"1920",
"2560",
"1920",
"768",
"128",
"0",
"256",
"1792",
"5376",
"8960",
"8960",
"5376",
"1792",
"256",
"0",
"512",
"4096",
"14336",
"28672",
"35840",
"28672",
"14336",
"4096",
"512"
] |
[
"nonn",
"tabl"
] | 16 | 0 | 3 |
[
"A038207",
"A081294",
"A097805",
"A357368",
"A380114",
"A380115"
] | null |
Peter Luschny, Feb 03 2025
| 2025-02-05T02:17:54 |
oeisdata/seq/A380/A380114.seq
|
39c86b2ef085ef1c866ee0adc275e6c9
|
A380115
|
a(n) = max{A380114(n, k) : k = 0..n}.
|
[
"1",
"2",
"4",
"16",
"48",
"192",
"640",
"2560",
"8960",
"35840",
"129024",
"516096",
"1892352",
"7569408",
"28114944",
"112459776",
"421724160",
"1686896640",
"6372720640",
"25490882560",
"96865353728",
"387461414912",
"1479398129664",
"5917592518656",
"22684104654848",
"90736418619392",
"348986225459200",
"1395944901836800"
] |
[
"nonn"
] | 5 | 0 | 2 |
[
"A109388",
"A357368",
"A380114",
"A380115"
] | null |
Peter Luschny, Feb 03 2025
| 2025-02-03T19:57:15 |
oeisdata/seq/A380/A380115.seq
|
3e974562686a12539b6df83aa19a3323
|
A380116
|
a(n) = Sum_{k=0..n} A011971(n, k)*k. The Aitken-Bell triangle considered as a linear transform applied to the nonnegative numbers.
|
[
"0",
"2",
"13",
"72",
"393",
"2202",
"12850",
"78488",
"502327",
"3366648",
"23597297",
"172691956",
"1317276400",
"10455135350",
"86200363093",
"737106122656",
"6527505175609",
"59780020466870",
"565446090755746",
"5517274559079820",
"55470610206913511",
"574043981110581992",
"6108574536700411929",
"66779470651426032840"
] |
[
"nonn"
] | 5 | 0 | 2 |
[
"A011971",
"A278677",
"A380116"
] | null |
Peter Luschny, Feb 01 2025
| 2025-02-02T10:08:51 |
oeisdata/seq/A380/A380116.seq
|
37723d449f2c43ffb35959ce64779d9e
|
A380117
|
a(n) = n - A380118(n).
|
[
"0",
"1",
"2",
"1",
"2",
"2",
"3",
"2",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"4",
"0",
"0",
"-2",
"-2",
"-1",
"-1",
"0",
"-1",
"-1",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"-3",
"-3",
"-3",
"-3",
"-2",
"-2",
"-2",
"-2",
"-2",
"-2",
"-1",
"-1",
"0",
"0",
"0",
"-1",
"-1",
"-1",
"0",
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"3"
] |
[
"sign"
] | 10 | 1 | 3 |
[
"A182936",
"A380117",
"A380118"
] | null |
Peter Luschny, Jan 30 2025
| 2025-01-31T07:19:53 |
oeisdata/seq/A380/A380117.seq
|
99df8760e90fb239e92e90a64ffb4be6
|
A380118
|
a(n) = Sum_{k=1..n} (A014963(k) - A061397(k)).
|
[
"1",
"1",
"1",
"3",
"3",
"4",
"4",
"6",
"9",
"10",
"10",
"11",
"11",
"12",
"13",
"15",
"15",
"16",
"16",
"17",
"18",
"19",
"19",
"20",
"25",
"26",
"29",
"30",
"30",
"31",
"31",
"33",
"34",
"35",
"36",
"37",
"37",
"38",
"39",
"40",
"40",
"41",
"41",
"42",
"43",
"44",
"44",
"45",
"52",
"53",
"54",
"55",
"55",
"56",
"57",
"58",
"59",
"60",
"60",
"61",
"61",
"62",
"63",
"65",
"66",
"67",
"67",
"68",
"69",
"70"
] |
[
"nonn"
] | 15 | 1 | 4 |
[
"A010051",
"A014963",
"A034387",
"A048671",
"A061397",
"A072107",
"A182936",
"A380117",
"A380118"
] | null |
Peter Luschny, Jan 30 2025
| 2025-01-31T07:07:33 |
oeisdata/seq/A380/A380118.seq
|
ef3aa6bde4aac5b576e464c0e69634e3
|
A380119
|
Triangle read by rows: T(n, k) is the number of walks of length 2*n on the N X N grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the common value of the x- and the y-coordinate of the endpoint of the walk.
|
[
"1",
"2",
"2",
"10",
"16",
"6",
"70",
"140",
"90",
"20",
"588",
"1344",
"1134",
"448",
"70",
"5544",
"13860",
"13860",
"7392",
"2100",
"252",
"56628",
"151008",
"169884",
"109824",
"42900",
"9504",
"924",
"613470",
"1717716",
"2108106",
"1561560",
"750750",
"231660",
"42042",
"3432",
"6952660",
"20225920",
"26546520",
"21781760",
"12155000",
"4667520",
"1191190",
"183040",
"12870"
] |
[
"nonn",
"tabl",
"walk"
] | 14 | 0 | 2 |
[
"A000984",
"A005568",
"A151403",
"A253487",
"A380119",
"A380120"
] | null |
Peter Luschny, Jan 19 2025
| 2025-01-21T13:33:50 |
oeisdata/seq/A380/A380119.seq
|
b7bdcdd7bf1a3f775c117baace033032
|
A380120
|
Triangle read by rows: T(n, k) is the number of walks of length n on the Z X Z grid with unit steps in all four directions (NSWE) starting at (0, 0). k is the absolute value of the x-coordinate of the endpoint of the walk.
|
[
"1",
"2",
"2",
"6",
"8",
"2",
"20",
"30",
"12",
"2",
"70",
"112",
"56",
"16",
"2",
"252",
"420",
"240",
"90",
"20",
"2",
"924",
"1584",
"990",
"440",
"132",
"24",
"2",
"3432",
"6006",
"4004",
"2002",
"728",
"182",
"28",
"2",
"12870",
"22880",
"16016",
"8736",
"3640",
"1120",
"240",
"32",
"2",
"48620",
"87516",
"63648",
"37128",
"17136",
"6120",
"1632",
"306",
"36",
"2"
] |
[
"nonn",
"tabl",
"walk"
] | 21 | 0 | 2 |
[
"A000302",
"A000984",
"A006659",
"A040000",
"A052174",
"A068551",
"A162551",
"A378067",
"A379822",
"A380119",
"A380120"
] | null |
Peter Luschny, Jan 17 2025
| 2025-05-27T07:28:38 |
oeisdata/seq/A380/A380120.seq
|
dc74505b041031bb37fc3d31e513c1b3
|
A380121
|
a(n) = C(n, Q(n+3, 4)-1)*C(n, Q(n+1, 4)) + C(n, Q(3*n+1, 4))*C(n, Q(3*n+3, 4)) where C = binomial and Q(x, y) = floor(x/y).
|
[
"1",
"2",
"3",
"6",
"20",
"50",
"126",
"294",
"1008",
"2592",
"7425",
"18150",
"62920",
"163592",
"496860",
"1242150",
"4331600",
"11328800",
"35581680",
"90140256",
"315490896",
"828163602",
"2658338298",
"6793531206",
"23836951600",
"62728820000",
"204451146900",
"525731520600",
"1848025951200",
"4872068416800",
"16059866355000"
] |
[
"nonn"
] | 8 | 0 | 2 |
[
"A378067",
"A380121"
] | null |
Peter Luschny, Jan 17 2025
| 2025-01-19T07:38:45 |
oeisdata/seq/A380/A380121.seq
|
093f7ec0553ee0d27757873abcfee596
|
A380122
|
a(n) is the number of integers m (possibly negative) such that the nonzero digits in the nonadjacent form for m appear in the nonadjacent form for n.
|
[
"1",
"2",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"4",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"4",
"8",
"4",
"8",
"8",
"8",
"4",
"8",
"8",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"4",
"8",
"4",
"8",
"8",
"8",
"4",
"8",
"8",
"16",
"8",
"16",
"8",
"8",
"4",
"8",
"8",
"16",
"8",
"16",
"8",
"8",
"4",
"8",
"8",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"4",
"8",
"4",
"8",
"8",
"8",
"4",
"8",
"8",
"16",
"8",
"16",
"8",
"8",
"4",
"8",
"8",
"16",
"8"
] |
[
"nonn",
"base"
] | 8 | 0 | 2 |
[
"A000120",
"A001316",
"A184617",
"A380122",
"A380123"
] | null |
Rémy Sigrist, Jan 12 2025
| 2025-01-14T09:06:38 |
oeisdata/seq/A380/A380122.seq
|
3901f03802c0ab4e6054fa4067f86bd5
|
A380123
|
Irregular table T(n, k), n >= 0, k = 1..A380122(n), read by rows; the n-th row lists the integers m (possibly negative) such that the nonzero digits in the nonadjacent form for m appear in the nonadjacent form for n.
|
[
"0",
"0",
"1",
"0",
"2",
"-1",
"0",
"3",
"4",
"0",
"4",
"0",
"1",
"4",
"5",
"-2",
"0",
"6",
"8",
"-1",
"0",
"7",
"8",
"0",
"8",
"0",
"1",
"8",
"9",
"0",
"2",
"8",
"10",
"-5",
"-4",
"-1",
"0",
"11",
"12",
"15",
"16",
"-4",
"0",
"12",
"16",
"-4",
"-3",
"0",
"1",
"12",
"13",
"16",
"17",
"-2",
"0",
"14",
"16",
"-1",
"0",
"15",
"16",
"0",
"16",
"0",
"1",
"16",
"17",
"0",
"2",
"16",
"18",
"-1",
"0",
"3",
"4",
"15",
"16",
"19",
"20"
] |
[
"sign",
"base",
"tabf"
] | 10 | 0 | 5 |
[
"A184616",
"A295989",
"A380122",
"A380123"
] | null |
Rémy Sigrist, Jan 12 2025
| 2025-01-14T09:06:43 |
oeisdata/seq/A380/A380123.seq
|
2d8896b429593454d003970f600358a6
|
A380124
|
Total number of ways of partitioning n and any natural number less than n into the same number of parts.
|
[
"0",
"1",
"3",
"8",
"17",
"40",
"78",
"162",
"308",
"591",
"1068",
"1975",
"3445",
"6067",
"10366",
"17683",
"29375",
"48886",
"79487",
"129220",
"206457",
"328782",
"516286",
"808903",
"1251135",
"1929061",
"2944622",
"4478131",
"6749574",
"10139972",
"15110286",
"22440924",
"33099258",
"48645223",
"71056244",
"103449482",
"149757609"
] |
[
"nonn"
] | 18 | 1 | 3 |
[
"A008284",
"A072233",
"A380124",
"A380125",
"A380126"
] | null |
Aidan Markey, Jan 12 2025
| 2025-02-20T06:33:28 |
oeisdata/seq/A380/A380124.seq
|
2ee8cd4d352db7799eeaf28593cb3adf
|
A380125
|
Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, treating partitions of n and itself in a different order as distinct.
|
[
"1",
"3",
"6",
"15",
"28",
"65",
"119",
"244",
"450",
"851",
"1504",
"2760",
"4732",
"8266",
"13958",
"23642",
"38886",
"64339",
"103755",
"167785",
"266295",
"422014",
"658875",
"1027992",
"1581983",
"2429719",
"3692762",
"5595987",
"8401561",
"12581456",
"18682756",
"27664577",
"40675705",
"59616335",
"86831979",
"126099127",
"182065162"
] |
[
"nonn"
] | 21 | 1 | 2 |
[
"A008284",
"A072233",
"A238312",
"A380124",
"A380125",
"A380126"
] | null |
Aidan Markey, Jan 12 2025
| 2025-02-20T06:33:21 |
oeisdata/seq/A380/A380125.seq
|
f3e3e3f2237d1769a600fa1f18f8931f
|
A380126
|
Total number of ways of partitioning n and any natural number less than or equal to n into the same number of parts, not treating partitions of n and itself in a different order as distinct.
|
[
"1",
"3",
"6",
"14",
"26",
"58",
"106",
"214",
"394",
"742",
"1314",
"2406",
"4139",
"7234",
"12250",
"20778",
"34279",
"56805",
"91866",
"148816",
"236772",
"375899",
"588208",
"919235",
"1417538",
"2180608",
"3320197",
"5038918",
"7577850",
"11363516",
"16899942",
"25056925",
"36892553",
"54136934",
"78951553",
"114783293",
"165922204"
] |
[
"nonn"
] | 19 | 1 | 2 |
[
"A008284",
"A072233",
"A380124",
"A380125",
"A380126"
] | null |
Aidan Markey, Jan 12 2025
| 2025-02-20T06:33:03 |
oeisdata/seq/A380/A380126.seq
|
d221e15efb81b4e21dfe3266b857e30e
|
A380127
|
Number of connected unlabeled graphs with n nodes and minimum vertex degree >= 4.
|
[
"0",
"0",
"0",
"0",
"1",
"4",
"29",
"424",
"15471",
"1249972",
"187095836",
"48211095992",
"21124789189703",
"15899588477573380",
"20900616544566305160",
"48843531771541430977365",
"206305644374013971584957120",
"1597725697294349735784472597650",
"22957145992821363656862872542094876",
"617791721556546579087246090934406095676"
] |
[
"nonn"
] | 18 | 1 | 6 |
[
"A007112",
"A324227",
"A380127"
] | null |
Eric W. Weisstein, Mar 11 2025
| 2025-05-25T20:42:48 |
oeisdata/seq/A380/A380127.seq
|
aeae487d92fc52be597e8e2d8caac313
|
A380128
|
Triangle read by rows: Riordan array (1/(C(x)*sqrt(1-4*x)), x/C(x)) where C(x) is g.f. of A000108.
|
[
"1",
"1",
"1",
"3",
"0",
"1",
"10",
"1",
"-1",
"1",
"35",
"4",
"0",
"-2",
"1",
"126",
"15",
"1",
"0",
"-3",
"1",
"462",
"56",
"5",
"0",
"1",
"-4",
"1",
"1716",
"210",
"21",
"1",
"0",
"3",
"-5",
"1",
"6435",
"792",
"84",
"6",
"0",
"0",
"6",
"-6",
"1",
"24310",
"3003",
"330",
"28",
"1",
"0",
"-1",
"10",
"-7",
"1",
"92378",
"11440",
"1287",
"120",
"7",
"0",
"0",
"-4",
"15",
"-8",
"1",
"352716",
"43758",
"5005",
"495",
"36",
"1",
"0",
"0",
"-10",
"21",
"-9",
"1"
] |
[
"sign",
"easy",
"tabl"
] | 6 | 0 | 4 |
[
"A000007",
"A000108",
"A001764",
"A001791",
"A088218",
"A380128"
] | null |
Werner Schulte, Jan 12 2025
| 2025-01-25T12:57:24 |
oeisdata/seq/A380/A380128.seq
|
0c2250ab7f062a35a83fc9182455b275
|
A380129
|
Strong Birthday Problem: Number of people needed so that probability of everyone sharing a birthday out of n possible days is at least 1/2.
|
[
"2",
"4",
"8",
"12",
"16",
"21",
"26",
"31",
"36",
"41",
"47",
"52",
"58",
"64",
"69",
"75",
"81",
"87",
"93",
"100",
"106",
"112",
"119",
"125",
"131",
"138",
"144",
"151",
"158",
"164",
"171",
"178",
"184",
"191",
"198",
"205",
"212",
"219",
"226",
"233",
"240",
"247",
"254",
"261",
"268",
"275",
"283",
"290",
"297",
"304",
"312",
"319",
"326",
"334",
"341",
"348",
"356"
] |
[
"nonn"
] | 42 | 1 | 1 |
[
"A014088",
"A033810",
"A380129"
] | null |
Mike Sheppard, Jan 13 2025
| 2025-01-24T16:28:57 |
oeisdata/seq/A380/A380129.seq
|
a159dc15ecc87210829bc027596db85e
|
A380130
|
For n >= 2, let b(n) = 1 if A379784(n) is 3 mod 4, 0 if A379784(n) is 1 mod 4; form the RUNS transform of {b(n), n >= 2}.
|
[
"1",
"6",
"13",
"34",
"87",
"229",
"581",
"1591",
"4268",
"11637",
"31944",
"88526",
"246105",
"688982",
"1936129",
"5463517",
"15470445"
] |
[
"nonn",
"more"
] | 19 | 1 | 2 |
[
"A091237",
"A379652",
"A379783",
"A379784",
"A379785",
"A380130"
] | null |
Robert C. Lyons, Jan 12 2025
| 2025-01-13T11:32:05 |
oeisdata/seq/A380/A380130.seq
|
5653180543acf24b83a63c6ee5d1bd00
|
A380131
|
Numbers k such that (45^k + 2^k)/47 is prime.
|
[
"17",
"281",
"463",
"5393",
"12809",
"19031",
"53173"
] |
[
"nonn",
"hard",
"more"
] | 6 | 1 | 1 |
[
"A057187",
"A057188",
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A228922",
"A229542",
"A375161",
"A375236",
"A377031",
"A377856",
"A380131"
] | null |
Robert Price, Jan 12 2025
| 2025-02-16T08:34:07 |
oeisdata/seq/A380/A380131.seq
|
b5f27d26a5deb54fc3305f788712ee94
|
A380132
|
Numbers k such that (47^k + 2^k)/49 is prime.
|
[
"11",
"13",
"103",
"15383"
] |
[
"nonn",
"hard",
"more"
] | 6 | 1 | 1 |
[
"A057187",
"A057188",
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A228922",
"A229542",
"A375161",
"A375236",
"A377031",
"A377856",
"A380132"
] | null |
Robert Price, Jan 12 2025
| 2025-02-16T08:34:07 |
oeisdata/seq/A380/A380132.seq
|
cf4f9e1d86475eb73773593e9840ff63
|
A380133
|
Expansion of e.g.f. sqrt(1 + 2*x*exp(x)).
|
[
"1",
"1",
"1",
"0",
"1",
"0",
"-9",
"70",
"-335",
"504",
"11935",
"-182094",
"1525833",
"-4911764",
"-99495473",
"2430329070",
"-29988416159",
"158542630224",
"2868272912511",
"-102775471991126",
"1714422613948345",
"-13166449628575404",
"-209400601689898289",
"10598981162761786950",
"-227206614609529433199"
] |
[
"sign"
] | 7 | 0 | 7 |
[
"A028310",
"A380015",
"A380050",
"A380093",
"A380133",
"A380134"
] | null |
Seiichi Manyama, Jan 12 2025
| 2025-01-13T02:27:18 |
oeisdata/seq/A380/A380133.seq
|
a3aa1597bfeff1fce5d13bbe64b1d0d4
|
A380134
|
Expansion of e.g.f. (1 + 3*x*exp(x))^(1/3).
|
[
"1",
"1",
"0",
"1",
"-4",
"25",
"-194",
"1813",
"-19816",
"248113",
"-3502630",
"55052701",
"-953576876",
"18048491305",
"-370623627178",
"8207063150245",
"-194950421191504",
"4944881412682081",
"-133394451535683278",
"3813510163227155245",
"-115170227064335439700",
"3663942710200202043481"
] |
[
"sign"
] | 8 | 0 | 5 |
[
"A028310",
"A380017",
"A380051",
"A380094",
"A380133",
"A380134"
] | null |
Seiichi Manyama, Jan 12 2025
| 2025-01-13T02:27:33 |
oeisdata/seq/A380/A380134.seq
|
3e2c7452969cf98bb2315a7567dfc9e7
|
A380135
|
High water marks for number of primes between prime(n)^2 and prime(n+1)^2.
|
[
"2",
"5",
"6",
"15",
"22",
"27",
"47",
"57",
"80",
"90",
"106",
"114",
"163",
"354",
"356",
"463",
"479",
"512",
"735",
"784",
"934",
"995",
"1513",
"1652",
"1772",
"1808",
"2648",
"2821",
"3551",
"6357",
"6815",
"8280",
"10424",
"11328",
"12113",
"15399",
"17121",
"18692",
"20769",
"22358",
"23404",
"24561",
"26123",
"26764",
"27871",
"31916",
"37558"
] |
[
"nonn"
] | 10 | 1 | 1 |
[
"A050216",
"A380135",
"A380136"
] | null |
Eric W. Weisstein, Jan 13 2025
| 2025-01-13T09:26:46 |
oeisdata/seq/A380/A380135.seq
|
29385988c8198567c1bd3d25446e3630
|
A380136
|
Positions of high water marks for the numbers of primes between prime(n)^2 and prime(n+1)^2.
|
[
"1",
"2",
"3",
"4",
"6",
"8",
"9",
"11",
"15",
"18",
"21",
"23",
"24",
"30",
"42",
"46",
"47",
"61",
"62",
"66",
"91",
"97",
"99",
"137",
"146",
"150",
"154",
"180",
"189",
"217",
"327",
"367",
"429",
"462",
"574",
"590",
"650",
"708",
"738",
"842",
"890",
"928",
"985",
"1006",
"1051",
"1059",
"1183",
"1409",
"1457",
"1532",
"1663",
"1831",
"2191",
"2225",
"2810"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A050216",
"A380135",
"A380136"
] | null |
Eric W. Weisstein, Jan 13 2025
| 2025-01-27T04:42:01 |
oeisdata/seq/A380/A380136.seq
|
be15361894e9e905a0b1ecb2cbb3cbc4
|
A380137
|
The conjectured maximum multiplicative persistence for bases b >= 2.
|
[
"1",
"3",
"3",
"6",
"5",
"8",
"6",
"7",
"11",
"13",
"7",
"15",
"13",
"11",
"8",
"17",
"10",
"18",
"14",
"14",
"14",
"19",
"9"
] |
[
"nonn",
"base",
"more"
] | 10 | 2 | 2 |
[
"A007954",
"A031346",
"A031347",
"A380137"
] | null |
Ctibor O. Zizka, Jan 13 2025
| 2025-01-15T08:44:00 |
oeisdata/seq/A380/A380137.seq
|
2acd22a64a46d57482aba6c8be7a0ec5
|
A380138
|
a(n) is the largest value in the '3x+1' trajectory of starting points producing a record number of steps.
|
[
"1",
"2",
"16",
"16",
"52",
"52",
"52",
"88",
"9232",
"9232",
"9232",
"9232",
"9232",
"9232",
"9232",
"9232",
"9232",
"9232",
"250504",
"190996",
"190996",
"250504",
"250504",
"250504",
"481624",
"975400",
"975400",
"497176",
"11003416",
"11003416",
"106358020",
"18976192",
"41163712",
"106358020",
"21933016",
"104674192",
"593279152"
] |
[
"nonn"
] | 13 | 1 | 2 |
[
"A006877",
"A006878",
"A006884",
"A006885",
"A025586",
"A380138"
] | null |
Hugo Pfoertner, Jan 13 2025
| 2025-01-13T11:37:59 |
oeisdata/seq/A380/A380138.seq
|
da4bad614faea4f55d0c1d3dae6784e1
|
A380139
|
Prime gaps between 10^m and 10^(m+1), m>=0, sorted first by falling number of occurrences and then by rising gap size, written as an irregular triangle.
|
[
"2",
"1",
"4",
"4",
"6",
"2",
"8",
"6",
"4",
"2",
"10",
"8",
"12",
"14",
"18",
"20",
"6",
"2",
"4",
"10",
"12",
"8",
"14",
"18",
"16",
"22",
"24",
"20",
"30",
"28",
"26",
"34",
"32",
"36",
"6",
"2",
"4",
"12",
"10",
"8",
"18",
"14",
"16",
"20",
"22",
"24",
"30",
"28",
"26",
"36",
"32",
"34",
"40",
"38",
"42",
"52",
"44",
"50",
"46",
"54",
"58",
"48",
"56",
"60",
"62",
"64",
"72"
] |
[
"nonn",
"tabf"
] | 16 | 1 | 1 |
[
"A001223",
"A005597",
"A028334",
"A038460",
"A173557",
"A305444",
"A354604",
"A380139"
] | null |
Hugo Pfoertner based on an idea by Richard Stephen Donovan, Jan 23 2025
| 2025-01-26T09:08:38 |
oeisdata/seq/A380/A380139.seq
|
88cf750a493d0fcde3cb4f02464d8c9a
|
A380140
|
Numbers of the form 4*j*k - j - k for j, k >= 2.
|
[
"12",
"19",
"26",
"30",
"33",
"40",
"41",
"47",
"52",
"54",
"56",
"61",
"63",
"68",
"71",
"74",
"75",
"82",
"85",
"86",
"89",
"90",
"96",
"101",
"103",
"107",
"109",
"110",
"116",
"117",
"118",
"124",
"128",
"129",
"131",
"132",
"138",
"140",
"145",
"146",
"147",
"151",
"152",
"155",
"159",
"161",
"162",
"166",
"173",
"176",
"178",
"180",
"182",
"184",
"185",
"187",
"191",
"194",
"195",
"201"
] |
[
"nonn"
] | 6 | 1 | 1 |
[
"A054520",
"A380140",
"A380509"
] | null |
Hugo Pfoertner, Jan 26 2025
| 2025-01-26T09:08:23 |
oeisdata/seq/A380/A380140.seq
|
d96a23591533e6eb97d98df7396a7f10
|
A380141
|
Decimal expansion of the real part of (-1)^sqrt(i), negated, where i is the imaginary unit.
|
[
"0",
"6",
"5",
"6",
"8",
"9",
"7",
"6",
"4",
"7",
"3",
"5",
"1",
"5",
"3",
"5",
"3",
"2",
"0",
"9",
"0",
"2",
"6",
"6",
"8",
"7",
"9",
"9",
"6",
"7",
"6",
"6",
"1",
"0",
"1",
"0",
"3",
"3",
"6",
"5",
"0",
"8",
"9",
"1",
"5",
"3",
"4",
"7",
"5",
"0",
"3",
"9",
"9",
"9",
"6",
"8",
"5",
"7",
"0",
"0",
"4",
"6",
"9",
"9",
"0",
"6",
"3",
"7",
"1",
"3",
"2",
"9",
"1",
"5",
"2",
"3",
"9",
"9",
"2",
"2",
"9",
"0",
"3",
"5",
"6",
"0",
"4",
"6"
] |
[
"nonn",
"cons",
"easy"
] | 10 | 0 | 2 |
[
"A247719",
"A380141",
"A380142"
] | null |
Hugo Pfoertner, Jan 23 2025
| 2025-02-05T22:20:43 |
oeisdata/seq/A380/A380141.seq
|
01d8762b8a6ff6f2019e52f727f8355a
|
A380142
|
Decimal expansion of the imaginary part of (-1)^sqrt(i), where i is the imaginary unit.
|
[
"0",
"8",
"6",
"2",
"9",
"5",
"0",
"4",
"8",
"1",
"8",
"0",
"2",
"3",
"6",
"2",
"8",
"1",
"1",
"2",
"8",
"5",
"3",
"4",
"7",
"5",
"1",
"8",
"3",
"7",
"3",
"2",
"6",
"5",
"4",
"0",
"9",
"6",
"4",
"9",
"3",
"8",
"9",
"3",
"6",
"6",
"2",
"6",
"8",
"0",
"2",
"5",
"2",
"5",
"3",
"0",
"4",
"9",
"6",
"6",
"8",
"7",
"6",
"1",
"5",
"4",
"5",
"5",
"9",
"3",
"8",
"8",
"1",
"4",
"7",
"4",
"4",
"1",
"7",
"1",
"2",
"4",
"6",
"0",
"4",
"7",
"8",
"4",
"6"
] |
[
"nonn",
"cons",
"easy"
] | 11 | 0 | 2 |
[
"A247719",
"A380141",
"A380142"
] | null |
Hugo Pfoertner, Jan 23 2025
| 2025-02-26T09:42:50 |
oeisdata/seq/A380/A380142.seq
|
0b4232c5de7c19a6af7445cef26941b8
|
A380143
|
Sum of divisors d | k such that d and k/d share factors but both have a factor that does not divide the other, where k is in A375055.
|
[
"16",
"20",
"21",
"48",
"27",
"28",
"24",
"25",
"32",
"60",
"55",
"39",
"40",
"32",
"44",
"45",
"112",
"65",
"36",
"84",
"84",
"52",
"72",
"35",
"91",
"57",
"36",
"96",
"36",
"140",
"44",
"63",
"64",
"45",
"123",
"40",
"68",
"108",
"48",
"85",
"120",
"75",
"172",
"96",
"80",
"136",
"132",
"56",
"95",
"48",
"240",
"49",
"88",
"48",
"141",
"92",
"108",
"93",
"50",
"196",
"52",
"172"
] |
[
"nonn"
] | 23 | 1 | 1 |
[
"A007947",
"A375055",
"A379752",
"A380143"
] | null |
Michael De Vlieger, Jan 18 2025
| 2025-01-19T09:29:41 |
oeisdata/seq/A380/A380143.seq
|
4e5fcdbc9377b7caae675b5b5d711636
|
A380144
|
Sum of divisors d | k such that rad(d) = rad(k/d) where k is in A001694 and rad = A007947.
|
[
"1",
"2",
"6",
"3",
"14",
"5",
"12",
"30",
"6",
"7",
"62",
"18",
"39",
"10",
"24",
"11",
"30",
"126",
"42",
"13",
"14",
"30",
"72",
"15",
"120",
"254",
"90",
"17",
"78",
"56",
"19",
"42",
"70",
"168",
"21",
"22",
"60",
"510",
"23",
"186",
"155",
"234",
"60",
"26",
"363",
"98",
"150",
"29",
"360",
"30",
"31",
"66",
"240",
"180",
"1022",
"33",
"90",
"378",
"34",
"35",
"546",
"84",
"132"
] |
[
"nonn"
] | 24 | 1 | 2 |
[
"A001221",
"A001694",
"A007947",
"A062503",
"A151821",
"A320966",
"A364988",
"A380144"
] | null |
Michael De Vlieger, Jan 15 2025
| 2025-01-19T11:03:39 |
oeisdata/seq/A380/A380144.seq
|
a63cd2b141517a8d263f0a3ac522a831
|
A380145
|
The binary expansion of a(n) is an initial 1 bit then tracks where the swaps occur in the exchange sort algorithm sorting the binary expansion of n into decreasing order.
|
[
"1",
"2",
"2",
"8",
"9",
"8",
"8",
"64",
"66",
"68",
"69",
"64",
"65",
"64",
"64",
"1024",
"1032",
"1040",
"1042",
"1056",
"1058",
"1060",
"1061",
"1024",
"1026",
"1028",
"1029",
"1024",
"1025",
"1024",
"1024",
"32768",
"32832",
"32896",
"32904",
"33024",
"33032",
"33040",
"33042",
"33280",
"33288",
"33296",
"33298",
"33312",
"33314",
"33316",
"33317"
] |
[
"nonn",
"base"
] | 30 | 1 | 2 |
[
"A000079",
"A000217",
"A006125",
"A023758",
"A070939",
"A380145"
] | null |
Darío Clavijo, Jan 13 2025
| 2025-02-03T12:50:54 |
oeisdata/seq/A380/A380145.seq
|
d215d659eb43b9cc70a9b2587339b848
|
A380146
|
Numbers that set records in A113901.
|
[
"1",
"2",
"4",
"6",
"12",
"24",
"30",
"48",
"60",
"120",
"210",
"240",
"420",
"480",
"840",
"1680",
"3360",
"6720",
"13440",
"26880",
"36960",
"53760",
"73920",
"107520",
"147840",
"215040",
"295680",
"591360",
"960960",
"1182720",
"1921920",
"2365440",
"3843840",
"4730880",
"7687680",
"9461760",
"15375360",
"30750720",
"61501440",
"123002880"
] |
[
"nonn"
] | 8 | 1 | 2 |
[
"A000079",
"A001221",
"A001222",
"A002110",
"A025487",
"A036041",
"A061394",
"A113901",
"A378630",
"A380146"
] | null |
Hal M. Switkay, Jan 13 2025
| 2025-01-23T22:02:01 |
oeisdata/seq/A380/A380146.seq
|
092be810bd1e1c49875aee17f490ef8a
|
A380147
|
Number of isoclinism classes of groups of order n.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"4",
"1",
"3",
"2",
"2",
"1",
"7",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"8",
"1",
"2",
"1",
"7",
"1",
"2",
"2",
"5",
"1",
"6",
"1",
"2",
"1",
"2",
"1",
"14",
"1",
"4",
"1",
"3",
"1",
"11",
"2",
"5",
"2",
"2",
"1",
"9",
"1",
"2",
"2",
"27",
"1",
"4",
"1",
"3",
"1",
"4",
"1",
"20",
"1",
"2",
"2",
"2",
"1",
"6",
"1",
"11",
"3",
"2",
"1",
"9",
"1",
"2",
"1",
"4",
"1",
"8"
] |
[
"nonn"
] | 28 | 1 | 6 |
[
"A051532",
"A241276",
"A318895",
"A380147"
] | null |
Miles Englezou, Jan 13 2025
| 2025-01-14T09:54:53 |
oeisdata/seq/A380/A380147.seq
|
0dcab9de6dd7257054e598c56a6bca8a
|
A380148
|
Triangle T(n, k), n > 0, k = 1..n, read by rows; T(n, 1) = A380112(n), and for any k in 2..n, T(n, k) = T(n, k-1) XOR T(n-1, k-1) (where XOR denotes the bitwise XOR operator).
|
[
"1",
"2",
"3",
"4",
"6",
"5",
"8",
"12",
"10",
"15",
"16",
"24",
"20",
"30",
"17",
"32",
"48",
"40",
"60",
"34",
"51",
"9",
"41",
"25",
"49",
"13",
"47",
"28",
"18",
"27",
"50",
"43",
"26",
"23",
"56",
"36",
"64",
"82",
"73",
"123",
"80",
"74",
"93",
"101",
"65",
"128",
"192",
"146",
"219",
"160",
"240",
"186",
"231",
"130",
"195",
"39",
"167",
"103",
"245",
"46",
"142",
"126",
"196",
"35",
"161",
"98"
] |
[
"nonn",
"base",
"tabl"
] | 9 | 1 | 2 |
[
"A099884",
"A380112",
"A380148"
] | null |
Rémy Sigrist, Jan 13 2025
| 2025-01-17T09:29:05 |
oeisdata/seq/A380/A380148.seq
|
556f48e66c686b1085298778c206ea0f
|
A380149
|
Characteristic polynomial of the tesseract graph: a(n) = n^6*(n^2-16)*(n^2-4)^4.
|
[
"0",
"-1215",
"0",
"-3189375",
"0",
"27348890625",
"978447237120",
"15920336210625",
"163074539520000",
"1214314872035265",
"7134511104000000",
"34856907746165505",
"146828238520320000",
"547377978676010625",
"1841813423998894080",
"5678883183381890625",
"16238028554439229440",
"43474602051830210625",
"109846357522513920000"
] |
[
"sign",
"easy"
] | 43 | 0 | 2 |
[
"A001014",
"A028347",
"A028566",
"A380149"
] | null |
Darío Clavijo, Jan 13 2025
| 2025-01-21T08:49:27 |
oeisdata/seq/A380/A380149.seq
|
f3b0bd1f168bfc3e88a0740310f19bfa
|
A380150
|
a(n) is the least k such that there exists a number 1 <= m <= k-1 and exactly n different pairs (x,y), 1 <= x < y <= k-1 such that 1/x^2 - 1/y^2 = 1/m^2 - 1/k^2.
|
[
"2",
"35",
"385",
"1872",
"5670",
"30030"
] |
[
"nonn",
"hard",
"more"
] | 18 | 0 | 1 |
[
"A094191",
"A355812",
"A379983",
"A380150"
] | null |
Jinyuan Wang and Jianing Song, Jan 13 2025
| 2025-01-21T03:26:50 |
oeisdata/seq/A380/A380150.seq
|
ca522b47db86f14c4112bc05d8352b73
|
A380151
|
Classification sequence for the Stolarsky array A035506.
|
[
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1"
] |
[
"nonn"
] | 37 | 1 | null |
[
"A007064",
"A035487",
"A035506",
"A380151",
"A380804"
] | null |
Jeffrey Shallit, Feb 02 2025
| 2025-02-04T06:47:40 |
oeisdata/seq/A380/A380151.seq
|
bd910c3c7d82efb1f1f79558e05256c0
|
A380152
|
Decimal expansion of 864/275.
|
[
"3",
"1",
"4",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1",
"8",
"1"
] |
[
"nonn",
"cons",
"easy"
] | 4 | 1 | 1 |
[
"A000796",
"A068028",
"A380109",
"A380152"
] | null |
Stefano Spezia, Jan 13 2025
| 2025-01-13T15:39:34 |
oeisdata/seq/A380/A380152.seq
|
fe4d8df45bf70e899e56bbfd5befc001
|
A380153
|
Numbers m for which the sum of all values of k satisfying the equation: (m - floor((m - k)/k)) mod k = 0 (1 <= k <= m) equals 2*m.
|
[
"39",
"4395",
"29055",
"57931",
"81115",
"152571",
"164955",
"410731",
"664747",
"877435",
"2080875",
"2521087",
"2539515"
] |
[
"nonn",
"more"
] | 12 | 1 | 1 |
[
"A048158",
"A375595",
"A378275",
"A380153"
] | null |
Lechoslaw Ratajczak, Jan 13 2025
| 2025-02-05T22:18:42 |
oeisdata/seq/A380/A380153.seq
|
6b56720da14beac72af48c72c234ad82
|
A380154
|
Golden numbers, for the years of the Metonic cycle. Assigned to the full moon days of the year with the standard pattern of a Runic calendar. Days without assignment are represented by zero.
|
[
"19",
"8",
"0",
"16",
"5",
"0",
"13",
"2",
"0",
"10",
"0",
"18",
"7",
"0",
"15",
"4",
"0",
"12",
"1",
"0",
"9",
"0",
"17",
"6",
"0",
"14",
"3",
"0",
"11",
"19",
"0",
"8",
"0",
"16",
"5",
"0",
"13",
"2",
"0",
"10",
"0",
"18",
"7",
"0",
"15",
"4",
"0",
"21",
"1",
"0",
"9",
"0",
"17",
"6",
"0",
"14",
"3",
"0",
"11",
"19",
"8",
"0",
"16",
"5",
"0",
"13",
"2",
"0",
"10",
"0",
"18",
"7",
"0",
"15",
"4",
"0",
"12",
"1",
"0",
"9",
"0",
"17",
"6",
"0",
"14",
"3",
"0",
"11",
"19",
"0",
"8",
"0",
"16",
"5",
"0",
"13"
] |
[
"nonn",
"fini"
] | 48 | 1 | 1 |
[
"A057349",
"A098476",
"A131773",
"A348924",
"A349710",
"A380154"
] | null |
Thomas Scheuerle, Jan 13 2025
| 2025-01-27T21:15:16 |
oeisdata/seq/A380/A380154.seq
|
1dd1e08dbfe8f2cd63c478d4be7ddc29
|
A380155
|
Expansion of e.g.f. 1/sqrt(1 - 2*x*exp(2*x)).
|
[
"1",
"1",
"7",
"63",
"785",
"12545",
"244407",
"5619775",
"148977313",
"4473497601",
"150078670055",
"5563415292479",
"225832882678449",
"9962766560986369",
"474619650950131351",
"24283168467229957695",
"1327993894505461755713",
"77305844496338607597569",
"4772660185400974888323015"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A006153",
"A380014",
"A380015",
"A380155",
"A380156"
] | null |
Seiichi Manyama, Jan 13 2025
| 2025-01-23T05:22:18 |
oeisdata/seq/A380/A380155.seq
|
54d4c0b65b1b15f3dd045ca628b5aa12
|
A380156
|
Expansion of e.g.f. 1/(1 - 3*x*exp(3*x))^(1/3).
|
[
"1",
"1",
"10",
"127",
"2260",
"52165",
"1478098",
"49666267",
"1930817080",
"85253566825",
"4214519350750",
"230609701370719",
"13837049296702228",
"903380930924784013",
"63754235596937808874",
"4836352735401636409795",
"392451456493513697671792",
"33920902255644870783973201",
"3111255003645991777552833718"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A006153",
"A380016",
"A380017",
"A380155",
"A380156"
] | null |
Seiichi Manyama, Jan 13 2025
| 2025-01-14T02:31:18 |
oeisdata/seq/A380/A380156.seq
|
be43f372b02e39e5b981f26277281d50
|
A380157
|
Expansion of e.g.f. (1 + 3*x*exp(3*x))^(1/3).
|
[
"1",
"1",
"4",
"1",
"-44",
"265",
"2458",
"-48419",
"-99320",
"12598417",
"-82133810",
"-4205894891",
"86494587292",
"1457086105657",
"-79743685096670",
"-88062957588275",
"77425160027442832",
"-1138977883460384735",
"-76951663963327663082",
"2978943480750081242629",
"64353221406902873516260"
] |
[
"sign"
] | 8 | 0 | 3 |
[
"A191498",
"A380134",
"A380157"
] | null |
Seiichi Manyama, Jan 13 2025
| 2025-01-14T01:49:16 |
oeisdata/seq/A380/A380157.seq
|
2d8528ab97f78b4a6480601c238bff15
|
A380158
|
Expansion of e.g.f. sqrt(exp(-2*x) + 2*x).
|
[
"1",
"0",
"2",
"-4",
"-4",
"64",
"-8",
"-3312",
"14352",
"267776",
"-3403744",
"-24119360",
"881205184",
"-593040384",
"-261913919616",
"2567414468864",
"83291021050112",
"-2080429273726976",
"-22004502593928704",
"1526354137528335360",
"-3870482611349750784",
"-1112746657730132623360",
"18568218633016319670272"
] |
[
"sign"
] | 9 | 0 | 3 |
[
"A191498",
"A380014",
"A380158"
] | null |
Seiichi Manyama, Jan 13 2025
| 2025-01-14T01:49:12 |
oeisdata/seq/A380/A380158.seq
|
0f8ced50eb3d81c6694f6e2f1403f9de
|
A380159
|
Expansion of e.g.f. (exp(-3*x) + 3*x)^(1/3).
|
[
"1",
"0",
"3",
"-9",
"-27",
"459",
"243",
"-58563",
"338985",
"11581623",
"-206336889",
"-2610099207",
"128764066797",
"37135699587",
"-90848500643781",
"1216300295221749",
"68623945856512209",
"-2410073970973057809",
"-44786917868989757553",
"4171855691698864732305",
"-8174731579262161250859"
] |
[
"sign"
] | 8 | 0 | 3 |
[
"A380016",
"A380158",
"A380159"
] | null |
Seiichi Manyama, Jan 13 2025
| 2025-01-14T01:49:06 |
oeisdata/seq/A380/A380159.seq
|
e01edbc314e8476670bf7edf3e741f97
|
A380160
|
a(n) is the value of the Euler totient function when applied to the powerful part of n.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"4",
"6",
"1",
"1",
"2",
"1",
"1",
"1",
"8",
"1",
"6",
"1",
"2",
"1",
"1",
"1",
"4",
"20",
"1",
"18",
"2",
"1",
"1",
"1",
"16",
"1",
"1",
"1",
"12",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"2",
"6",
"1",
"1",
"8",
"42",
"20",
"1",
"2",
"1",
"18",
"1",
"4",
"1",
"1",
"1",
"2",
"1",
"1",
"6",
"32",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"24",
"1",
"1",
"20",
"2",
"1",
"1",
"1",
"8",
"54",
"1",
"1",
"2"
] |
[
"nonn",
"easy",
"mult"
] | 10 | 1 | 4 |
[
"A000010",
"A001694",
"A005117",
"A057521",
"A295294",
"A295295",
"A323333",
"A349379",
"A357669",
"A380160",
"A380161"
] | null |
Amiram Eldar, Jan 13 2025
| 2025-01-14T01:52:16 |
oeisdata/seq/A380/A380160.seq
|
78a3ba39e178b0a4bffa9cd81fdab63f
|
A380161
|
a(n) is the value of the Euler totient function when applied to the powerfree part of n.
|
[
"1",
"1",
"2",
"1",
"4",
"2",
"6",
"1",
"1",
"4",
"10",
"2",
"12",
"6",
"8",
"1",
"16",
"1",
"18",
"4",
"12",
"10",
"22",
"2",
"1",
"12",
"1",
"6",
"28",
"8",
"30",
"1",
"20",
"16",
"24",
"1",
"36",
"18",
"24",
"4",
"40",
"12",
"42",
"10",
"4",
"22",
"46",
"2",
"1",
"1",
"32",
"12",
"52",
"1",
"40",
"6",
"36",
"28",
"58",
"8",
"60",
"30",
"6",
"1",
"48",
"20",
"66",
"16",
"44",
"24",
"70",
"1",
"72",
"36"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 3 |
[
"A000010",
"A005117",
"A013661",
"A055231",
"A056671",
"A092261",
"A335851",
"A380160",
"A380161"
] | null |
Amiram Eldar, Jan 13 2025
| 2025-01-14T01:51:41 |
oeisdata/seq/A380/A380161.seq
|
815ec9cf51d6adaa5106c7bea68982a5
|
A380162
|
a(n) is the value of the Euler totient function when applied to the largest square dividing n.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"6",
"1",
"1",
"2",
"1",
"1",
"1",
"8",
"1",
"6",
"1",
"2",
"1",
"1",
"1",
"2",
"20",
"1",
"6",
"2",
"1",
"1",
"1",
"8",
"1",
"1",
"1",
"12",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"6",
"1",
"1",
"8",
"42",
"20",
"1",
"2",
"1",
"6",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"6",
"32",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"12",
"1",
"1",
"20",
"2",
"1",
"1",
"1",
"8",
"54",
"1",
"1",
"2",
"1"
] |
[
"nonn",
"easy",
"mult"
] | 9 | 1 | 4 |
[
"A000010",
"A000290",
"A002117",
"A005117",
"A008833",
"A013661",
"A077591",
"A078434",
"A365331",
"A365332",
"A380162",
"A380163"
] | null |
Amiram Eldar, Jan 13 2025
| 2025-01-14T01:51:50 |
oeisdata/seq/A380/A380162.seq
|
cf5660a30b58bc28293c4d79127dc432
|
A380163
|
a(n) is the value of the Euler totient function when applied to the squarefree part of n.
|
[
"1",
"1",
"2",
"1",
"4",
"2",
"6",
"1",
"1",
"4",
"10",
"2",
"12",
"6",
"8",
"1",
"16",
"1",
"18",
"4",
"12",
"10",
"22",
"2",
"1",
"12",
"2",
"6",
"28",
"8",
"30",
"1",
"20",
"16",
"24",
"1",
"36",
"18",
"24",
"4",
"40",
"12",
"42",
"10",
"4",
"22",
"46",
"2",
"1",
"1",
"32",
"12",
"52",
"2",
"40",
"6",
"36",
"28",
"58",
"8",
"60",
"30",
"6",
"1",
"48",
"20",
"66",
"16",
"44",
"24",
"70",
"1",
"72",
"36"
] |
[
"nonn",
"easy",
"mult"
] | 9 | 1 | 3 |
[
"A000010",
"A005117",
"A007913",
"A013662",
"A028982",
"A055076",
"A367991",
"A380162",
"A380163"
] | null |
Amiram Eldar, Jan 14 2025
| 2025-01-14T01:51:51 |
oeisdata/seq/A380/A380163.seq
|
f8a1d7291d056d1bf5b3834013d1924b
|
A380164
|
a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is a square.
|
[
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"1",
"1",
"1",
"8",
"1",
"6",
"1",
"2",
"1",
"1",
"1",
"1",
"20",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"12",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"6",
"1",
"1",
"8",
"42",
"20",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"6",
"32",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"20",
"2",
"1",
"1",
"1",
"8",
"54",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"6",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"42",
"6",
"40"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 4 |
[
"A000010",
"A000290",
"A002117",
"A077591",
"A268335",
"A350388",
"A351568",
"A365401",
"A380164",
"A380165"
] | null |
Amiram Eldar, Jan 14 2025
| 2025-01-14T01:51:55 |
oeisdata/seq/A380/A380164.seq
|
5da9cc1d4ce416802dd63708dd03478a
|
A380165
|
a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.
|
[
"1",
"1",
"2",
"1",
"4",
"2",
"6",
"4",
"1",
"4",
"10",
"2",
"12",
"6",
"8",
"1",
"16",
"1",
"18",
"4",
"12",
"10",
"22",
"8",
"1",
"12",
"18",
"6",
"28",
"8",
"30",
"16",
"20",
"16",
"24",
"1",
"36",
"18",
"24",
"16",
"40",
"12",
"42",
"10",
"4",
"22",
"46",
"2",
"1",
"1",
"32",
"12",
"52",
"18",
"40",
"24",
"36",
"28",
"58",
"8",
"60",
"30",
"6",
"1",
"48",
"20",
"66",
"16",
"44",
"24",
"70",
"4",
"72"
] |
[
"nonn",
"easy",
"mult"
] | 8 | 1 | 3 |
[
"A000010",
"A000290",
"A013662",
"A077591",
"A268335",
"A350389",
"A351569",
"A365402",
"A374456",
"A380164",
"A380165"
] | null |
Amiram Eldar, Jan 14 2025
| 2025-01-14T01:52:21 |
oeisdata/seq/A380/A380165.seq
|
4f4c28b92917920531b6ee87bc856826
|
A380166
|
Triangle read by rows: T(n,k) is the number of sequences in which the games of a fully symmetric single-elimination tournament with 2^n teams can be played if arbitrarily many arenas are available and the number of distinct times at which games are played is k, 1 <= k <= 2^n-1.
|
[
"1",
"0",
"1",
"2",
"0",
"0",
"1",
"22",
"102",
"160",
"80",
"0",
"0",
"0",
"1",
"672",
"45914",
"973300",
"9396760",
"49410424",
"155188488",
"304369008",
"376231680",
"284951040",
"120806400",
"21964800",
"0",
"0",
"0",
"0",
"1",
"458324",
"2493351562",
"1695612148252",
"328854102958150",
"26894789756402464",
"1153061834890296576",
"29635726970329429536"
] |
[
"nonn",
"tabf"
] | 27 | 1 | 4 |
[
"A000325",
"A056972",
"A379758",
"A380166"
] | null |
Noah A Rosenberg, Jan 13 2025
| 2025-03-31T22:58:13 |
oeisdata/seq/A380/A380166.seq
|
0d7e22f56d622478b2d2e5a2330e4e46
|
A380167
|
Maximum number of sets for the SET card game for n cards with 3 properties where each can take 3 values.
|
[
"1",
"1",
"2",
"3",
"5",
"8",
"12",
"12",
"13",
"14",
"16",
"19",
"23",
"26",
"30",
"36",
"41",
"47",
"54",
"62",
"71",
"81",
"92",
"104",
"117"
] |
[
"nonn",
"fini",
"full"
] | 30 | 3 | 3 |
[
"A090245",
"A182240",
"A380167"
] | null |
Justin Stevens, Jan 22 2025
| 2025-03-31T12:30:14 |
oeisdata/seq/A380/A380167.seq
|
d686e74493bdb61eb4761d1f3f9fad2e
|
A380168
|
Nonsquares whose square part is greater than their squarefree part.
|
[
"8",
"12",
"18",
"27",
"32",
"45",
"48",
"50",
"54",
"63",
"72",
"75",
"80",
"96",
"98",
"108",
"112",
"125",
"128",
"147",
"150",
"160",
"162",
"175",
"176",
"180",
"192",
"200",
"208",
"216",
"224",
"240",
"242",
"243",
"245",
"250",
"252",
"275",
"288",
"294",
"300",
"320",
"325",
"338",
"343",
"350",
"360",
"363",
"375",
"384",
"392",
"396",
"405",
"425",
"432",
"448"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A000037",
"A000290",
"A007913",
"A008833",
"A056623",
"A380168"
] | null |
Felix Huber, Jan 25 2025
| 2025-02-10T11:13:15 |
oeisdata/seq/A380/A380168.seq
|
211e1149db786dab2dceca9a7488ae9b
|
A380169
|
Table T(r,s) read by rows: the coefficient of [k^s] of the Wynn's r-th converging polynomial p_r(k) of Weber functions, 0<=s<=r.
|
[
"1",
"-1",
"1",
"1",
"-3",
"1",
"1",
"7",
"-6",
"1",
"-13",
"-5",
"25",
"-10",
"1",
"47",
"-83",
"-60",
"65",
"-15",
"1",
"73",
"637",
"-203",
"-280",
"140",
"-21",
"1",
"-2447",
"-1425",
"3710",
"77",
"-910",
"266",
"-28",
"1",
"16811",
"-22341",
"-21347",
"13146",
"2667",
"-2394",
"462",
"-36",
"1",
"15551",
"318149",
"-50400",
"-137435",
"30135",
"12999",
"-5460",
"750",
"-45",
"1",
"-1726511",
"-1415491",
"2465969",
"379940",
"-579590",
"32109",
"43659",
"-11220",
"1155",
"-55"
] |
[
"tabl",
"sign"
] | 6 | 0 | 5 |
[
"A001662",
"A001664",
"A380169",
"A380170"
] | null |
R. J. Mathar, Jan 14 2025
| 2025-01-14T07:40:53 |
oeisdata/seq/A380/A380169.seq
|
916e5b79f685c0a2d9a6a3689de47314
|
A380170
|
Coefficient [k^1] of Wynn's converging polynomial p_n(k) of Weber functions.
|
[
"1",
"-3",
"7",
"-5",
"-83",
"637",
"-1425",
"-22341",
"318149",
"-1415491",
"-18988393",
"444896699",
"-3268880739",
"-35114352579",
"1317630731647",
"-14445395761157",
"-112227733823435",
"7047241310852605",
"-108366459009937881",
"-487554173851570053",
"61301180146129065101",
"-1271086841777475748099",
"-1158631507880606959729"
] |
[
"sign"
] | 4 | 1 | 2 |
[
"A001663",
"A380169",
"A380170"
] | null |
R. J. Mathar, Jan 14 2025
| 2025-01-14T07:41:16 |
oeisdata/seq/A380/A380170.seq
|
673776150f82cd63a3e059d0e4a60563
|
A380171
|
Numerators of coefficients in expansion of exp(-1 + 1 / Product_{k>=1} (1 - x^k)).
|
[
"1",
"1",
"5",
"31",
"265",
"2621",
"31621",
"85319",
"6574961",
"22334789",
"2092318021",
"42552808871",
"187499032037",
"22150499622421",
"22390616112461",
"15039597200385451",
"428293292251548001",
"103005657594642373",
"407547173842501629061",
"2708181047424714819491",
"36245898714951203790797"
] |
[
"nonn",
"frac"
] | 8 | 0 | 3 |
[
"A000041",
"A017665",
"A058892",
"A066186",
"A067764",
"A098987",
"A380171",
"A380271"
] | null |
Ilya Gutkovskiy, Jan 14 2025
| 2025-01-18T09:28:06 |
oeisdata/seq/A380/A380171.seq
|
bd40137487379c4adc205fb9b40022b7
|
A380172
|
Second center column of elementary triangular automaton rule 54, starting from a lone 1 cell.
|
[
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1"
] |
[
"nonn"
] | 26 | 0 | null |
[
"A380012",
"A380172",
"A380173"
] | null |
Paul Cousin, Jan 14 2025
| 2025-06-04T00:30:15 |
oeisdata/seq/A380/A380172.seq
|
8ee3e8ec75ab0efd6fc1f627b7d67925
|
A380173
|
Third center column of elementary triangular automaton rule 54, starting from a lone 1 cell.
|
[
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1"
] |
[
"nonn"
] | 19 | 0 | null |
[
"A380012",
"A380172",
"A380173"
] | null |
Paul Cousin, Jan 14 2025
| 2025-06-04T00:30:19 |
oeisdata/seq/A380/A380173.seq
|
56522373e66b69b0891208769194af15
|
A380174
|
a(n) is the least integer (in absolute value) not among the n initial terms of A377091; in case of a tie, preference is given to the positive value.
|
[
"0",
"1",
"-1",
"-1",
"-1",
"3",
"-3",
"-3",
"-3",
"-3",
"-5",
"-5",
"-5",
"-5",
"-5",
"-5",
"-5",
"9",
"9",
"9",
"9",
"9",
"9",
"10",
"11",
"12",
"-13",
"14",
"14",
"14",
"14",
"14",
"14",
"14",
"15",
"16",
"17",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"22",
"22",
"24",
"24",
"24",
"24",
"-25",
"-26",
"-27",
"-28",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"33"
] |
[
"sign"
] | 24 | 0 | 6 |
[
"A377091",
"A379067",
"A379068",
"A380174"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T09:10:53 |
oeisdata/seq/A380/A380174.seq
|
e8d15265851fd3bb227812dce09e14b6
|
A380175
|
Greedy sums of distinct squares.
|
[
"0",
"1",
"4",
"5",
"9",
"10",
"13",
"14",
"16",
"17",
"20",
"21",
"25",
"26",
"29",
"30",
"34",
"35",
"36",
"37",
"40",
"41",
"45",
"46",
"49",
"50",
"53",
"54",
"58",
"59",
"62",
"63",
"64",
"65",
"68",
"69",
"73",
"74",
"77",
"78",
"80",
"81",
"82",
"85",
"86",
"90",
"91",
"94",
"95",
"97",
"98",
"100",
"101",
"104",
"105",
"109",
"110",
"113",
"114",
"116",
"117",
"120",
"121",
"122",
"125",
"126",
"130"
] |
[
"nonn"
] | 37 | 1 | 3 |
[
"A003995",
"A380175",
"A380177"
] | null |
Mike Sheppard, Jan 14 2025
| 2025-02-15T02:06:05 |
oeisdata/seq/A380/A380175.seq
|
1efe6a168092745926af59b53bb2dc6c
|
A380176
|
Number of pairs of adjacent equal parts in all gap-free compositions of n.
|
[
"0",
"0",
"1",
"2",
"6",
"12",
"26",
"56",
"124",
"266",
"563",
"1204",
"2573",
"5468",
"11559",
"24370",
"51281",
"107720",
"225867",
"472660",
"987378",
"2059180",
"4287932",
"8916624",
"18517398",
"38406486",
"79563118",
"164636582",
"340308519",
"702713844",
"1449664783",
"2987870476",
"6152930738",
"12660419370",
"26030245642"
] |
[
"nonn"
] | 10 | 0 | 4 |
[
"A011782",
"A106356",
"A107428",
"A107429",
"A373306",
"A374147",
"A374726",
"A377823",
"A380176"
] | null |
John Tyler Rascoe, Jan 14 2025
| 2025-02-05T22:21:14 |
oeisdata/seq/A380/A380176.seq
|
4761603fa0dd0125a7982d29c37443b0
|
A380177
|
Numbers that can be written as sum of distinct squares but not if the squares are taken greedily.
|
[
"38",
"39",
"42",
"51",
"52",
"55",
"56",
"57",
"61",
"66",
"70",
"71",
"75",
"79",
"83",
"84",
"87",
"88",
"89",
"93",
"99",
"102",
"103",
"106",
"107",
"111",
"115",
"118",
"119",
"123",
"124",
"127",
"129",
"132",
"133",
"136",
"139",
"140",
"143",
"146",
"147",
"150",
"151",
"152",
"155",
"156",
"159",
"162",
"163",
"166",
"167",
"168",
"171",
"172",
"175",
"176",
"177",
"180"
] |
[
"nonn"
] | 16 | 1 | 1 |
[
"A003995",
"A380175",
"A380177"
] | null |
Mike Sheppard, Jan 14 2025
| 2025-02-01T08:46:07 |
oeisdata/seq/A380/A380177.seq
|
70e00be8f4ff0b03af781f0db0eac0cf
|
A380178
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A162659.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"8",
"22",
"0",
"1",
"4",
"15",
"62",
"281",
"0",
"1",
"5",
"24",
"126",
"792",
"5396",
"0",
"1",
"6",
"35",
"220",
"1641",
"14922",
"142297",
"0",
"1",
"7",
"48",
"350",
"2960",
"30708",
"384316",
"4865806",
"0",
"1",
"8",
"63",
"522",
"4905",
"55604",
"777537",
"12836406",
"207407489",
"0",
"1",
"9",
"80",
"742",
"7656",
"93300",
"1393720",
"25450806",
"535396784",
"10710044776",
"0"
] |
[
"nonn",
"tabl"
] | 68 | 0 | 8 |
[
"A000007",
"A162659",
"A379168",
"A380178"
] | null |
Seiichi Manyama, Feb 11 2025
| 2025-02-27T11:17:15 |
oeisdata/seq/A380/A380178.seq
|
5a30337a47fab33c3ac3f23d21d8e0d6
|
A380179
|
Triangle T(n,k) read by rows: T(n,k) = -binomial(n+1,k) + Sum_{i=0..k} Sum_{j=0..i+1} (i+1)^(n-i+j)*(-1)^(k-i)/(j!*(k-i)!) for 0 <= k <= n.
|
[
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"14",
"14",
"1",
"1",
"33",
"68",
"30",
"1",
"1",
"72",
"257",
"218",
"55",
"1",
"1",
"151",
"873",
"1189",
"553",
"91",
"1",
"1",
"310",
"2812",
"5734",
"4094",
"1204",
"140",
"1",
"1",
"629",
"8802",
"25916",
"26484",
"11598",
"2352",
"204",
"1",
"1",
"1268",
"27107",
"112718",
"158840",
"96702",
"28566",
"4236",
"285",
"1"
] |
[
"nonn",
"tabl"
] | 6 | 0 | 5 |
[
"A347420",
"A380179"
] | null |
Mikhail Kurkov, Jan 14 2025
| 2025-02-09T14:58:25 |
oeisdata/seq/A380/A380179.seq
|
0e12f63d57567cae1c4a6ffbb9a829e0
|
A380180
|
Irregular table T(n, k), n >= 0, k = 1..2^A005812(n); the n-th row lists the integers m (possibly negative) such that the nonzero digits in the balanced ternary expansion of m appear in the balanced ternary expansion of n.
|
[
"0",
"0",
"1",
"-1",
"0",
"2",
"3",
"0",
"3",
"0",
"1",
"3",
"4",
"-4",
"-3",
"-1",
"0",
"5",
"6",
"8",
"9",
"-3",
"0",
"6",
"9",
"-3",
"-2",
"0",
"1",
"6",
"7",
"9",
"10",
"-1",
"0",
"8",
"9",
"0",
"9",
"0",
"1",
"9",
"10",
"-1",
"0",
"2",
"3",
"8",
"9",
"11",
"12",
"0",
"3",
"9",
"12",
"0",
"1",
"3",
"4",
"9",
"10",
"12",
"13",
"-13",
"-12",
"-10",
"-9",
"-4",
"-3",
"-1",
"0",
"14",
"15",
"17",
"18",
"23",
"24",
"26",
"27"
] |
[
"sign",
"base",
"tabf"
] | 9 | 0 | 6 |
[
"A005812",
"A060372",
"A060373",
"A368239",
"A380123",
"A380180",
"A380181"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:31:51 |
oeisdata/seq/A380/A380180.seq
|
0d2933d1dca9b6c26d65aa49afcf7f35
|
A380181
|
Distinct nonpositive values of A380180, negated, in order of appearance and with offset 0.
|
[
"0",
"1",
"4",
"3",
"2",
"13",
"12",
"10",
"9",
"11",
"8",
"7",
"6",
"5",
"40",
"39",
"37",
"36",
"31",
"30",
"28",
"27",
"38",
"35",
"29",
"26",
"34",
"33",
"25",
"24",
"32",
"23",
"22",
"21",
"19",
"18",
"20",
"17",
"16",
"15",
"14",
"121",
"120",
"118",
"117",
"112",
"111",
"109",
"108",
"94",
"93",
"91",
"90",
"85",
"84",
"82",
"81",
"119",
"116",
"110",
"107",
"92",
"89",
"83",
"80"
] |
[
"nonn",
"base"
] | 11 | 0 | 3 |
[
"A380180",
"A380181",
"A380182"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:31:47 |
oeisdata/seq/A380/A380181.seq
|
25fb426b685873d502a668dfe6459214
|
A380182
|
Inverse permutation to A380181.
|
[
"0",
"1",
"4",
"3",
"2",
"13",
"12",
"11",
"10",
"8",
"7",
"9",
"6",
"5",
"40",
"39",
"38",
"37",
"35",
"34",
"36",
"33",
"32",
"31",
"29",
"28",
"25",
"21",
"20",
"24",
"19",
"18",
"30",
"27",
"26",
"23",
"17",
"16",
"22",
"15",
"14",
"121",
"120",
"119",
"118",
"116",
"115",
"117",
"114",
"113",
"112",
"110",
"109",
"106",
"102",
"101",
"105",
"100",
"99",
"111",
"108",
"107"
] |
[
"nonn",
"base"
] | 7 | 0 | 3 |
[
"A380181",
"A380182"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:31:42 |
oeisdata/seq/A380/A380182.seq
|
300e33b5c48c208b46ab56894d1fe9ae
|
A380183
|
Distinct nonnegative values of A380123, in order of appearance and with offset 0.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"7",
"9",
"10",
"11",
"12",
"15",
"16",
"13",
"17",
"14",
"18",
"19",
"20",
"21",
"22",
"24",
"30",
"32",
"23",
"31",
"25",
"33",
"26",
"34",
"27",
"28",
"29",
"35",
"36",
"37",
"38",
"40",
"39",
"41",
"42",
"43",
"44",
"47",
"48",
"59",
"60",
"63",
"64",
"45",
"49",
"61",
"65",
"46",
"62",
"50",
"66",
"51",
"52",
"67",
"68",
"53",
"69",
"54",
"56",
"55"
] |
[
"nonn",
"base"
] | 7 | 0 | 3 |
[
"A380123",
"A380183",
"A380184",
"A380185"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:30:45 |
oeisdata/seq/A380/A380183.seq
|
0a336ec7801da3c7cab407672ef993d5
|
A380184
|
Inverse permutation to A380183.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"7",
"9",
"10",
"11",
"12",
"15",
"17",
"13",
"14",
"16",
"18",
"19",
"20",
"21",
"22",
"26",
"23",
"28",
"30",
"32",
"33",
"34",
"24",
"27",
"25",
"29",
"31",
"35",
"36",
"37",
"38",
"40",
"39",
"41",
"42",
"43",
"44",
"51",
"55",
"45",
"46",
"52",
"57",
"59",
"60",
"63",
"65",
"67",
"66",
"68",
"69",
"47",
"48",
"53",
"56",
"49",
"50",
"54",
"58",
"61"
] |
[
"nonn",
"base"
] | 6 | 0 | 3 |
[
"A380183",
"A380184"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:30:30 |
oeisdata/seq/A380/A380184.seq
|
e931b3cdd2233c0ea58c5eb7552a42e7
|
A380185
|
Distinct nonpositive values of A380123, negated, in order of appearance and with offset 0.
|
[
"0",
"1",
"2",
"5",
"4",
"3",
"10",
"8",
"9",
"7",
"6",
"21",
"20",
"17",
"16",
"19",
"15",
"18",
"14",
"13",
"12",
"11",
"42",
"40",
"34",
"32",
"41",
"33",
"39",
"31",
"38",
"30",
"37",
"36",
"35",
"29",
"28",
"27",
"26",
"24",
"25",
"23",
"22",
"85",
"84",
"81",
"80",
"69",
"68",
"65",
"64",
"83",
"79",
"67",
"63",
"82",
"66",
"78",
"62",
"77",
"76",
"61",
"60",
"75",
"59",
"74",
"72",
"73"
] |
[
"nonn",
"base"
] | 6 | 0 | 3 |
[
"A380123",
"A380183",
"A380185",
"A380186"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:32:07 |
oeisdata/seq/A380/A380185.seq
|
9cb986200411d26bdeb8067199bc5d2d
|
A380186
|
Inverse permutation to A380185.
|
[
"0",
"1",
"2",
"5",
"4",
"3",
"10",
"9",
"7",
"8",
"6",
"21",
"20",
"19",
"18",
"16",
"14",
"13",
"17",
"15",
"12",
"11",
"42",
"41",
"39",
"40",
"38",
"37",
"36",
"35",
"31",
"29",
"25",
"27",
"24",
"34",
"33",
"32",
"30",
"28",
"23",
"26",
"22",
"85",
"84",
"83",
"82",
"80",
"78",
"77",
"81",
"79",
"76",
"75",
"74",
"73",
"71",
"72",
"70",
"64",
"62",
"61",
"58",
"54",
"50",
"49",
"56",
"53"
] |
[
"nonn",
"base"
] | 6 | 0 | 3 |
[
"A380185",
"A380186"
] | null |
Rémy Sigrist, Jan 15 2025
| 2025-01-17T16:31:56 |
oeisdata/seq/A380/A380186.seq
|
f5056520aba2e0d393c889aaf8e9cd13
|
A380187
|
Smallest integer not yet present in the sequence such that the sum of the first a(n) terms of the sequence is odd for n odd and even for n even.
|
[
"1",
"3",
"4",
"5",
"7",
"2",
"9",
"6",
"8",
"11",
"12",
"13",
"15",
"10",
"17",
"14",
"16",
"19",
"20",
"21",
"23",
"18",
"25",
"22",
"24",
"27",
"28",
"29",
"31",
"26",
"33",
"30",
"32",
"35",
"36",
"37",
"39",
"34",
"41",
"38",
"40",
"43",
"44",
"45",
"47",
"42",
"49",
"46",
"48",
"51",
"52",
"53",
"55",
"50",
"57",
"54",
"56",
"59",
"60",
"61",
"63",
"58",
"65",
"62",
"64",
"67",
"68",
"69"
] |
[
"nonn",
"easy"
] | 38 | 1 | 2 |
[
"A005408",
"A005843",
"A380187"
] | null |
Paolo P. Lava, Jan 15 2025
| 2025-02-21T08:25:28 |
oeisdata/seq/A380/A380187.seq
|
fe72feed53360473ef6093f7030ae256
|
A380188
|
a(n) is the maximum number of coincidences of the first n terms of this sequence and a cyclic shift of the first n terms of A380189, i.e., the number of equalities a(k) = A380189((s+k) mod n) for 0 <= k < n, maximized over s.
|
[
"0",
"1",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"9",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"12"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A272727",
"A276638",
"A379265",
"A379266",
"A380188",
"A380189",
"A380190"
] | null |
Pontus von Brömssen, Jan 15 2025
| 2025-01-16T20:22:10 |
oeisdata/seq/A380/A380188.seq
|
83f5ab4d6e4b0ec46d9869813f68ea6c
|
A380189
|
a(n) is the number of coincidences of the first n terms of this sequence and the first n terms of A380188 in reverse order, i.e., the number of equalities a(k) = A380188(n-1-k) for 0 <= k < n.
|
[
"0",
"1",
"0",
"2",
"0",
"1",
"1",
"2",
"1",
"0",
"3",
"1",
"0",
"2",
"0",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"1",
"0",
"3",
"2",
"3",
"3",
"4",
"5",
"4",
"4",
"4",
"3",
"3",
"3",
"2",
"2",
"2",
"3",
"6",
"6",
"6",
"6",
"8",
"7",
"6",
"5",
"5",
"5",
"4",
"4",
"2",
"1",
"0",
"3",
"1",
"0",
"2",
"0",
"2",
"2",
"3",
"5",
"7",
"7",
"6",
"5",
"4",
"5",
"5",
"6",
"3",
"2",
"2",
"1",
"1",
"4",
"3",
"1",
"2",
"3",
"2",
"4",
"3",
"4",
"4"
] |
[
"nonn",
"look"
] | 8 | 0 | 4 |
[
"A272727",
"A276638",
"A379266",
"A380188",
"A380189",
"A380190"
] | null |
Pontus von Brömssen, Jan 15 2025
| 2025-01-16T20:29:53 |
oeisdata/seq/A380/A380189.seq
|
a7d68ca29a5a71a6e70d34d82f6c991f
|
A380190
|
Indices k where A380188 changes, i.e., such that A380188(k) != A380188(k-1).
|
[
"1",
"2",
"4",
"11",
"21",
"22",
"25",
"29",
"31",
"32",
"33",
"45",
"225",
"226",
"227",
"256",
"355",
"2737",
"2738",
"2740",
"2741",
"2775",
"2779",
"2780",
"2781",
"2790",
"2796",
"2798",
"2802",
"2811",
"2814",
"2817",
"2819",
"2820",
"2900",
"2901",
"2902",
"2903",
"2904",
"2905",
"2906",
"2907",
"2908",
"2909",
"2910",
"2911",
"2912",
"2913",
"2914"
] |
[
"nonn"
] | 6 | 1 | 2 |
[
"A379297",
"A380188",
"A380189",
"A380190"
] | null |
Pontus von Brömssen, Jan 15 2025
| 2025-01-17T08:19:25 |
oeisdata/seq/A380/A380190.seq
|
b9d4f3c2bfd2a0bb4222931cd3fa6589
|
A380191
|
Triangle read by rows: Riordan array (2 - D(x), x * D(x)) where D(x) is g.f. of A001764.
|
[
"1",
"-1",
"1",
"-3",
"0",
"1",
"-12",
"-1",
"1",
"1",
"-55",
"-6",
"2",
"2",
"1",
"-273",
"-33",
"5",
"6",
"3",
"1",
"-1428",
"-182",
"13",
"22",
"11",
"4",
"1",
"-7752",
"-1020",
"28",
"91",
"46",
"17",
"5",
"1",
"-43263",
"-5814",
"0",
"408",
"210",
"78",
"24",
"6",
"1",
"-246675",
"-33649",
"-627",
"1938",
"1020",
"380",
"119",
"32",
"7",
"1",
"-1430715",
"-197340",
"-6325",
"9614",
"5187",
"1938",
"612",
"170",
"41",
"8",
"1"
] |
[
"sign",
"easy",
"tabl"
] | 6 | 0 | 4 |
[
"A001764",
"A110616",
"A380191"
] | null |
Werner Schulte, Jan 15 2025
| 2025-01-25T12:58:16 |
oeisdata/seq/A380/A380191.seq
|
da662d41416c8f9d82e0819eaf63cc47
|
A380192
|
Sum mod(10) of digits of n-th prime.
|
[
"2",
"3",
"5",
"7",
"2",
"4",
"8",
"0",
"5",
"1",
"4",
"0",
"5",
"7",
"1",
"8",
"4",
"7",
"3",
"8",
"0",
"6",
"1",
"7",
"6",
"2",
"4",
"8",
"0",
"5",
"0",
"5",
"1",
"3",
"4",
"7",
"3",
"0",
"4",
"1",
"7",
"0",
"1",
"3",
"7",
"9",
"4",
"7",
"1",
"3",
"8",
"4",
"7",
"8",
"4",
"1",
"7",
"0",
"6",
"1",
"3",
"4",
"0",
"5",
"7",
"1",
"7",
"3",
"4",
"6",
"1",
"7",
"6",
"3",
"9",
"4",
"0",
"9",
"5",
"3",
"4",
"7",
"8",
"0",
"6",
"1",
"7",
"6",
"1",
"3",
"7",
"0",
"9"
] |
[
"nonn",
"base"
] | 27 | 1 | 1 |
[
"A007605",
"A010879",
"A053837",
"A158293",
"A380192"
] | null |
Enrique Navarrete, Jan 15 2025
| 2025-02-06T08:23:03 |
oeisdata/seq/A380/A380192.seq
|
8013da8e983dd8fa0d716c1eda4ef3ae
|
A380193
|
a(n) is the largest number whose sixth power is an n-digit sixth power which has the maximum sum of digits (A373994(n)).
|
[
"1",
"2",
"3",
"4",
"6",
"7",
"12",
"19",
"31",
"46",
"68",
"96",
"143",
"206",
"304",
"461",
"677",
"977",
"1194",
"2136",
"2896",
"4633",
"6373",
"9763",
"13817",
"21542",
"30643",
"43693",
"68123",
"99812",
"144083",
"183967",
"311296",
"463976",
"681017",
"994333",
"1441977",
"2150104",
"3022731",
"4608562",
"6765526",
"9258023"
] |
[
"nonn",
"base"
] | 29 | 1 | 2 |
[
"A373994",
"A379298",
"A380052",
"A380193",
"A380566",
"A380567",
"A380797"
] | null |
Zhining Yang, Jan 15 2025
| 2025-03-25T08:57:07 |
oeisdata/seq/A380/A380193.seq
|
e54dc9c091fb00f5d1cc6688449607c9
|
A380194
|
Continued fraction expansion of Sum_{i>=0} (-1)^i/(q(i)*q(i+1)) where q(0)=q(1)=1, q(3n+2)=q(3n+1)+q(3n), q(3n+3)=q(3n+2)+q(3n+1), and q(3n+4)=q(3n+2)*(q(3n+2)*q(3n+3)+1).
|
[
"0",
"1",
"1",
"1",
"4",
"1",
"1",
"289",
"1",
"1",
"81126049",
"1",
"1",
"2128359349797626142548649",
"1",
"1",
"38565134716822109850786884343127955049217538196275147632486387905655060249",
"1",
"1"
] |
[
"nonn",
"cofr"
] | 45 | 0 | 5 |
[
"A003417",
"A006280",
"A019426",
"A380194"
] | null |
Khalil Ayadi, Jan 15 2025
| 2025-02-11T00:01:54 |
oeisdata/seq/A380/A380194.seq
|
6f9602cad6f61a1b485b4ca5e8a73277
|
A380195
|
Triangle T(n,k) read by rows, where row n is a permutation of the numbers 1 through n, such that if a deck of n cards is prepared in this order, and under-under-down dealing is used, then the resulting cards will be dealt in increasing order.
|
[
"1",
"1",
"2",
"2",
"3",
"1",
"4",
"2",
"1",
"3",
"2",
"4",
"1",
"5",
"3",
"6",
"4",
"1",
"3",
"5",
"2",
"6",
"3",
"1",
"7",
"5",
"2",
"4",
"3",
"5",
"1",
"7",
"4",
"2",
"8",
"6",
"9",
"7",
"1",
"4",
"6",
"2",
"8",
"5",
"3",
"6",
"4",
"1",
"10",
"8",
"2",
"5",
"7",
"3",
"9",
"4",
"10",
"1",
"7",
"5",
"2",
"11",
"9",
"3",
"6",
"8",
"7",
"9",
"1",
"5",
"11",
"2",
"8",
"6",
"3",
"12",
"10",
"4",
"11",
"5",
"1",
"8",
"10",
"2",
"6",
"12",
"3",
"9",
"7",
"4",
"13"
] |
[
"nonn",
"tabl"
] | 18 | 1 | 3 |
[
"A006257",
"A008585",
"A054995",
"A225381",
"A321298",
"A378635",
"A380195",
"A381591",
"A381667"
] | null |
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 15 2025
| 2025-05-10T11:27:52 |
oeisdata/seq/A380/A380195.seq
|
c28c83e90513bb0660a714cb6bd3dcb6
|
A380196
|
Orders of Origami monoid on n strings constructed from the Jones monoid on n strings.
|
[
"6",
"44",
"293",
"2179",
"19086",
"190512"
] |
[
"nonn",
"more"
] | 43 | 2 | 1 |
[
"A000108",
"A380196"
] | null |
Peter Alspaugh, Jan 15 2025
| 2025-02-12T13:00:32 |
oeisdata/seq/A380/A380196.seq
|
7afc8541f6eadc240099385e097eefc9
|
A380197
|
Number of ways to choose a simple labeled graph on [n] and properly color the vertices using the minimum number of colors.
|
[
"1",
"1",
"3",
"25",
"423",
"16261",
"1266843",
"200830225",
"65750156223",
"42834021462061",
"55174125327583923"
] |
[
"nonn",
"more"
] | 35 | 0 | 3 |
[
"A006125",
"A084268",
"A229048",
"A372920",
"A380197"
] | null |
Geoffrey Critzer, Jan 22 2025
| 2025-01-23T00:03:40 |
oeisdata/seq/A380/A380197.seq
|
9a77c443bd91fa6ef873bb04b9815cd4
|
A380198
|
Difference between pi(2^n) and the integer nearest to 2^n / log(2^n).
|
[
"-2",
"-1",
"0",
"0",
"2",
"3",
"5",
"8",
"15",
"24",
"40",
"72",
"119",
"212",
"360",
"633",
"1128",
"1989",
"3580",
"6386",
"11537",
"20897",
"37980",
"69354",
"127336",
"234054",
"431877",
"799754",
"1484440",
"2763961",
"5156791",
"9644970",
"18080775",
"33959344",
"63902732",
"120474951",
"227515953",
"430345298",
"815241632"
] |
[
"sign"
] | 39 | 1 | 1 |
[
"A000720",
"A007053",
"A050499",
"A053622",
"A057835",
"A380198"
] | null |
James C. McMahon, Jan 16 2025
| 2025-03-31T22:59:10 |
oeisdata/seq/A380/A380198.seq
|
de34d501fdaf94596c75f71c31a01a0c
|
A380199
|
Smallest number of leading digits of A002110(n) (primorial(n)) that form a prime (or 0 if none exist).
|
[
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"4",
"1",
"1",
"1",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"26",
"3",
"1",
"1",
"1",
"4",
"7",
"1",
"1",
"3",
"2",
"1",
"1",
"17",
"1",
"2",
"2",
"6",
"0",
"1",
"0",
"25",
"2",
"2",
"1",
"3",
"1",
"21",
"1",
"32",
"2",
"2",
"2",
"25",
"1",
"1",
"1",
"0",
"1",
"10",
"9",
"2",
"0",
"1",
"3",
"0",
"0",
"17",
"1",
"6"
] |
[
"nonn",
"base"
] | 19 | 0 | 11 |
[
"A000040",
"A002110",
"A379944",
"A380199"
] | null |
Jean-Marc Rebert, Jan 16 2025
| 2025-01-29T16:35:16 |
oeisdata/seq/A380/A380199.seq
|
6714e8b32461591222be2f69af5c906f
|
A380200
|
a(n) = A379343(A379343(n)).
|
[
"1",
"5",
"2",
"4",
"3",
"6",
"12",
"7",
"14",
"9",
"11",
"8",
"13",
"10",
"15",
"23",
"16",
"25",
"18",
"27",
"20",
"22",
"17",
"24",
"19",
"26",
"21",
"28",
"38",
"29",
"40",
"31",
"42",
"33",
"44",
"35",
"37",
"30",
"39",
"32",
"41",
"34",
"43",
"36",
"45",
"57",
"46",
"59",
"48",
"61",
"50",
"63",
"52",
"65",
"54",
"56",
"47",
"58",
"49",
"60",
"51",
"62",
"53",
"64",
"55",
"66"
] |
[
"nonn",
"tabf"
] | 15 | 1 | 2 |
[
"A000384",
"A016813",
"A379343",
"A380200"
] | null |
Boris Putievskiy, Jan 16 2025
| 2025-03-19T10:10:34 |
oeisdata/seq/A380/A380200.seq
|
3f82585a797f51422a6d7c0165c71561
|
A380201
|
Triangle T(n,k) read by rows, where row n is a permutation of numbers 1 through n, such that if a deck of n cards is prepared in this order, and SpellUnder-Down dealing is used, then the resulting cards are put down in increasing order.
|
[
"1",
"2",
"1",
"1",
"3",
"2",
"2",
"4",
"3",
"1",
"5",
"3",
"2",
"1",
"4",
"4",
"2",
"5",
"1",
"3",
"6",
"2",
"3",
"4",
"1",
"6",
"5",
"7",
"5",
"6",
"8",
"1",
"7",
"4",
"3",
"2",
"6",
"5",
"4",
"1",
"9",
"3",
"8",
"2",
"7",
"4",
"9",
"10",
"1",
"3",
"6",
"8",
"2",
"5",
"7",
"6",
"7",
"3",
"1",
"11",
"5",
"8",
"2",
"10",
"4",
"9",
"10",
"3",
"5",
"1",
"11",
"12",
"7",
"2",
"4",
"6",
"8",
"9",
"3",
"8",
"7",
"1",
"11",
"6",
"4",
"2",
"12",
"13",
"10",
"9",
"5",
"12",
"10",
"6",
"1",
"13",
"4",
"9",
"2",
"14",
"8",
"11",
"5"
] |
[
"nonn",
"word",
"tabl"
] | 19 | 1 | 2 |
[
"A005589",
"A006257",
"A225381",
"A321298",
"A378635",
"A380201",
"A380202",
"A380204",
"A380246",
"A380247",
"A380248"
] | null |
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 16 2025
| 2025-02-23T11:26:52 |
oeisdata/seq/A380/A380201.seq
|
191c31ad0fd54b9acd1b94726db4674a
|
A380202
|
Number of card moves to deal n cards using the SpellUnder-Down dealing.
|
[
"4",
"8",
"14",
"19",
"24",
"28",
"34",
"40",
"45",
"49",
"56",
"63",
"72",
"81",
"89",
"97",
"107",
"116",
"125",
"136",
"146",
"156",
"168",
"179",
"190",
"200",
"212",
"224",
"235",
"246",
"256",
"266",
"278",
"289",
"300",
"310",
"322",
"334",
"345",
"355",
"364",
"373",
"384",
"394",
"404",
"413",
"424",
"435",
"445",
"455",
"464",
"473",
"484",
"494",
"504",
"513",
"524",
"535",
"545",
"555",
"564",
"573",
"584",
"594",
"604",
"613",
"624",
"635",
"645"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A005589",
"A006257",
"A067278",
"A225381",
"A321298",
"A378635",
"A380201",
"A380202",
"A380204",
"A380246",
"A380247",
"A380248"
] | null |
Tanya Khovanova and the MIT PRIMES STEP junior group, Jan 16 2025
| 2025-01-29T22:26:28 |
oeisdata/seq/A380/A380202.seq
|
ca09cf3824e49bbadb4d1778645ca1ab
|
A380203
|
With given points 0,1 on the x-axis, a(n) is the number of ways to construct n with m circles where 2^(m-1)<n<=2^m.
|
[
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"4",
"2",
"4",
"1",
"2",
"1",
"1",
"5",
"9",
"6",
"10",
"4",
"8",
"4",
"8",
"1",
"4",
"2",
"4",
"1",
"2",
"1",
"1",
"15",
"28",
"15",
"31",
"13",
"25",
"14",
"28",
"10",
"19",
"11",
"22",
"8",
"15",
"9",
"17",
"2",
"8",
"4",
"12",
"2",
"8",
"4",
"8",
"1",
"4",
"2",
"4",
"1",
"2",
"1",
"1",
"50",
"94",
"56",
"99",
"45",
"91",
"51",
"97",
"39",
"74",
"41",
"92",
"31",
"74",
"40",
"85",
"26",
"61"
] |
[
"nonn"
] | 17 | 1 | 6 |
[
"A379972",
"A380203"
] | null |
Gerhard Kirchner, Jan 16 2025
| 2025-02-07T14:18:39 |
oeisdata/seq/A380/A380203.seq
|
977a47eca2c57fa19e2fc046724314bd
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.