sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A382817
a(n) = number of primes among the partial sums of row n of Pascal's triangle (A007318).
[ "0", "1", "1", "1", "2", "1", "1", "2", "2", "0", "2", "1", "3", "2", "3", "2", "3", "1", "1", "2", "1", "1", "2", "2", "1", "1", "2", "3", "3", "0", "2", "7", "2", "0", "0", "1", "1", "0", "0", "0", "2", "0", "1", "1", "1", "0", "1", "3", "1", "0", "1", "1", "1", "1", "1", "1", "5", "3", "3", "2", "3", "2", "3", "3", "10", "0", "1", "0", "1", "0", "2", "2", "2", "0", "0", "1", "1", "0", "2", "1", "1", "1", "2", "1", "2", "0" ]
[ "nonn" ]
21
0
5
[ "A007318", "A008949", "A258483", "A382816", "A382817" ]
null
Clark Kimberling, Apr 07 2025
2025-04-13T11:49:16
oeisdata/seq/A382/A382817.seq
7b7baacec76265792616d52f249fad5b
A382818
Square array A(n,k), n > 0, k > 0, read by downward antidiagonals: A(n,k) is the number of columns in all k-compositions of n.
[ "1", "2", "3", "3", "11", "8", "4", "24", "52", "20", "5", "42", "163", "227", "48", "6", "65", "372", "1017", "944", "112", "7", "93", "710", "3019", "6030", "3800", "256", "8", "126", "1208", "7095", "23256", "34563", "14944", "576", "9", "164", "1897", "14340", "67251", "173076", "193392", "57748", "1280", "10", "207", "2808", "26082", "161394", "615630", "1256936", "1062756", "220128", "2816" ]
[ "nonn", "easy", "tabl" ]
14
1
2
[ "A001792", "A005475", "A145839", "A181289", "A181290", "A382818", "A382820" ]
null
John Tyler Rascoe, Apr 05 2025
2025-04-06T08:45:19
oeisdata/seq/A382/A382818.seq
ae59a6f833a7515c215075ca308291a1
A382819
Number of Grassmannian permutations on [n] of order dividing 3.
[ "1", "1", "1", "3", "5", "7", "12", "17", "22", "31", "40", "49", "63", "77", "91", "111", "131", "151", "178", "205", "232", "267", "302", "337", "381", "425", "469", "523", "577", "631", "696", "761", "826", "903", "980", "1057", "1147", "1237", "1327", "1431", "1535", "1639", "1758", "1877", "1996", "2131", "2266", "2401", "2553", "2705", "2857", "3027", "3197", "3367", "3556", "3745", "3934" ]
[ "nonn", "easy" ]
24
0
4
[ "A000325", "A001470", "A382819" ]
null
Aaron Geary, Apr 05 2025
2025-04-12T16:29:04
oeisdata/seq/A382/A382819.seq
e964c2131e6a311c7dba36dba733743a
A382820
Number of columns in all n-compositions of n.
[ "1", "11", "163", "3019", "67251", "1753877", "52468711", "1772042699", "66708748963", "2770212058261", "125812351808551", "6203908746628501", "330108021642012407", "18853083403505443593", "1150352428059538611663", "74685045367715777653195", "5140745255774277374241411", "373950591013899715795929605" ]
[ "nonn", "easy" ]
7
1
2
[ "A001792", "A145839", "A181289", "A181290", "A382818", "A382820" ]
null
John Tyler Rascoe, Apr 05 2025
2025-04-06T08:45:09
oeisdata/seq/A382/A382820.seq
2dab59feb7a46c1f91d45673e3a46952
A382821
Decimal expansion of (3/2) * (log(3) - 1).
[ "1", "4", "7", "9", "1", "8", "4", "3", "3", "0", "0", "2", "1", "6", "4", "5", "3", "7", "0", "9", "2", "8", "6", "7", "8", "5", "5", "3", "8", "3", "7", "8", "8", "5", "5", "6", "9", "7", "1", "2", "3", "5", "8", "3", "6", "7", "3", "4", "1", "2", "4", "1", "7", "7", "6", "0", "2", "0", "4", "1", "5", "0", "0", "4", "5", "6", "2", "4", "1", "4", "3", "9", "8", "2", "7", "9", "1", "3", "4", "5", "0", "3", "1", "0", "4", "2", "3" ]
[ "nonn", "cons" ]
13
0
2
[ "A016627", "A016631", "A093064", "A145425", "A382821" ]
null
Sean A. Irvine, Apr 05 2025
2025-04-08T04:47:03
oeisdata/seq/A382/A382821.seq
f5b89bed3fe4b635598240472a271470
A382822
If a(n-1) is odd, then a(n) is the smallest even integer not yet in the sequence; if a(n-1) is even, then a(n) = a(n-1)/2 if this number is not in the sequence, otherwise a(n) = 3*a(n-1)/2; a(1)=1.
[ "1", "2", "3", "4", "6", "9", "8", "12", "18", "27", "10", "5", "14", "7", "16", "24", "36", "54", "81", "20", "30", "15", "22", "11", "26", "13", "28", "42", "21", "32", "48", "72", "108", "162", "243", "34", "17", "38", "19", "40", "60", "90", "45", "44", "66", "33", "46", "23", "50", "25", "52", "78", "39", "56", "84", "126", "63", "58", "29", "62", "31", "64", "96", "144", "216", "324", "486", "729", "68", "102", "51", "70", "35", "74", "37", "76", "114", "57" ]
[ "nonn" ]
30
1
2
[ "A350877", "A382822" ]
null
Enrique Navarrete, Apr 15 2025
2025-04-23T10:21:41
oeisdata/seq/A382/A382822.seq
845bc46f34017fe482ec74d75e946802
A382823
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y)) ).
[ "1", "1", "1", "2", "2", "2", "6", "5", "5", "6", "24", "17", "17", "17", "24", "120", "74", "69", "69", "74", "120", "720", "394", "338", "337", "338", "394", "720", "5040", "2484", "1962", "1894", "1894", "1962", "2484", "5040", "40320", "18108", "13228", "12194", "12152", "12194", "13228", "18108", "40320", "362880", "149904", "101812", "89160", "87320", "87320", "89160", "101812", "149904", "362880" ]
[ "nonn", "tabl" ]
17
0
4
[ "A000142", "A000774", "A099594", "A379821", "A382823", "A382824", "A382825", "A382826" ]
null
Seiichi Manyama, Apr 05 2025
2025-04-06T03:48:25
oeisdata/seq/A382/A382823.seq
a146359be84965d8c800a0ae263a2525
A382824
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^2 ).
[ "1", "1", "1", "2", "3", "2", "6", "8", "8", "6", "24", "28", "34", "28", "24", "120", "124", "150", "150", "124", "120", "720", "668", "768", "854", "768", "668", "720", "5040", "4248", "4584", "5204", "5204", "4584", "4248", "5040", "40320", "31176", "31512", "35188", "37556", "35188", "31512", "31176", "40320", "362880", "259488", "246072", "265896", "290380", "290380", "265896", "246072", "259488", "362880" ]
[ "nonn", "tabl" ]
12
0
4
[ "A382823", "A382824", "A382825", "A382827" ]
null
Seiichi Manyama, Apr 05 2025
2025-04-06T08:46:34
oeisdata/seq/A382/A382824.seq
27cda19c4822be4fe48e563a0e29d8b1
A382825
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^3 ).
[ "1", "1", "1", "2", "4", "2", "6", "11", "11", "6", "24", "39", "55", "39", "24", "120", "174", "255", "255", "174", "120", "720", "942", "1338", "1623", "1338", "942", "720", "5040", "6012", "8106", "10434", "10434", "8106", "6012", "5040", "40320", "44244", "56292", "72762", "82116", "72762", "56292", "44244", "40320", "362880", "369072", "442860", "560988", "668580", "668580", "560988", "442860", "369072", "362880" ]
[ "nonn", "tabl" ]
11
0
4
[ "A382673", "A382800", "A382823", "A382824", "A382825", "A382828" ]
null
Seiichi Manyama, Apr 06 2025
2025-04-06T08:46:30
oeisdata/seq/A382/A382825.seq
b93426ccc1644cbd983ecbcd8659bf7f
A382826
a(n) = Sum_{k=0..n} (k! * Stirling1(n+1,k+1))^2.
[ "1", "2", "17", "337", "12152", "696076", "58136500", "6673107316", "1008077743552", "193915431216576", "46281189562936704", "13420575661095930240", "4647502230640182602496", "1894412230202331489632256", "897850527136410029486517504", "489578762044356075253626875136" ]
[ "nonn" ]
10
0
2
[ "A048163", "A382792", "A382823", "A382826" ]
null
Seiichi Manyama, Apr 06 2025
2025-04-06T05:07:30
oeisdata/seq/A382/A382826.seq
fee619a1d77b57ff255875b335179ee2
A382827
a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n+1,k+1)^2.
[ "1", "3", "34", "854", "37556", "2546852", "246113904", "32104625520", "5433891955968", "1157778241057152", "303197684900579712", "95717977509042032256", "35847800701044816248064", "15713483696924130220098816", "7969364997624587289470810112", "4630203661005094483980386924544" ]
[ "nonn" ]
8
0
2
[ "A092552", "A382804", "A382824", "A382827" ]
null
Seiichi Manyama, Apr 06 2025
2025-04-06T05:08:54
oeisdata/seq/A382/A382827.seq
b152cfd4ac3f1b08c18e3bbc23bfcb5b
A382828
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling1(n+1,k+1)^2.
[ "1", "4", "55", "1623", "82116", "6302028", "680105112", "98011315608", "18163969766592", "4205977241171328", "1189459906531372224", "403300593144673493184", "161454763431242385682176", "75337361633768810384542464", "40524573487904551618353921024", "24890567631479746511661428751360" ]
[ "nonn" ]
10
0
2
[ "A382676", "A382806", "A382825", "A382828" ]
null
Seiichi Manyama, Apr 06 2025
2025-04-06T05:06:06
oeisdata/seq/A382/A382828.seq
1b743e427e9d5646a4671fbf99392b1b
A382829
Number of distinct rank vectors of distributive lattices of height n.
[ "1", "1", "2", "5", "15", "51", "197", "864", "4325", "24922" ]
[ "nonn", "more" ]
5
0
3
[ "A000112", "A006982", "A382829" ]
null
Ludovic Schwob, Apr 06 2025
2025-04-12T12:00:06
oeisdata/seq/A382/A382829.seq
74c0b1f432522bad7631cde4d4bb8f39
A382830
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * |Stirling1(n,k)| * k!.
[ "1", "1", "8", "102", "1804", "40890", "1131108", "36948240", "1391945616", "59411849040", "2833582748160", "149347596487056", "8620256620495584", "540775669746661440", "36636074309252234880", "2665704585421541790720", "207329122282259073044736", "17165075378189396045777280", "1507206260097615729874083840" ]
[ "nonn" ]
6
0
3
[ "A007840", "A052801", "A277759", "A305919", "A354122", "A354123", "A382830" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-06T14:57:13
oeisdata/seq/A382/A382830.seq
e3bb07dee0c45e068b59d0fb4ca44d10
A382831
a(n) is the n-th n-almost-prime that is a partial sum of the sequence of n-almost-primes.
[ "2", "10", "964", "1804", "7820", "48120", "830817", "4895208", "11308160", "162802560", "394129476", "3763612800", "19823090472", "1018716103620", "9744542956800", "3989325082624", "329306801920000", "2978224618328064", "11804664377696256", "128906665137012736" ]
[ "nonn" ]
16
1
1
[ "A007504", "A062198", "A086046", "A086047", "A086052", "A086059", "A086061", "A086062", "A382831" ]
null
Robert Israel, Apr 28 2025
2025-04-29T13:27:31
oeisdata/seq/A382/A382831.seq
5025db0e4f3b9312759b511de4380cf5
A382832
Least k such that there exist two distinct subsets of {0, ..., k-1} with the same sum of m-th powers for 0 <= m <= n.
[ "2", "4", "7", "12", "16", "23", "31" ]
[ "nonn", "hard", "more" ]
9
0
1
[ "A382382", "A382832", "A382833" ]
null
Pontus von Brömssen, Apr 10 2025
2025-04-12T09:42:45
oeisdata/seq/A382/A382832.seq
a7a1687f487320cbbfc335b478e6a365
A382833
Square array read by antidiagonals: T(n,k) is the number of distinct sum-of-powers vectors (Sum_{x in X} x^m, 0 <= m <= k) for subsets X of {0, ..., n-1}; n, k >= 0.
[ "1", "1", "2", "1", "2", "3", "1", "2", "4", "4", "1", "2", "4", "8", "5", "1", "2", "4", "8", "15", "6", "1", "2", "4", "8", "16", "26", "7", "1", "2", "4", "8", "16", "32", "42", "8", "1", "2", "4", "8", "16", "32", "64", "64", "9", "1", "2", "4", "8", "16", "32", "64", "126", "93", "10", "1", "2", "4", "8", "16", "32", "64", "128", "247", "130", "11", "1", "2", "4", "8", "16", "32", "64", "128", "256", "476", "176", "12" ]
[ "nonn", "tabl" ]
4
0
3
[ "A000027", "A000125", "A382383", "A382832", "A382833" ]
null
Pontus von Brömssen, Apr 10 2025
2025-04-12T12:46:57
oeisdata/seq/A382/A382833.seq
208fb592c0089bb4c7f9746bab2fe955
A382834
Smallest number k > P(n) - prime(n+1)^2 which is coprime to P(n), where P(n)= A002110(n) are the primorials.
[ "-5", "-17", "-17", "97", "2143", "29747", "510151", "9699167", "223092031", "6469692277", "200560488763", "7420738133141", "304250263525363", "13082761331667823", "614889782588488607", "32589158477190041261", "1922760350154212635351", "117288381359406970978787", "7858321551080267055874051" ]
[ "sign", "easy" ]
53
1
1
[ "A002110", "A034386", "A054270", "A064819", "A382834" ]
null
Jakub Buczak, Apr 06 2025
2025-04-17T19:25:09
oeisdata/seq/A382/A382834.seq
c3ee2c8e2da46fe62318689ff353e49b
A382835
Array read by ascending antidiagonals: A(n,k) = (6*n + 1)*(12*n + 1)*Product_{i=0..k-2} (9*2^i*n + 1) with k >= 2.
[ "1", "91", "1", "325", "1729", "1", "703", "12025", "63973", "1", "1225", "38665", "877825", "4670029", "1", "1891", "89425", "4214485", "127284625", "677154205", "1", "2701", "172081", "12966625", "914543245", "36785256625", "195697565245", "1", "3655", "294409", "31146661", "3747354625", "395997225085", "21225093072625", "112917495146365", "1" ]
[ "nonn", "tabl" ]
11
0
2
[ "A000012", "A002997", "A318646", "A382809", "A382835", "A382836" ]
null
Stefano Spezia, Apr 06 2025
2025-04-12T12:31:25
oeisdata/seq/A382/A382835.seq
ef6fb8a61b4e4bb261e1e47476d93a47
A382836
Antidiagonal sums of A382835.
[ "1", "92", "2055", "76702", "5587745", "808744632", "233410506523", "134542364243426", "155011115348112933", "357100810407398252476", "1645189596276664815781823", "15158968746195230959317963654", "279359806252976896009489630292137", "10296791416488914892304807658835547904", "759072247447684071473777552807296660596387" ]
[ "nonn" ]
6
0
2
[ "A382835", "A382836" ]
null
Stefano Spezia, Apr 06 2025
2025-04-12T12:31:33
oeisdata/seq/A382/A382836.seq
8493cc289f97e0d60122f4547e2a5017
A382837
Numbers k such that k - A071324(k) > A000010(k).
[ "60", "70", "84", "120", "140", "154", "168", "180", "200", "210", "220", "240", "252", "260", "264", "280", "286", "300", "312", "336", "340", "350", "360", "374", "390", "396", "408", "418", "420", "442", "456", "468", "480", "490", "494", "504", "510", "520", "528", "540", "560", "570", "588", "598", "600", "624", "630", "646", "660", "672", "680", "700" ]
[ "nonn" ]
53
1
1
[ "A000010", "A071324", "A382837" ]
null
Shreyansh Jaiswal, Apr 06 2025
2025-06-19T16:42:12
oeisdata/seq/A382/A382837.seq
a1d51c6a321a8e9ebbf282f71c42ed26
A382838
a(n) is the least k such that there are exactly n solutions in positive integers to the equation x^3 + y^2 = k^2.
[ "1", "3", "15", "105", "665", "1155", "9240", "68265", "200640", "54285", "434280", "3474240", "19120920", "1430715", "451605", "38629305", "3612840", "28902720", "97546680", "154900515", "451605000", "1239204120", "2633760360", "12193335000", "21070082880", "28902720000" ]
[ "nonn", "more" ]
14
0
2
[ "A382338", "A382838" ]
null
Robert Israel, Apr 06 2025
2025-04-12T12:19:33
oeisdata/seq/A382/A382838.seq
8d3bec47a6bf3ff58ef817d007cdd6ed
A382839
Number of dense binary relations on {1,...,n}.
[ "1", "2", "7", "114", "9602", "3962940", "7516789560", "62622777447552", "2221417812173570640" ]
[ "nonn", "more" ]
23
0
2
[ "A382693", "A382839" ]
null
Mark Bowron, Apr 06 2025
2025-05-28T01:04:08
oeisdata/seq/A382/A382839.seq
79d9174118b2bacc81cc7d90390cd10f
A382840
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * Stirling1(n,k) * k!.
[ "1", "1", "4", "30", "316", "4290", "71268", "1400112", "31750416", "816215760", "23455342560", "745073660496", "25924233481056", "980518650296640", "40054724743501440", "1757539560656401920", "82439565962427760896", "4116529729771939393920", "218017561353648160158720", "12206586491422209675532800" ]
[ "nonn" ]
6
0
3
[ "A006252", "A305919", "A308565", "A317280", "A354120", "A354121", "A382830", "A382840" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-10T03:25:44
oeisdata/seq/A382/A382840.seq
e385612abf954961a31ce2eb5fa97357
A382841
a(n) = Sum_{k=0..floor(n/2)} (binomial(n,k) * binomial(n-k,k))^2.
[ "1", "1", "5", "37", "181", "1301", "9401", "65465", "498037", "3796021", "29221705", "230396585", "1828448425", "14651160265", "118544522045", "965075143037", "7907605360757", "65162569952245", "539515760866889", "4486877961224297", "37463151704756281", "313909383754331801", "2638892573249746445", "22249830926517611917" ]
[ "nonn" ]
15
0
3
[ "A000984", "A002426", "A005259", "A005260", "A051286", "A089627", "A181546", "A275027", "A277247", "A382841", "A382842" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-15T15:10:08
oeisdata/seq/A382/A382841.seq
79da5e279be5d2c6d775e3f6b32dc44c
A382842
a(n) = Sum_{k=0..floor(n/2)} (binomial(n,k) * binomial(n-k,k))^3.
[ "1", "1", "9", "217", "1945", "35001", "764001", "12079089", "250222617", "5424133465", "107360983009", "2358751625649", "52540471866961", "1147794435985393", "26151265459123065", "600227875293254217", "13779170435209475097", "322302377797126709913", "7582484532013652243169", "179184911648568670363185", "4275721755296040840336945" ]
[ "nonn" ]
11
0
3
[ "A000172", "A002426", "A069865", "A089627", "A092813", "A181545", "A382841", "A382842" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-09T05:05:52
oeisdata/seq/A382/A382842.seq
d8de80ffb5e764be0fb106e72a70eb45
A382843
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.
[ "-1", "0", "1", "1", "0", "1", "1", "0", "1", "3", "4", "5", "5", "12", "13", "9", "40", "41", "15", "112", "113", "25", "312", "313", "41", "840", "841", "67", "2244", "2245", "109", "5940", "5941", "177", "15664", "15665", "287", "41184", "41185", "465", "108112", "108113", "753", "283504", "283505", "1219", "742980", "742981", "1973", "1946364", "1946365", "3193", "5097624", "5097625", "5167", "13348944", "13348945" ]
[ "sign", "easy", "tabf" ]
16
0
10
[ "A000045", "A001595", "A095122", "A382843", "A382844", "A382845" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 06 2025
2025-04-13T16:12:33
oeisdata/seq/A382/A382843.seq
b6302773672b9614cdcfc664e6e01434
A382844
Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.
[ "0", "0", "0", "6", "30", "180", "840", "3900", "17220", "75174", "323730", "1386264", "5909904", "25136040", "106739256", "452846310", "1920088086", "8138356716", "34486996824", "146121685380", "619066205340", "2622628707270", "11110214972010", "47065148576496", "199375154768160", "844577145104400", "3577713520710960" ]
[ "nonn", "easy" ]
12
0
4
[ "A000045", "A095122", "A382843", "A382844", "A382845" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 06 2025
2025-04-13T16:12:15
oeisdata/seq/A382/A382844.seq
808021e63348f6528f1bf72438c08bac
A382845
Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.
[ "-1", "1", "1", "7", "17", "49", "127", "337", "881", "2311", "6049", "15841", "41471", "108577", "284257", "744199", "1948337", "5100817", "13354111", "34961521", "91530449", "239629831", "627359041", "1642447297", "4299982847", "11257501249", "29472520897", "77160061447", "202007663441", "528862928881", "1384581123199" ]
[ "sign", "easy" ]
11
0
4
[ "A000045", "A007598", "A080097", "A095122", "A382843", "A382844", "A382845" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 06 2025
2025-04-13T16:11:56
oeisdata/seq/A382/A382845.seq
ceca6d31a08aaf94e29de71cc17875b3
A382846
Decimal expansion of 4 - Pi^2/4 - 2*log(2).
[ "1", "4", "6", "3", "0", "4", "5", "3", "8", "6", "0", "7", "7", "6", "9", "7", "2", "6", "4", "5", "6", "9", "1", "3", "0", "0", "7", "1", "1", "4", "6", "0", "9", "0", "8", "0", "0", "2", "0", "5", "7", "4", "8", "7", "9", "4", "6", "9", "2", "9", "1", "8", "3", "5", "1", "5", "5", "3", "0", "2", "6", "3", "6", "9", "5", "8", "2", "0", "1", "5", "5", "0", "4", "5", "5", "8", "0", "9", "2", "5", "8", "0", "3", "7", "8", "2", "9" ]
[ "nonn", "cons" ]
5
0
2
[ "A016627", "A091476", "A382846" ]
null
Sean A. Irvine, Apr 06 2025
2025-04-06T16:51:23
oeisdata/seq/A382/A382846.seq
8beb986e50acb4e9d72d4f9f71f547dc
A382847
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * (Stirling2(n,k) * k!)^2.
[ "1", "1", "14", "579", "48044", "6647405", "1379024730", "400315753159", "154879704709784", "77018569697097009", "47863427797633958630", "36348262891572161261963", "33119479438137288670256964", "35660343372397246917403353013", "44791475616825872944740798413234", "64911462519379469821754507087299215" ]
[ "nonn" ]
11
0
3
[ "A048144", "A305919", "A382737", "A382738", "A382739", "A382847", "A382853" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-08T12:23:51
oeisdata/seq/A382/A382847.seq
ea55946fea71030d2fdbf64d8be35c4e
A382848
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k)^2 * binomial(n+k,k).
[ "1", "1", "-5", "-35", "-29", "751", "3991", "-4115", "-137885", "-495269", "2114245", "25786795", "50109775", "-627370925", "-4643568305", "-495798035", "157753390435", "768269873875", "-1851203127335", "-35924154988865", "-107001450483779", "763444753890721", "7510024190977105", "8899910747771995" ]
[ "sign" ]
11
0
3
[ "A005258", "A026641", "A126869", "A245086", "A382405", "A382848", "A382849" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-06-08T03:33:37
oeisdata/seq/A382/A382848.seq
dd3db0e486826eb476bea7deffdae697
A382849
a(n) = Sum_{k=0..n} (-1)^(n-k) * (binomial(n,k) * binomial(n+k,k))^2.
[ "1", "3", "1", "-357", "-6999", "-62997", "444529", "27783003", "508019689", "3206511003", "-89889084999", "-3274278527517", "-49395223500999", "-66079827133317", "16197028704290001", "433384098559415643", "4988878584849669609", "-35687369703800052357", "-2815548294132454060151", "-58942279760573467233357" ]
[ "sign" ]
6
0
2
[ "A005258", "A005259", "A126869", "A176335", "A228304", "A382848", "A382849" ]
null
Ilya Gutkovskiy, Apr 06 2025
2025-04-09T05:40:07
oeisdata/seq/A382/A382849.seq
d78731ba1d042eaf650452a6b2b974df
A382850
a(n) = least k such that binomial(n, k) > binomial(n - 1, h) for 0 <= h <= n - 1.
[ "1", "1", "1", "2", "2", "2", "3", "3", "4", "4", "4", "5", "5", "6", "6", "7", "7", "7", "8", "8", "9", "9", "10", "10", "10", "11", "11", "12", "12", "13", "13", "14", "14", "15", "15", "15", "16", "16", "17", "17", "18", "18", "19", "19", "19", "20", "20", "21", "21", "22", "22", "23", "23", "24", "24", "25", "25", "25", "26", "26", "27", "27", "28", "28", "29", "29", "30", "30", "31", "31" ]
[ "nonn" ]
21
2
4
[ "A001405", "A007318", "A382850", "A382851" ]
null
Clark Kimberling, Apr 07 2025
2025-04-18T21:03:39
oeisdata/seq/A382/A382850.seq
d6f04f616a5c3a62e1d514d75ba8a5ae
A382851
a(n) = least number in row n of Pascal's triangle that exceeds every number in row n-1.
[ "2", "3", "4", "10", "15", "21", "56", "84", "210", "330", "495", "1287", "2002", "5005", "8008", "19448", "31824", "50388", "125970", "203490", "497420", "817190", "1961256", "3268760", "5311735", "13037895", "21474180", "51895935", "86493225", "206253075", "347373600", "818809200", "1391975640", "3247943160", "5567902560" ]
[ "nonn" ]
12
2
1
[ "A007318", "A382850", "A382851" ]
null
Clark Kimberling, Apr 13 2025
2025-05-02T23:59:41
oeisdata/seq/A382/A382851.seq
840cbb034073fd0cb4b303d3ebfda63c
A382852
A greedy expansion of Pi where each numerator a(n) is the denominator of the previous term added, and each a(n) is as small as possible without the sum of terms being greater than Pi. The first numerator is 3.
[ "3", "1", "8", "483", "16369224", "22916787881317207695", "836256632995438687172001339486820832419619085705707" ]
[ "nonn" ]
62
0
1
[ "A000796", "A382852" ]
null
Nathan James Blackerby, Apr 06 2025
2025-05-13T23:31:40
oeisdata/seq/A382/A382852.seq
93e602cd00dad4637a402dd635fd7f05
A382853
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * (k! * Stirling1(n,k))^2.
[ "1", "1", "14", "588", "51064", "7542780", "1688795184", "532244030976", "224335607135616", "121793234373123840", "82750681453274478720", "68773648886955417943296", "68628724852793337500166144", "80970628401965472953705395200", "111490683570184861858636405923840", "177177650274516448010905794637332480" ]
[ "nonn" ]
15
0
3
[ "A382792", "A382804", "A382806", "A382853" ]
null
Seiichi Manyama, Apr 06 2025
2025-04-07T09:26:19
oeisdata/seq/A382/A382853.seq
22377001af020daaa9fcc31092fc5bd4
A382854
Decimal expansion of (1-log(2))/2.
[ "1", "5", "3", "4", "2", "6", "4", "0", "9", "7", "2", "0", "0", "2", "7", "3", "4", "5", "2", "9", "1", "3", "8", "3", "9", "3", "9", "2", "7", "0", "9", "1", "1", "7", "1", "5", "9", "6", "2", "2", "4", "9", "9", "3", "2", "8", "1", "9", "8", "7", "2", "3", "7", "2", "9", "3", "9", "6", "5", "9", "9", "9", "5", "2", "5", "3", "3", "0", "3", "1", "8", "9", "0", "1", "5", "1", "5", "2", "6", "4", "2", "1", "9", "7", "0", "6", "8" ]
[ "nonn", "cons" ]
13
0
2
[ "A187832", "A372858", "A382854", "A382884" ]
null
Sean A. Irvine, Apr 06 2025
2025-04-07T16:51:26
oeisdata/seq/A382/A382854.seq
47df28116da2f59652bc68c9d58b86f6
A382855
Number of minimum connected dominating sets in the n-diagonal intersection graph.
[ "3", "1", "40", "54", "1862", "32" ]
[ "nonn", "more" ]
15
3
1
null
null
Eric W. Weisstein, Apr 07 2025
2025-04-07T11:07:08
oeisdata/seq/A382/A382855.seq
61800f8b8e9854252964ecaf19a7bc88
A382856
Numbers whose prime indices do not have a mode of 1.
[ "1", "3", "5", "7", "9", "11", "13", "15", "17", "18", "19", "21", "23", "25", "27", "29", "31", "33", "35", "37", "39", "41", "43", "45", "47", "49", "50", "51", "53", "54", "55", "57", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "81", "83", "85", "87", "89", "90", "91", "93", "95", "97", "98", "99", "101", "103", "105", "107", "108", "109", "111", "113", "115" ]
[ "nonn" ]
9
1
2
[ "A000265", "A001222", "A002865", "A007814", "A024556", "A051903", "A056239", "A091602", "A106529", "A112798", "A116598", "A240312", "A241131", "A327473", "A327476", "A356862", "A359178", "A360013", "A360014", "A360015", "A362605", "A362611", "A362613", "A362614", "A363486", "A364061", "A364062", "A364158", "A364159", "A381437", "A381542", "A382526", "A382856" ]
null
Gus Wiseman, Apr 07 2025
2025-04-07T09:26:41
oeisdata/seq/A382/A382856.seq
7252946763687136705f46ee7ad160b6
A382857
Number of ways to permute the prime indices of n so that the run-lengths are all equal.
[ "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "2", "1", "0", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "2", "4", "1", "2", "2", "0", "1", "6", "1", "1", "1", "2", "1", "0", "1", "1", "2", "1", "1", "0", "2", "0", "2", "2", "1", "6", "1", "2", "1", "1", "2", "6", "1", "1", "2", "6", "1", "1", "1", "2", "1", "1", "2", "6", "1", "0", "1", "2", "1", "6", "2", "2" ]
[ "nonn" ]
10
0
7
[ "A000720", "A000961", "A001221", "A001222", "A003242", "A003963", "A005811", "A008480", "A044813", "A047966", "A056239", "A112798", "A164707", "A181821", "A238130", "A238279", "A239455", "A304442", "A328592", "A329738", "A335407", "A351201", "A351293", "A351294", "A351295", "A353744", "A353833", "A382771", "A382773", "A382774", "A382857", "A382858", "A382876", "A382877", "A382878", "A382879", "A383089", "A383112" ]
null
Gus Wiseman, Apr 09 2025
2025-04-21T10:47:15
oeisdata/seq/A382/A382857.seq
f087b34fd19c8de3ff361b36a9497afa
A382858
Number of ways to permute a multiset whose multiplicities are the prime indices of n so that the run-lengths are all equal.
[ "1", "1", "1", "2", "1", "1", "1", "6", "4", "0", "1", "6", "1", "0", "1", "24", "1", "12", "1", "2", "1", "0", "1", "36", "4", "0", "36", "0", "1", "10", "1", "120", "0", "0", "1", "84", "1", "0", "0", "24", "1", "3", "1", "0", "38", "0", "1", "240", "6", "18", "0", "0", "1", "246", "0", "6", "0", "0", "1", "96", "1", "0", "30", "720", "1", "0", "1", "0", "0", "14", "1", "660", "1", "0", "74", "0", "1", "0", "1" ]
[ "nonn" ]
6
1
4
[ "A000720", "A000961", "A001221", "A001222", "A003242", "A003963", "A044813", "A047966", "A048767", "A056239", "A098859", "A112798", "A140690", "A181821", "A182854", "A238130", "A304442", "A305936", "A329738", "A329739", "A335125", "A335407", "A351202", "A351291", "A351596", "A353744", "A353833", "A382771", "A382772", "A382773", "A382774", "A382857", "A382858", "A382878", "A382879", "A382912", "A382913", "A382914", "A382915" ]
null
Gus Wiseman, Apr 09 2025
2025-04-10T23:22:30
oeisdata/seq/A382/A382858.seq
513606d48b461dd6f7fc62790dd6ca73
A382859
a(n) = Sum_{k=0..n} binomial(n,k) * binomial((n-1)*(k+1),n-k).
[ "1", "1", "5", "37", "345", "3851", "49468", "713931", "11391985", "198523495", "3741919446", "75702725440", "1633591960883", "37404262517506", "904734768056239", "23030071358784701", "614912094171482849", "17172036245893988575", "500281954849350450946", "15170753984617328108901" ]
[ "nonn", "easy" ]
17
0
3
[ "A121673", "A121674", "A121675", "A381425", "A382859" ]
null
Seiichi Manyama, Apr 07 2025
2025-04-09T09:57:09
oeisdata/seq/A382/A382859.seq
c12db201602fc641841794315a1da89c
A382860
Number of odd Ulam numbers <= 10^n.
[ "2", "12", "60", "398", "3780", "36868", "368904", "3696883", "36977302", "369860633" ]
[ "nonn", "more" ]
8
1
1
[ "A002858", "A307331", "A382797", "A382860", "A382861" ]
null
Shyam Sunder Gupta, Apr 07 2025
2025-04-13T16:14:15
oeisdata/seq/A382/A382860.seq
413a832b0c3a4440fca99bd18271c4b6
A382861
Number of even Ulam numbers <= 10^n.
[ "4", "14", "65", "429", "3804", "37216", "371464", "3702470", "36999540", "369917405" ]
[ "nonn", "more" ]
7
1
1
[ "A002858", "A307331", "A382798", "A382860", "A382861" ]
null
Shyam Sunder Gupta, Apr 07 2025
2025-04-13T16:14:51
oeisdata/seq/A382/A382861.seq
93cda639c485205590db571c24a10bcc
A382862
Prime numbers whose congruence speed of tetration equals 1.
[ "2", "3", "11", "13", "17", "19", "23", "29", "31", "37", "41", "47", "53", "59", "61", "67", "71", "73", "79", "83", "89", "97", "103", "109", "113", "127", "131", "137", "139", "163", "167", "173", "179", "181", "191", "197", "211", "223", "227", "229", "233", "239", "241", "263", "269", "271", "277", "281", "283", "311", "313", "317", "331", "337", "347", "353", "359" ]
[ "nonn", "base" ]
38
1
1
[ "A000040", "A317905", "A321131", "A373387", "A382862" ]
null
Marco Ripà and Gabriele Di Pietro, Apr 13 2025
2025-04-24T13:33:09
oeisdata/seq/A382/A382862.seq
3240e1f779b23ed1afa70057b6a83108
A382863
a(2*k-1) and a(2*k) are a pair of prime numbers where 9*a(2*k-1) and 8*a(2*k) are neighboring integers.
[ "17", "19", "47", "53", "79", "89", "97", "109", "113", "127", "223", "251", "239", "269", "241", "271", "337", "379", "353", "397", "383", "431", "433", "487", "463", "521", "607", "683", "673", "757", "719", "809", "863", "971", "881", "991", "1087", "1223", "1153", "1297", "1279", "1439", "1297", "1459", "1327", "1493", "1361", "1531", "1423", "1601" ]
[ "nonn", "tabf" ]
7
1
1
null
null
Steven Lu, Apr 07 2025
2025-04-13T16:17:11
oeisdata/seq/A382/A382863.seq
409c3beb54a86f367cc91f3e355252f4
A382864
Triangle read by rows: T(n,k) = T(n-k,k-1) + T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).
[ "1", "0", "1", "0", "1", "0", "1", "1", "0", "1", "1", "0", "1", "2", "0", "1", "2", "1", "0", "1", "3", "1", "0", "1", "3", "2", "0", "1", "4", "3", "0", "1", "4", "4", "1", "0", "1", "5", "5", "1", "0", "1", "5", "7", "2", "0", "1", "6", "8", "3", "0", "1", "6", "10", "5", "0", "1", "7", "12", "6", "1", "0", "1", "7", "14", "9", "1", "0", "1", "8", "16", "11", "2", "0", "1", "8", "19", "15", "3", "0", "1", "9", "21", "18", "5", "0", "1", "9", "24", "23", "7" ]
[ "nonn", "tabf" ]
23
0
14
[ "A000007", "A000009", "A000012", "A003056", "A004526", "A008284", "A026810", "A026811", "A026812", "A026813", "A026814", "A026815", "A026816", "A069905", "A291954", "A291960", "A291968", "A292047", "A292049", "A382864" ]
null
Seiichi Manyama, Apr 07 2025
2025-04-07T09:26:29
oeisdata/seq/A382/A382864.seq
36a69eee9ef43f988815e5dabaa0fff2
A382865
Bitwise XOR of all integers between n and 2n (endpoints included).
[ "0", "3", "5", "4", "8", "15", "13", "8", "16", "27", "21", "28", "24", "23", "29", "16", "32", "51", "37", "52", "40", "63", "45", "56", "48", "43", "53", "44", "56", "39", "61", "32", "64", "99", "69", "100", "72", "111", "77", "104", "80", "123", "85", "124", "88", "119", "93", "112", "96", "83", "101", "84", "104", "95", "109", "88", "112", "75", "117", "76", "120", "71", "125", "64", "128", "195" ]
[ "nonn", "look" ]
69
0
2
[ "A010873", "A038712", "A047615", "A048724", "A065621", "A114389", "A174091", "A181983", "A382865" ]
null
Federico Provvedi, May 21 2025
2025-06-12T19:29:43
oeisdata/seq/A382/A382865.seq
52391e79ba5fe8b04c0ab75a2d1876bf
A382866
Numbers k such that (49^k + 2^k)/51 is prime.
[ "13", "307", "1187", "9241", "94321" ]
[ "nonn", "hard", "more" ]
6
1
1
[ "A057187", "A057188", "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A228922", "A229542", "A375161", "A375236", "A377031", "A377856", "A382866" ]
null
Robert Price, Jun 11 2025
2025-06-12T00:55:37
oeisdata/seq/A382/A382866.seq
a4f900015d500315b8c1eec5eea37e1d
A382867
Decimal expansion of (Pi^3)/31.
[ "1", "0", "0", "0", "2", "0", "2", "4", "7", "3", "5", "5", "8", "0", "5", "8", "7", "1", "5", "3", "3", "7", "9", "4", "5", "6", "4", "7", "3", "2", "5", "8", "5", "1", "4", "5", "8", "1", "3", "6", "2", "9", "9", "6", "3", "1", "1", "5", "7", "5", "8", "4", "1", "1", "9", "1", "6", "5", "9", "5", "2", "8", "4", "2", "0", "5", "8", "2", "7", "0", "8", "0", "3", "7", "8", "9", "2", "1", "6", "3", "2", "3", "7", "9", "2", "4", "7", "4", "2", "2", "6", "8", "5", "8", "1", "5", "7", "6", "1", "9", "1" ]
[ "nonn", "cons", "easy" ]
18
1
5
[ "A000796", "A091925", "A382867" ]
null
Jason Bard, Jun 12 2025
2025-06-13T08:22:38
oeisdata/seq/A382/A382867.seq
6487a1ff66910facc9b238dd052aad2c
A382868
a(1) = 1, a(2) = 2. For n > 2 a(n) is the smallest novel number divisible by the smallest prime p which divides a(n-1) but does not divide a(n-2). If no such prime exists a(n) is the least novel k such that gcd(k, a(n-1)) > 1.
[ "1", "2", "4", "6", "3", "9", "12", "8", "10", "5", "15", "18", "14", "7", "21", "24", "16", "20", "25", "30", "22", "11", "33", "27", "36", "26", "13", "39", "42", "28", "32", "34", "17", "51", "45", "35", "49", "56", "38", "19", "57", "48", "40", "50", "44", "55", "60", "46", "23", "69", "54", "52", "65", "70", "58", "29", "87", "63", "77", "66", "62", "31", "93", "72", "64", "68", "85", "75" ]
[ "nonn" ]
18
1
2
[ "A064413", "A382868" ]
null
David James Sycamore, Apr 07 2025
2025-04-20T09:00:35
oeisdata/seq/A382/A382868.seq
aba2bb1a3f707e7f2883584e9b87f3a8
A382869
Numbers k >= 1 such that A018804(k) is a Fibonacci number (A000045).
[ "1", "2", "3", "4", "7", "9", "11", "1751", "2031", "45012", "105772", "1266256", "1490601", "1774525" ]
[ "nonn", "more" ]
10
1
2
[ "A000045", "A005382", "A018804", "A382869" ]
null
Ctibor O. Zizka, Apr 07 2025
2025-04-13T16:19:53
oeisdata/seq/A382/A382869.seq
412104cddadffe78519296b4074cb779
A382870
Minimum period of an optimum covering of the set of integers by translates of its subset with diameter no greater than n, maximized over such subsets.
[ "1", "2", "4", "5", "8", "8", "13", "13", "27", "27", "45", "53", "66", "109", "129", "147", "147", "170", "192", "250", "286", "317" ]
[ "nonn", "more" ]
5
0
2
null
null
Andrey Zabolotskiy, Apr 07 2025
2025-04-07T10:06:49
oeisdata/seq/A382/A382870.seq
6ffca38a47e7c19d9e829852c1204f6e
A382871
Number of ways to partition distinct prime numbers into two disjoint sets such that the sum of each set equals n.
[ "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "2", "3", "3", "2", "3", "4", "6", "2", "5", "0", "5", "9", "7", "14", "8", "6", "10", "9", "21", "19", "11", "18", "15", "29", "34", "35", "34", "24", "31", "51", "55", "48", "76", "34", "60", "93", "89", "97", "91", "76", "83", "156", "164", "189", "145", "157", "172", "186", "283", "276", "218", "242", "280", "405", "433", "476", "446" ]
[ "nonn" ]
34
0
19
[ "A000607", "A108796", "A382871", "A382954" ]
null
Seiichi Manyama, Apr 09 2025
2025-04-10T08:34:33
oeisdata/seq/A382/A382871.seq
fd4b48ed68c60606fac108399d41551c
A382872
For n >= 1, a(n) is the number of divisors of the Pillai's arithmetical function: Sum_{k=1..n} gcd(k, n) (A018804).
[ "1", "2", "2", "4", "3", "4", "2", "6", "4", "4", "4", "8", "3", "4", "6", "10", "4", "6", "2", "12", "4", "6", "6", "9", "4", "6", "5", "8", "4", "8", "2", "10", "8", "6", "6", "16", "2", "4", "4", "18", "5", "8", "4", "16", "8", "8", "4", "20", "4", "8", "8", "12", "8", "6", "8", "12", "4", "6", "6", "24", "3", "4", "8", "9", "9", "12", "4", "16", "9", "8", "4", "24", "4", "4", "6", "8", "8", "8", "2", "20" ]
[ "nonn" ]
19
1
2
[ "A000005", "A005382", "A005408", "A018804", "A065091", "A067756", "A277201", "A382872" ]
null
Ctibor O. Zizka, Apr 07 2025
2025-05-21T00:52:14
oeisdata/seq/A382/A382872.seq
884dd22c48ed1cd1a087ad8c8afd63a9
A382873
a(n) = A019565(A014311(n)).
[ "30", "42", "70", "105", "66", "110", "165", "154", "231", "385", "78", "130", "195", "182", "273", "455", "286", "429", "715", "1001", "102", "170", "255", "238", "357", "595", "374", "561", "935", "1309", "442", "663", "1105", "1547", "2431", "114", "190", "285", "266", "399", "665", "418", "627", "1045", "1463", "494", "741", "1235", "1729", "2717", "646" ]
[ "nonn" ]
10
1
1
[ "A007304", "A014311", "A019565", "A382873" ]
null
Chai Wah Wu, Apr 07 2025
2025-04-10T07:06:29
oeisdata/seq/A382/A382873.seq
d5746a998182d4d87547da2b4debbdee
A382874
Expansion of g.f. 2-hypergeom([3/2,7/2],[-1/2],4*x).
[ "1", "42", "1890", "32340", "378378", "3567564", "29201172", "216164520", "1484052570", "9607866268", "59342703420", "352648983960", "2029131058500", "11360419371000", "62125264788840", "332868702695760", "1751865025825530", "9075126224864700", "46353422502086700", "233788539957892920" ]
[ "nonn" ]
18
0
2
[ "A001700", "A002421", "A002423", "A002457", "A382874" ]
null
Karol A. Penson, Apr 07 2025
2025-04-08T13:59:50
oeisdata/seq/A382/A382874.seq
a39466eb32fd4dc3d53888ff2d00e449
A382875
Numbers which are a multiple of 2^k - 1 for some k > 1.
[ "0", "3", "6", "7", "9", "12", "14", "15", "18", "21", "24", "27", "28", "30", "31", "33", "35", "36", "39", "42", "45", "48", "49", "51", "54", "56", "57", "60", "62", "63", "66", "69", "70", "72", "75", "77", "78", "81", "84", "87", "90", "91", "93", "96", "98", "99", "102", "105", "108", "111", "112", "114", "117", "119", "120", "123", "124", "126", "127", "129", "132", "133", "135", "138", "140" ]
[ "nonn", "changed" ]
10
1
2
[ "A000225", "A001477", "A161788", "A161789", "A161790", "A382875" ]
null
Stefano Spezia, Apr 07 2025
2025-06-30T04:29:09
oeisdata/seq/A382/A382875.seq
38c405ccb5366480eb14b7bbe7b5c3d1
A382876
Number of ways to permute the prime indices of n so that the run-sums are all different.
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "0", "1", "2", "2", "1", "1", "2", "1", "2", "2", "2", "1", "2", "1", "2", "1", "2", "1", "6", "1", "1", "2", "2", "2", "2", "1", "2", "2", "2", "1", "6", "1", "2", "2", "2", "1", "4", "1", "2", "2", "2", "1", "4", "2", "4", "2", "2", "1", "0", "1", "2", "0", "1", "2", "6", "1", "2", "2", "6", "1", "4", "1", "2", "2", "2", "2", "6", "1", "2", "1", "2", "1", "0", "2", "2", "2" ]
[ "nonn" ]
22
1
6
[ "A000720", "A000961", "A001221", "A001222", "A044813", "A056239", "A098859", "A112798", "A130091", "A304442", "A329738", "A329739", "A351013", "A351202", "A351596", "A353832", "A353837", "A353838", "A353847", "A353848", "A353850", "A353851", "A353852", "A353932", "A354580", "A354584", "A381636", "A382076", "A382771", "A382857", "A382876", "A382877", "A382879", "A383100" ]
null
Gus Wiseman, Apr 12 2025
2025-04-27T09:09:03
oeisdata/seq/A382/A382876.seq
cb6f47de6f59f3e85f4181c94fbe1e43
A382877
Number of ways to permute the prime indices of n so that the run-sums are all equal.
[ "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "1", "2", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "2", "1", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "2", "1", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0" ]
[ "nonn" ]
7
1
12
[ "A000720", "A000961", "A001221", "A001222", "A044813", "A056239", "A112798", "A130091", "A304442", "A329738", "A329739", "A351596", "A353832", "A353833", "A353837", "A353838", "A353847", "A353848", "A353850", "A353851", "A353852", "A353932", "A354584", "A381871", "A382076", "A382771", "A382857", "A382876", "A382877", "A382879", "A383015", "A383098", "A383099", "A383100", "A383110" ]
null
Gus Wiseman, Apr 14 2025
2025-04-17T23:21:24
oeisdata/seq/A382/A382877.seq
0ec04e71f94e20e27fe0bbf8fe640398
A382878
Set of positions of first appearances in A382857 (permutations of prime indices with equal run-lengths).
[ "1", "6", "24", "30", "36", "180", "210", "360", "420", "720", "1080", "1260", "1800", "2160", "2310", "2520", "3600", "4620", "5040", "5400", "6300", "7560", "10800", "12600", "13860", "15120", "21600", "25200", "25920", "27000", "27720", "30030", "32400", "37800", "44100", "45360", "46656", "50400", "54000", "55440", "60060", "60480", "64800" ]
[ "nonn" ]
6
1
2
[ "A000720", "A001221", "A001222", "A003242", "A044813", "A048767", "A056239", "A098859", "A112798", "A130091", "A140690", "A238130", "A239455", "A305936", "A329738", "A329739", "A351013", "A351202", "A351293", "A351294", "A351295", "A351596", "A353744", "A381432", "A381433", "A382771", "A382772", "A382773", "A382857", "A382858", "A382876", "A382878", "A382879" ]
null
Gus Wiseman, Apr 09 2025
2025-04-10T23:17:13
oeisdata/seq/A382/A382878.seq
a1c9e52fcf00ccc7a1f544b98d940374
A382879
Positions of 0 in A382857 (permutations of prime indices with equal run-lengths).
[ "24", "40", "48", "54", "56", "80", "88", "96", "104", "112", "135", "136", "152", "160", "162", "176", "184", "189", "192", "208", "224", "232", "240", "248", "250", "272", "288", "296", "297", "304", "320", "328", "336", "344", "351", "352", "368", "375", "376", "384", "405", "416", "424", "448", "459", "464", "472", "480", "486", "488", "496", "513", "528", "536" ]
[ "nonn" ]
8
1
1
[ "A000720", "A000961", "A001221", "A001222", "A003242", "A005811", "A008480", "A047966", "A056239", "A112798", "A130091", "A164707", "A238279", "A239455", "A297770", "A304442", "A328592", "A329739", "A351201", "A351290", "A351291", "A351293", "A351294", "A351295", "A351596", "A353744", "A353833", "A382773", "A382857", "A382858", "A382876", "A382877", "A382878", "A382879", "A382914", "A382915", "A383013", "A383100" ]
null
Gus Wiseman, Apr 09 2025
2025-04-21T10:47:08
oeisdata/seq/A382/A382879.seq
e690f043cee1759487e78571c1e0fd19
A382880
Symmetric triangle read by rows refining A109113.
[ "1", "1", "1", "6", "6", "1", "1", "11", "33", "33", "11", "1", "1", "16", "85", "189", "189", "85", "16", "1", "1", "21", "162", "590", "1107", "1107", "590", "162", "21", "1", "1", "26", "264", "1361", "3919", "6588", "6588", "3919", "1361", "264", "26", "1", "1", "31", "391", "2627", "10400", "25484", "39663", "39663", "25484", "10400", "2627", "391", "31", "1" ]
[ "nonn", "tabf" ]
13
0
4
[ "A109113", "A382880" ]
null
F. Chapoton, Apr 07 2025
2025-04-12T12:48:15
oeisdata/seq/A382/A382880.seq
dbdc38c5716f32ab4a72aa4904f13e4a
A382881
Triangle read by rows: T(n, k) = -Sum_{d|n, d<n} V(n, d)*T(d, k) for k >= 1, T(n, 0) = 0^n, T(n, n) = 1, where V(n, d) = 1 if d = 1 otherwise valuation(n, d).
[ "1", "0", "1", "0", "-1", "1", "0", "-1", "0", "1", "0", "1", "-2", "0", "1", "0", "-1", "0", "0", "0", "1", "0", "1", "-1", "-1", "0", "0", "1", "0", "-1", "0", "0", "0", "0", "0", "1", "0", "1", "-1", "0", "-1", "0", "0", "0", "1", "0", "1", "0", "-2", "0", "0", "0", "0", "0", "1", "0", "1", "-1", "0", "0", "-1", "0", "0", "0", "0", "1", "0", "-1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "-1", "0", "-1", "0", "0", "0", "0", "0", "1" ]
[ "sign", "tabl" ]
18
0
13
[ "A019590", "A382881", "A382883", "A382944" ]
null
Peter Luschny, Apr 09 2025
2025-04-29T16:52:51
oeisdata/seq/A382/A382881.seq
b1ca193af92d0f4caf7f940b7f461a66
A382882
Triangle read by rows: T(n, k) = k^ord(n, k) where ord(n, k) is the p-adic order if n and k >= 2, 1 if k = 1, and 0^n if k = 0.
[ "0", "1", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "4", "1", "4", "1", "1", "1", "1", "1", "5", "1", "1", "2", "3", "1", "1", "6", "1", "1", "1", "1", "1", "1", "1", "7", "1", "1", "8", "1", "4", "1", "1", "1", "8", "1", "1", "1", "9", "1", "1", "1", "1", "1", "9", "1", "1", "2", "1", "1", "5", "1", "1", "1", "1", "10", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "11", "1", "1", "4", "3", "4", "1", "6", "1", "1", "1", "1", "1", "12" ]
[ "nonn", "tabl" ]
7
0
6
[ "A286563", "A364813", "A381886", "A382882" ]
null
Peter Luschny, Apr 07 2025
2025-04-08T08:49:13
oeisdata/seq/A382/A382882.seq
245808845c2484a1f0fce4dce12cf3fb
A382883
a(n) = A382881(n, 1) = -Sum_{d|n, 1<d} A382881(n, d) for n >= 2, otherwise n.
[ "1", "-1", "-1", "1", "-1", "1", "-1", "1", "1", "1", "-1", "0", "-1", "1", "1", "0", "-1", "0", "-1", "0", "1", "1", "-1", "0", "1", "1", "1", "0", "-1", "-1", "-1", "1", "1", "1", "1", "-1", "-1", "1", "1", "0", "-1", "-1", "-1", "0", "0", "1", "-1", "0", "1", "0", "1", "0", "-1", "0", "1", "0", "1", "1", "-1", "0", "-1", "1", "0", "-1", "1", "-1", "-1", "0", "1", "-1", "-1", "0", "-1", "1", "0", "0", "1" ]
[ "sign" ]
50
1
null
[ "A001221", "A002321", "A008683", "A008966", "A053810", "A059404", "A072774", "A072776", "A113704", "A363914", "A382881", "A382883", "A382940", "A382941", "A382942", "A382943", "A382944", "A383016", "A383017", "A383018", "A383104", "A383105", "A383106", "A383123", "A383124", "A383210", "A383211", "A383575", "A383576", "A384667" ]
null
Peter Luschny, Apr 09 2025
2025-06-17T02:57:38
oeisdata/seq/A382/A382883.seq
e72a0ec1ca257cfd75972a35cb190128
A382884
Decimal expansion of 1/6 + Pi/(12*sqrt(3)) - log(3)/4.
[ "0", "4", "3", "1", "6", "3", "5", "4", "1", "5", "1", "9", "1", "5", "7", "3", "9", "8", "0", "3", "4", "0", "2", "8", "5", "4", "5", "5", "7", "2", "8", "8", "1", "5", "5", "1", "5", "2", "8", "4", "6", "6", "2", "1", "4", "5", "5", "2", "0", "4", "1", "0", "1", "8", "3", "6", "3", "8", "1", "6", "8", "2", "7", "8", "7", "2", "9", "7", "0", "0", "2", "5", "1", "2", "2", "5", "4", "3", "9", "1", "5", "2", "5", "5", "2", "7", "3" ]
[ "nonn", "cons" ]
12
0
2
[ "A187832", "A382854", "A382884" ]
null
Sean A. Irvine, Apr 07 2025
2025-04-08T15:44:17
oeisdata/seq/A382/A382884.seq
3f92207367d3a9b6f892a2d4d32fb4da
A382885
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x) * A(x) )^3.
[ "1", "3", "18", "121", "900", "7110", "58598", "498153", "4336533", "38463732", "346368351", "3158325168", "29102914959", "270582713670", "2535191045652", "23913087584045", "226892934532149", "2164080724942155", "20737076963936828", "199542537271568802", "1927347504059464995", "18679645863925666721" ]
[ "nonn" ]
22
0
2
[ "A052709", "A365178", "A371483", "A371576", "A382885" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:47:26
oeisdata/seq/A382/A382885.seq
e6ee5e094d45845b4d672031ee59be46
A382886
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^2 * A(x) )^3.
[ "1", "3", "21", "154", "1248", "10710", "95751", "882297", "8320812", "79927938", "779303829", "7692585186", "76726084742", "772066751871", "7828529324175", "79908510600542", "820435635949686", "8467306916189517", "87791572491261912", "914032693961190414", "9552050623400554164", "100162810727306404897" ]
[ "nonn" ]
24
0
2
[ "A073155", "A378786", "A382406", "A382886", "A382893" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:47:21
oeisdata/seq/A382/A382886.seq
f9dbafddf816be9984072b050e70c4e8
A382887
Numbers k such that (k*2^d + 1)*(d*2^k + 1) is semiprime for some divisor d of k.
[ "1", "2", "8", "12", "30", "51", "63", "141", "201", "209", "534", "4713", "5795", "6611", "7050", "18496", "24105", "32292", "32469", "52782", "59656", "80190", "90825" ]
[ "nonn", "more" ]
25
1
2
[ "A001358", "A002064", "A005849", "A382646", "A382887" ]
null
Juri-Stepan Gerasimov, Apr 07 2025
2025-04-16T05:42:04
oeisdata/seq/A382/A382887.seq
915497494601f9da84aa49228e5baf31
A382888
The squarefree kernel of the n-th cubefree number.
[ "1", "2", "3", "2", "5", "6", "7", "3", "10", "11", "6", "13", "14", "15", "17", "6", "19", "10", "21", "22", "23", "5", "26", "14", "29", "30", "31", "33", "34", "35", "6", "37", "38", "39", "41", "42", "43", "22", "15", "46", "47", "7", "10", "51", "26", "53", "55", "57", "58", "59", "30", "61", "62", "21", "65", "66", "67", "34", "69", "70", "71", "73", "74", "15", "38", "77", "78", "79", "82" ]
[ "nonn", "easy" ]
9
1
2
[ "A002117", "A004709", "A005117", "A007947", "A371188", "A382888", "A382889", "A382890", "A382891" ]
null
Amiram Eldar, Apr 07 2025
2025-04-08T12:49:59
oeisdata/seq/A382/A382888.seq
be1cdf8b4dcfcdc4720351a81905b263
A382889
The largest square dividing the n-th cubefree number.
[ "1", "1", "1", "4", "1", "1", "1", "9", "1", "1", "4", "1", "1", "1", "1", "9", "1", "4", "1", "1", "1", "25", "1", "4", "1", "1", "1", "1", "1", "1", "36", "1", "1", "1", "1", "1", "1", "4", "9", "1", "1", "49", "25", "1", "4", "1", "1", "1", "1", "1", "4", "1", "1", "9", "1", "1", "1", "4", "1", "1", "1", "1", "1", "25", "4", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "9", "1", "4", "1", "1", "1", "1", "49", "9", "100" ]
[ "nonn", "easy" ]
9
1
4
[ "A002117", "A004709", "A008833", "A057521", "A062503", "A371188", "A382888", "A382889", "A382890", "A382891" ]
null
Amiram Eldar, Apr 07 2025
2025-04-08T12:23:31
oeisdata/seq/A382/A382889.seq
18d0248904bf043c076382a5d1551353
A382890
The square root of the largest square dividing the n-th cubefree number.
[ "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "2", "1", "1", "1", "1", "3", "1", "2", "1", "1", "1", "5", "1", "2", "1", "1", "1", "1", "1", "1", "6", "1", "1", "1", "1", "1", "1", "2", "3", "1", "1", "7", "5", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "1", "1", "5", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "3", "1", "2", "1", "1", "1", "1", "7", "3", "10", "1", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A000188", "A004709", "A005117", "A057521", "A371188", "A382888", "A382889", "A382890", "A382891" ]
null
Amiram Eldar, Apr 07 2025
2025-04-08T13:02:18
oeisdata/seq/A382/A382890.seq
508c4ec54c89295fb725085d1b8d21d7
A382891
The powerfree part of the n-th cubefree number.
[ "1", "2", "3", "1", "5", "6", "7", "1", "10", "11", "3", "13", "14", "15", "17", "2", "19", "5", "21", "22", "23", "1", "26", "7", "29", "30", "31", "33", "34", "35", "1", "37", "38", "39", "41", "42", "43", "11", "5", "46", "47", "1", "2", "51", "13", "53", "55", "57", "58", "59", "15", "61", "62", "7", "65", "66", "67", "17", "69", "70", "71", "73", "74", "3", "19", "77", "78", "79", "82", "83" ]
[ "nonn", "easy" ]
9
1
2
[ "A002117", "A004709", "A005117", "A007913", "A055231", "A371188", "A382888", "A382889", "A382890", "A382891" ]
null
Amiram Eldar, Apr 07 2025
2025-04-08T12:23:22
oeisdata/seq/A382/A382891.seq
9c6d2bd0f989c930a739ac55030322cb
A382892
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^3.
[ "1", "3", "24", "190", "1659", "15309", "146986", "1453536", "14704917", "151479031", "1583533308", "16756882194", "179149227231", "1932144798513", "20996553430206", "229678298803028", "2527034248221849", "27947027713469307", "310494250880357488", "3463870813896354726", "38787008808135775299" ]
[ "nonn" ]
10
0
2
[ "A360076", "A366272", "A382614", "A382892", "A382894" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:47:17
oeisdata/seq/A382/A382892.seq
75edcba1ab8e6af65dbd18a41d112973
A382893
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^2 * A(x) )^2.
[ "1", "2", "11", "60", "365", "2350", "15767", "109048", "771993", "5567066", "40751267", "302018484", "2261763205", "17088919814", "130108591407", "997225521136", "7688232599089", "59581977618098", "463890112373563", "3626778446099756", "28461425971969693", "224114796803735774", "1770236735807921863" ]
[ "nonn" ]
9
0
2
[ "A073155", "A366221", "A382886", "A382893" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:47:13
oeisdata/seq/A382/A382893.seq
cd8aad5a815d05a1617cf7a1b7a31a4e
A382894
G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x)^3 * A(x) )^2.
[ "1", "2", "13", "78", "520", "3664", "26859", "202808", "1566693", "12323982", "98381841", "795023284", "6490951398", "53462144788", "443683640945", "3706539244272", "31144893093298", "263052053436600", "2231992880546400", "19016760502183968", "162629329186013523", "1395500273826639540" ]
[ "nonn" ]
9
0
2
[ "A360076", "A366200", "A382613", "A382892", "A382894" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:47:09
oeisdata/seq/A382/A382894.seq
7c9c29ea3d13bd9445ff5ec7a79b6b1f
A382895
Divide n successively by its nonzero digits from most to least significant, updating the result at each step and skipping any digit that doesn't divide the current value exactly.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "10", "11", "6", "13", "14", "3", "16", "17", "18", "19", "10", "21", "11", "23", "3", "5", "13", "27", "14", "29", "10", "31", "16", "11", "34", "7", "2", "37", "38", "13", "10", "41", "21", "43", "11", "9", "46", "47", "12", "49", "10", "51", "26", "53", "54", "11", "56", "57", "58", "59", "10", "61", "31", "21", "16", "13", "11", "67", "68", "69", "10", "71", "36", "73", "74", "15" ]
[ "nonn", "easy", "base" ]
15
1
10
[ "A051801", "A382895", "A382897" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:46:19
oeisdata/seq/A382/A382895.seq
836dbaa9af328609c8aee543b5eeef9c
A382896
Smith sphenic numbers, i.e., Smith numbers (A006753) that are the product of three distinct prime numbers.
[ "438", "483", "627", "645", "654", "663", "762", "861", "915", "1086", "1581", "1626", "1842", "2067", "2265", "2373", "2409", "2679", "2751", "3138", "3246", "3345", "3615", "4173", "4191", "4209", "4974", "5253", "5298", "5397", "5946", "6054", "6315", "6531", "6567", "6585", "6603", "6693", "6702", "6855", "6981", "7026", "7089", "7287" ]
[ "nonn", "base" ]
10
1
1
[ "A006753", "A007304", "A382896" ]
null
Shyam Sunder Gupta, Apr 08 2025
2025-04-08T09:35:40
oeisdata/seq/A382/A382896.seq
4863f885bf16e34787a67e47eaa0e2be
A382897
a(n) = n / A382895(n).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "1", "1", "2", "1", "1", "5", "1", "1", "1", "1", "2", "1", "2", "1", "8", "5", "2", "1", "2", "1", "3", "1", "2", "3", "1", "5", "18", "1", "1", "3", "4", "1", "2", "1", "4", "5", "1", "1", "4", "1", "5", "1", "2", "1", "1", "5", "1", "1", "1", "1", "6", "1", "2", "3", "4", "5", "6", "1", "1", "1", "7", "1", "2", "1", "1", "5", "1", "7", "1", "1", "8", "1", "2", "1", "4", "5", "1", "1", "8", "1", "9", "1", "2", "3", "1", "5", "6", "1", "1", "9" ]
[ "nonn", "base", "easy" ]
10
1
2
[ "A051801", "A382895", "A382897" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-08T08:46:23
oeisdata/seq/A382/A382897.seq
89a17bcadd680563125de09ec017d5a8
A382898
Beginning with 13, least prime such that concatenation of first n terms and its digit reversal both are primes.
[ "13", "151", "227", "2083", "887", "79", "2963", "1579", "6287", "1321", "6719", "54919", "26699", "8647", "4229", "3919", "102161", "42433", "1667", "192193", "11633", "186343", "47339", "3259", "65963", "14293", "29717", "61297", "28493", "231367", "43793", "145021", "566441", "475903", "92381", "80473", "139967", "882061", "72893", "709279", "6053", "114487", "1179389", "204331", "203351", "139831", "396239", "205327", "501173", "951589" ]
[ "base", "nonn" ]
9
1
1
[ "A111382", "A111383", "A113584", "A379354", "A379355", "A379761", "A380227", "A382898" ]
null
J.W.L. (Jan) Eerland, Apr 08 2025
2025-04-15T04:00:01
oeisdata/seq/A382/A382898.seq
aba4931903ac090b2c3c9058d4d883b1
A382899
The smallest n-digit prime that turns composite at each step as its digits are successively appended, starting from the first.
[ "2", "11", "101", "1013", "10007", "100003", "1000003", "10000019", "100000007", "1000000007", "10000000019", "100000000003", "1000000000061", "10000000000037", "100000000000031", "1000000000000037", "10000000000000061", "100000000000000013", "1000000000000000003", "10000000000000000051" ]
[ "nonn", "base" ]
30
1
1
[ "A003617", "A382899", "A382981" ]
null
Jean-Marc Rebert, Apr 08 2025
2025-04-16T09:02:08
oeisdata/seq/A382/A382899.seq
ca868ca62f0d1932496678e2b3ca9e50
A382900
Composites whose prime factors are not all Mersenne primes.
[ "4", "6", "8", "10", "12", "14", "15", "16", "18", "20", "22", "24", "25", "26", "28", "30", "32", "33", "34", "35", "36", "38", "39", "40", "42", "44", "45", "46", "48", "50", "51", "52", "54", "55", "56", "57", "58", "60", "62", "64", "65", "66", "68", "69", "70", "72", "74", "75", "76", "77", "78", "80", "82", "84", "85", "86", "87", "88", "90", "91", "92", "94", "95", "96", "98", "99", "100" ]
[ "nonn" ]
7
1
1
[ "A000668", "A002808", "A056652", "A348839", "A382900" ]
null
Stefano Spezia, Apr 08 2025
2025-04-12T12:36:15
oeisdata/seq/A382/A382900.seq
ecb3776675341ae794302dff41863a8a
A382901
Semiprimes that can be expressed using at most one of each of the semiprime digits 4, 6, 9 using concatenation and the arithmetic operations +, -, *, /, ^.
[ "4", "6", "9", "10", "15", "33", "46", "49", "55", "58", "65", "69", "94", "469", "649", "694", "4087", "4105" ]
[ "nonn", "base", "fini", "full" ]
13
1
1
null
null
Zak Seidov and Robert Israel, Apr 08 2025
2025-04-11T07:58:31
oeisdata/seq/A382/A382901.seq
02780740fc263484781fa2e12a427904
A382902
The largest cubefree divisor of the n-th biquadratefree number.
[ "1", "2", "3", "4", "5", "6", "7", "4", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "12", "25", "26", "9", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "20", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "18", "55", "28", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "36" ]
[ "nonn", "easy" ]
8
1
2
[ "A007948", "A013662", "A046100", "A382902", "A382903", "A382904", "A382905", "A382906" ]
null
Amiram Eldar, Apr 08 2025
2025-04-09T04:19:47
oeisdata/seq/A382/A382902.seq
6915ca4cb412acf98966c24084ab4720
A382903
The largest cubefree unitary divisor of the n-th biquadratefree number.
[ "1", "2", "3", "4", "5", "6", "7", "1", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "3", "25", "26", "1", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "5", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "2", "55", "7", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "9", "73" ]
[ "nonn", "easy" ]
7
1
2
[ "A013662", "A046100", "A360539", "A382902", "A382903", "A382904", "A382905", "A382906" ]
null
Amiram Eldar, Apr 08 2025
2025-04-09T04:19:43
oeisdata/seq/A382/A382903.seq
683ac0527e79a920e8a8652b0ed8a1f4
A382904
The squarefree kernel of the n-th biquadratefree number.
[ "1", "2", "3", "2", "5", "6", "7", "2", "3", "10", "11", "6", "13", "14", "15", "17", "6", "19", "10", "21", "22", "23", "6", "5", "26", "3", "14", "29", "30", "31", "33", "34", "35", "6", "37", "38", "39", "10", "41", "42", "43", "22", "15", "46", "47", "7", "10", "51", "26", "53", "6", "55", "14", "57", "58", "59", "30", "61", "62", "21", "65", "66", "67", "34", "69", "70", "71", "6", "73", "74" ]
[ "nonn", "easy" ]
7
1
2
[ "A007947", "A013662", "A046100", "A382902", "A382903", "A382904", "A382905", "A382906" ]
null
Amiram Eldar, Apr 08 2025
2025-04-09T04:19:39
oeisdata/seq/A382/A382904.seq
22d8b70d46e0ff8853326b91b89922a5
A382905
The powerfree part of the n-th biquadratefree number.
[ "1", "2", "3", "1", "5", "6", "7", "1", "1", "10", "11", "3", "13", "14", "15", "17", "2", "19", "5", "21", "22", "23", "3", "1", "26", "1", "7", "29", "30", "31", "33", "34", "35", "1", "37", "38", "39", "5", "41", "42", "43", "11", "5", "46", "47", "1", "2", "51", "13", "53", "2", "55", "7", "57", "58", "59", "15", "61", "62", "7", "65", "66", "67", "17", "69", "70", "71", "1", "73", "74", "3", "19" ]
[ "nonn", "easy" ]
7
1
2
[ "A013662", "A046100", "A055231", "A382902", "A382903", "A382904", "A382905", "A382906" ]
null
Amiram Eldar, Apr 08 2025
2025-04-09T04:19:39
oeisdata/seq/A382/A382905.seq
f244056f75dcfaee818a759bf1889ed7
A382906
The powerful part of the n-th biquadratefree number.
[ "1", "1", "1", "4", "1", "1", "1", "8", "9", "1", "1", "4", "1", "1", "1", "1", "9", "1", "4", "1", "1", "1", "8", "25", "1", "27", "4", "1", "1", "1", "1", "1", "1", "36", "1", "1", "1", "8", "1", "1", "1", "4", "9", "1", "1", "49", "25", "1", "4", "1", "27", "1", "8", "1", "1", "1", "4", "1", "1", "9", "1", "1", "1", "4", "1", "1", "1", "72", "1", "1", "25", "4", "1", "1", "1", "1", "1", "4", "1", "1", "1", "8", "1", "9", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A013662", "A046100", "A057521", "A382902", "A382903", "A382904", "A382905", "A382906" ]
null
Amiram Eldar, Apr 08 2025
2025-04-09T04:19:29
oeisdata/seq/A382/A382906.seq
cbf7ec715db906fd4b5bda0da5739eeb
A382907
Decimal expansion of 1/2 - Pi*(sqrt(2)+1)/16.
[ "0", "2", "5", "9", "7", "0", "2", "7", "5", "5", "1", "5", "7", "4", "0", "0", "3", "2", "1", "5", "7", "5", "9", "2", "2", "2", "6", "6", "6", "6", "2", "3", "7", "7", "1", "3", "5", "7", "4", "2", "6", "3", "0", "5", "6", "9", "5", "3", "0", "7", "5", "2", "4", "7", "2", "4", "6", "2", "2", "8", "7", "3", "7", "5", "4", "5", "9", "8", "4", "3", "0", "0", "0", "3", "8", "3", "9", "4", "8", "1", "8", "1", "7", "4", "7", "8", "9" ]
[ "nonn", "cons" ]
6
0
2
[ "A239120", "A382907" ]
null
Sean A. Irvine, Apr 08 2025
2025-04-30T15:07:35
oeisdata/seq/A382/A382907.seq
b95dfca9c61e82fd22939f6231feb43b
A382908
Lexicographically earliest sequence of positive integers such that the n-th pair of consecutive equal values are separated by a(n) distinct terms, with pairs numbered by their average index.
[ "1", "2", "1", "3", "2", "3", "4", "1", "3", "2", "5", "2", "4", "3", "2", "4", "6", "3", "5", "1", "3", "7", "5", "6", "5", "2", "1" ]
[ "nonn", "more" ]
20
1
2
[ "A363654", "A363708", "A363757", "A382908", "A382911" ]
null
Neal Gersh Tolunsky, Apr 08 2025
2025-04-23T10:37:00
oeisdata/seq/A382/A382908.seq
1353f5b690645690a6c2573c28e86659
A382909
Number of possible (area, dinv) interchanging bijections of Dyck paths of length 2n.
[ "1", "1", "1", "1", "16", "165112971264", "7081067777179913483347996561235301491807900639024696524800000000000000000000" ]
[ "nonn" ]
24
1
5
null
null
Blake Jackson, Apr 08 2025
2025-04-19T06:16:50
oeisdata/seq/A382/A382909.seq
048883ac22e83a059523fdb2842e8de5
A382910
a(n) = A003266(n)^2.
[ "1", "1", "1", "4", "36", "900", "57600", "9734400", "4292870400", "4962558182400", "15011738501760000", "118907980672440960000", "2465675887223735746560000", "133859078241489389944995840000", "19025256931384645503492313743360000", "7079298104168226591849489943904256000000", "6896432754839457130755425769163265163264000000" ]
[ "nonn", "easy" ]
28
0
4
[ "A000045", "A003266", "A007598", "A090281", "A382910" ]
null
Edwin Hermann, Apr 08 2025
2025-04-15T15:42:45
oeisdata/seq/A382/A382910.seq
1a027dfbc9996f18d0df42c76f1cef14
A382911
Lexicographically earliest sequence of positive integers such that the n-th pair of consecutive equal values are separated by a(n) distinct terms, with pairs numbered according to the average index of the pair.
[ "1", "2", "1", "3", "1", "2", "4", "2", "3", "4", "2", "5", "1" ]
[ "nonn", "more" ]
12
1
2
[ "A363654", "A363708", "A363757", "A382908", "A382911" ]
null
Neal Gersh Tolunsky, Apr 08 2025
2025-04-23T10:37:12
oeisdata/seq/A382/A382911.seq
0fb98491a68d3e3aee4a883fd3ca2b32
A382912
Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has no permutation with all distinct run-lengths.
[ "4", "8", "9", "12", "16", "18", "20", "24", "27", "28", "32", "36", "40", "44", "45", "48", "50", "52", "54", "56", "60", "63", "64", "68", "72", "75", "76", "80", "81", "84", "88", "90", "92", "96", "98", "99", "100", "104", "108", "112", "116", "117", "120", "124", "125", "126", "128", "132", "135", "136", "140", "144", "148", "150", "152", "153", "156", "160", "162", "164" ]
[ "nonn" ]
15
1
1
[ "A000720", "A001221", "A001222", "A048767", "A056239", "A112798", "A181821", "A239455", "A305936", "A329739", "A335125", "A351202", "A351291", "A351293", "A351294", "A351295", "A351596", "A381431", "A381432", "A381433", "A381436", "A381440", "A381636", "A381717", "A381871", "A382525", "A382771", "A382773", "A382775", "A382857", "A382858", "A382876", "A382879", "A382912", "A382913", "A382914", "A382915" ]
null
Gus Wiseman, Apr 12 2025
2025-05-08T19:42:09
oeisdata/seq/A382/A382912.seq
d6fdee5953e7d139bd2a1be2b84070ef
A382913
Numbers k such that row k of A305936 (a multiset whose multiplicities are the prime indices of k) has a permutation with all distinct run-lengths.
[ "1", "2", "3", "5", "6", "7", "10", "11", "13", "14", "15", "17", "19", "21", "22", "23", "25", "26", "29", "30", "31", "33", "34", "35", "37", "38", "39", "41", "42", "43", "46", "47", "49", "51", "53", "55", "57", "58", "59", "61", "62", "65", "66", "67", "69", "70", "71", "73", "74", "77", "78", "79", "82", "83", "85", "86", "87", "89", "91", "93", "94", "95", "97", "101", "102", "103" ]
[ "nonn" ]
15
1
2
[ "A000720", "A001221", "A001222", "A044813", "A048767", "A055396", "A056239", "A061395", "A112798", "A140690", "A181821", "A239455", "A305936", "A329739", "A335125", "A351293", "A351294", "A351295", "A351596", "A381431", "A381432", "A381436", "A381440", "A381636", "A381717", "A381871", "A382525", "A382771", "A382773", "A382775", "A382858", "A382876", "A382879", "A382912", "A382913", "A382914", "A382915" ]
null
Gus Wiseman, Apr 12 2025
2025-05-08T19:42:04
oeisdata/seq/A382/A382913.seq
c0c2e0002131de6f03aea3d22175b476
A382914
Numbers k such that it is not possible to permute a multiset whose multiplicities are the prime indices of k so that the run-lengths are all equal.
[ "10", "14", "22", "26", "28", "33", "34", "38", "39", "44", "46", "51", "52", "55", "57", "58", "62", "66", "68", "69", "74", "76", "78", "82", "85", "86", "87", "88", "92", "93", "94", "95", "102", "104", "106", "111", "114", "115", "116", "118", "119", "122", "123", "124", "129", "130", "134", "136", "138", "141", "142", "145", "146", "148", "152", "153", "155", "156" ]
[ "nonn" ]
5
1
1
[ "A000720", "A000961", "A001221", "A001222", "A003963", "A044813", "A048767", "A056239", "A112798", "A140690", "A164707", "A181821", "A304442", "A305936", "A328592", "A329738", "A329739", "A335125", "A335126", "A335127", "A351013", "A351291", "A351596", "A353744", "A353833", "A382771", "A382772", "A382773", "A382857", "A382858", "A382877", "A382878", "A382879", "A382912", "A382913", "A382914", "A382915" ]
null
Gus Wiseman, Apr 09 2025
2025-04-11T07:59:22
oeisdata/seq/A382/A382914.seq
8c9bf17808d6211f446c8cf3ca369123
A382915
Number of integer partitions of n having no permutation with all equal run-lengths.
[ "0", "0", "0", "0", "0", "1", "2", "4", "4", "9", "11", "18", "21", "34", "41", "55", "69", "98", "120", "160", "189", "249", "309", "396", "472", "605", "734", "913", "1099", "1371", "1632", "2021", "2406", "2937", "3514", "4251", "5039", "6101", "7221", "8646", "10205", "12209", "14347", "17086", "20041", "23713", "27807", "32803", "38262", "45043", "52477", "61471", "71496" ]
[ "nonn" ]
11
0
7
[ "A000009", "A000041", "A003242", "A047966", "A056239", "A112798", "A238279", "A239455", "A304442", "A329738", "A329739", "A351201", "A351290", "A351293", "A351294", "A351295", "A351596", "A353744", "A353833", "A382773", "A382857", "A382879", "A382914", "A382915", "A383013" ]
null
Gus Wiseman, Apr 12 2025
2025-04-26T11:28:02
oeisdata/seq/A382/A382915.seq
c3ee141bcefe2257bb7c747f77f9fb9b
A382916
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)^3 / (1-x)^2 ).
[ "1", "1", "6", "41", "316", "2636", "23192", "211926", "1992032", "19138016", "187091252", "1855104372", "18612229836", "188601299149", "1927443803738", "19843158497163", "205602235405524", "2142401581747657", "22436439910929038", "236023405797017891", "2492914862240934612", "26426682321857813417" ]
[ "nonn" ]
11
0
3
[ "A349331", "A382916", "A382917", "A382920" ]
null
Seiichi Manyama, Apr 08 2025
2025-04-09T07:28:59
oeisdata/seq/A382/A382916.seq
30d065856b72d4a37d7b9869823af9c0