sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382616 | Expansion of 1/(1 - x/(1 - x)^3)^2. | [
"1",
"2",
"9",
"34",
"124",
"444",
"1567",
"5466",
"18885",
"64732",
"220403",
"746166",
"2513678",
"8431650",
"28175256",
"93834240",
"311565255",
"1031723268",
"3408137644",
"11233323692",
"36950587185",
"121319416734",
"397649266199",
"1301332828086",
"4252515425757",
"13877722224278",
"45232020345642"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 2 | [
"A045623",
"A052529",
"A290917",
"A382615",
"A382616"
]
| null | Seiichi Manyama, Mar 31 2025 | 2025-04-02T15:57:37 | oeisdata/seq/A382/A382616.seq | 19f250718721d87e69bd1a6fd01ec62d |
A382617 | Numbers k such that k = m*(m^2 + 1) where m^2 + 1 is prime. | [
"2",
"10",
"68",
"222",
"1010",
"2758",
"4112",
"8020",
"13848",
"17602",
"46692",
"64040",
"157518",
"175672",
"287562",
"405298",
"592788",
"729090",
"830678",
"1331110",
"1561012",
"1728120",
"1906748",
"2000502",
"2197130",
"2406238",
"3112282",
"3375150",
"3796572",
"4096160",
"4913170",
"5451952",
"5832180",
"6229688"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A002496",
"A005574",
"A070304",
"A382617"
]
| null | Steven Lee Benjamin, Mar 31 2025 | 2025-04-15T15:16:32 | oeisdata/seq/A382/A382617.seq | e0e1b533b2157449b1eaf2766d0cff19 |
A382618 | a(n) = 3^(n-2)*(binomial(n,2) + 3*n + 9). | [
"1",
"4",
"16",
"63",
"243",
"918",
"3402",
"12393",
"44469",
"157464",
"551124",
"1909251",
"6554439",
"22320522",
"75464622",
"253497357",
"846585513",
"2812385772",
"9298091736",
"30606218631",
"100341906651",
"327757733694",
"1066956026706",
"3462376910193",
"11203038280413",
"36150980669568",
"116360969030172"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 2 | [
"A006234",
"A382618"
]
| null | Enrique Navarrete, Apr 01 2025 | 2025-04-13T18:55:51 | oeisdata/seq/A382/A382618.seq | 7980b29d201f8fe9a64d7b92eece5174 |
A382619 | a(1) = 2; for n > 1, a(n) = a(n-1)*prime(n) if a(n-1)<=prime(n), otherwise a(n) = a(n-1)-prime(n). | [
"2",
"6",
"1",
"7",
"77",
"64",
"47",
"28",
"5",
"145",
"114",
"77",
"36",
"1548",
"1501",
"1448",
"1389",
"1328",
"1261",
"1190",
"1117",
"1038",
"955",
"866",
"769",
"668",
"565",
"458",
"349",
"236",
"109",
"14279",
"14142",
"14003",
"13854",
"13703",
"13546",
"13383",
"13216",
"13043",
"12864",
"12683",
"12492",
"12299",
"12102",
"11903"
]
| [
"easy",
"look",
"nonn"
]
| 12 | 1 | 1 | null | null | Anant Pratap Singh, Apr 01 2025 | 2025-04-06T14:52:43 | oeisdata/seq/A382/A382619.seq | 6d0f14522f494b2f81ee3e7299fc8637 |
A382620 | a(n) = n^(2*n-4) * (n!)^2 * (n^2)! * Pochhammer(1+1/n, n-1) / ((n^2-n+1) * (n^2-n)!). | [
"1",
"24",
"72576",
"4528742400",
"2423748096000000",
"6787796602812825600000",
"72775351435975459999580160000",
"2410818176289650624878632291532800000",
"211160088068074747246458003999015567360000000",
"43450506124990177923906533235556142284800000000000000",
"19145311724106592586650799558102522667408683773722624000000000"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A382532",
"A382612",
"A382620"
]
| null | Wesley Ivan Hurt, Apr 01 2025 | 2025-04-06T19:38:00 | oeisdata/seq/A382/A382620.seq | 1b27dd37477153e96db2f8e152001364 |
A382621 | Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is > d. | [
"1",
"3",
"2",
"5",
"4",
"7",
"6",
"9",
"8",
"10",
"11",
"13",
"15",
"17",
"19",
"20",
"30",
"31",
"32",
"33",
"21",
"35",
"23",
"25",
"27",
"29",
"37",
"39",
"40",
"50",
"51",
"52",
"53",
"54",
"55",
"41",
"57",
"42",
"59",
"43",
"70",
"71",
"72",
"73",
"74",
"75",
"45",
"47",
"49",
"60",
"76",
"77",
"61",
"79",
"62",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"97",
"63",
"98",
"64",
"99",
"65",
"101",
"103"
]
| [
"nonn",
"base",
"look"
]
| 21 | 1 | 2 | [
"A342042",
"A382462",
"A382621",
"A382622",
"A382623",
"A382624",
"A382625"
]
| null | Paolo Xausa, Apr 01 2025 | 2025-05-13T11:34:18 | oeisdata/seq/A382/A382621.seq | 2633c7964841e07eeadce7d6a223c4b2 |
A382622 | First differences of A382621. | [
"2",
"-1",
"3",
"-1",
"3",
"-1",
"3",
"-1",
"2",
"1",
"2",
"2",
"2",
"2",
"1",
"10",
"1",
"1",
"1",
"-12",
"14",
"-12",
"2",
"2",
"2",
"8",
"2",
"1",
"10",
"1",
"1",
"1",
"1",
"1",
"-14",
"16",
"-15",
"17",
"-16",
"27",
"1",
"1",
"1",
"1",
"1",
"-30",
"2",
"2",
"11",
"16",
"1",
"-16",
"18",
"-17",
"28",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"-34",
"35",
"-34",
"35",
"-34",
"36",
"2",
"2",
"2",
"-40",
"2",
"11",
"29"
]
| [
"sign",
"base"
]
| 7 | 1 | 1 | [
"A382621",
"A382622"
]
| null | Paolo Xausa, Apr 01 2025 | 2025-04-08T23:10:52 | oeisdata/seq/A382/A382622.seq | 8f5051faeb2bc8eb581d3c05a3b39f02 |
A382623 | Positive integers that contain an even digit d immediately preceded by a digit <= d. | [
"12",
"14",
"16",
"18",
"22",
"24",
"26",
"28",
"34",
"36",
"38",
"44",
"46",
"48",
"56",
"58",
"66",
"68",
"78",
"88",
"100",
"102",
"104",
"106",
"108",
"112",
"114",
"116",
"118",
"120",
"121",
"122",
"123",
"124",
"125",
"126",
"127",
"128",
"129",
"134",
"136",
"138",
"140",
"141",
"142",
"143",
"144",
"145",
"146",
"147",
"148",
"149",
"156",
"158",
"160",
"161",
"162",
"163"
]
| [
"nonn",
"base",
"easy"
]
| 9 | 1 | 1 | [
"A347298",
"A382464",
"A382621",
"A382623",
"A382624"
]
| null | Paolo Xausa, Apr 01 2025 | 2025-04-08T23:12:55 | oeisdata/seq/A382/A382623.seq | b29fe725e167ef505c557a8c768814d7 |
A382624 | Positive integers such that every even digit except the leftmost is immediately preceded by a larger digit. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"13",
"15",
"17",
"19",
"20",
"21",
"23",
"25",
"27",
"29",
"30",
"31",
"32",
"33",
"35",
"37",
"39",
"40",
"41",
"42",
"43",
"45",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"57",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"67",
"69",
"70",
"71",
"72",
"73",
"74",
"75",
"76",
"77",
"79",
"80",
"81",
"82",
"83",
"84",
"85",
"86",
"87",
"89",
"90"
]
| [
"nonn",
"base",
"easy"
]
| 12 | 1 | 2 | [
"A377912",
"A382465",
"A382621",
"A382623",
"A382624"
]
| null | Paolo Xausa, Apr 01 2025 | 2025-04-09T01:10:00 | oeisdata/seq/A382/A382624.seq | 610e270760e82b492ea04c3b04a17d66 |
A382625 | Split A382621 into runs of increasing elements. a(n) is the length of the n-th run. | [
"2",
"2",
"2",
"2",
"12",
"2",
"13",
"2",
"2",
"7",
"6",
"2",
"9",
"2",
"2",
"5",
"4",
"7",
"8",
"9",
"10",
"11",
"4",
"4",
"3",
"2",
"4",
"3",
"4",
"2",
"6",
"2",
"4",
"7",
"2",
"2",
"11",
"2",
"2",
"39",
"2",
"5",
"5",
"2",
"5",
"5",
"2",
"5",
"6",
"2",
"2",
"9",
"2",
"2",
"7",
"2",
"5",
"7",
"2",
"2",
"2",
"11",
"2",
"2",
"2",
"2",
"10",
"2",
"6",
"4",
"6",
"2",
"7",
"4",
"7",
"2",
"8",
"4",
"8",
"2",
"9",
"2",
"11",
"2",
"2",
"5",
"2"
]
| [
"nonn",
"base"
]
| 7 | 1 | 1 | [
"A382621",
"A382625"
]
| null | Paolo Xausa, Apr 01 2025 | 2025-04-08T23:10:39 | oeisdata/seq/A382/A382625.seq | e961b9db5b32f0ee7269aea867746259 |
A382626 | Decimal expansion of the smallest (in absolute value) root of 1-x-x^2-x^3-x^4. | [
"5",
"1",
"8",
"7",
"9",
"0",
"0",
"6",
"3",
"6",
"7",
"5",
"8",
"8",
"4",
"2",
"2",
"1",
"9",
"0",
"7",
"4",
"5",
"3",
"8",
"9",
"4",
"4",
"3",
"5",
"2",
"7",
"9",
"9",
"9",
"8",
"8",
"6",
"2",
"1",
"2",
"7",
"8",
"0",
"9",
"0",
"4",
"6",
"8",
"5",
"4",
"7",
"1",
"2",
"2",
"4",
"4",
"0",
"9",
"1",
"6",
"1",
"9",
"8",
"4",
"8",
"1",
"3",
"1",
"9",
"5",
"4",
"5",
"4",
"2",
"2",
"3",
"3",
"0",
"9",
"7",
"2",
"6",
"3",
"5",
"3",
"7",
"4",
"8",
"1",
"6",
"3",
"2",
"1",
"3",
"6",
"0",
"3",
"9",
"9",
"3",
"1",
"7",
"4",
"2",
"3",
"1",
"9",
"7",
"9",
"2",
"0",
"6"
]
| [
"nonn",
"cons"
]
| 10 | 0 | 1 | [
"A001622",
"A086088",
"A192918",
"A382626",
"A382627"
]
| null | R. J. Mathar, Apr 01 2025 | 2025-04-02T09:29:34 | oeisdata/seq/A382/A382626.seq | 948866c8ab9711c946f36b514f5454af |
A382627 | Decimal expansion of the smallest (in absolute value) root of 1-x-x^2-x^3-x^4-x^5. | [
"5",
"0",
"8",
"6",
"6",
"0",
"3",
"9",
"1",
"6",
"4",
"2",
"0",
"0",
"4",
"1",
"3",
"6",
"4",
"6",
"3",
"8",
"4",
"2",
"9",
"6",
"5",
"8",
"9",
"8",
"4",
"1",
"3",
"9",
"9",
"5",
"3",
"2",
"4",
"4",
"0",
"6",
"4",
"3",
"5",
"9",
"0",
"1",
"0",
"2",
"8",
"6",
"1",
"1",
"7",
"2",
"1",
"0",
"9",
"2",
"2",
"8",
"3",
"6",
"7",
"1",
"0",
"2",
"7",
"9",
"3",
"1",
"2",
"8",
"3",
"9",
"9",
"0",
"3",
"1",
"1",
"4",
"6",
"5",
"0",
"1",
"1",
"0",
"2",
"6",
"0",
"8",
"3",
"7",
"7",
"7",
"3",
"1",
"1",
"6",
"9",
"2",
"9",
"6",
"6",
"9",
"8",
"3",
"6",
"9",
"9",
"7",
"1"
]
| [
"nonn",
"cons"
]
| 6 | 0 | 1 | [
"A001622",
"A103814",
"A192918",
"A382626",
"A382627"
]
| null | R. J. Mathar, Apr 01 2025 | 2025-04-02T09:15:35 | oeisdata/seq/A382/A382627.seq | b78f1728733c8773179dc6909bc04854 |
A382628 | Centered hexagonal numbers that are sphenic numbers. | [
"3367",
"4921",
"8911",
"9919",
"10621",
"14911",
"18487",
"21931",
"25669",
"27937",
"37297",
"41419",
"55081",
"63511",
"66157",
"72541",
"80197",
"106597",
"108871",
"113491",
"117019",
"130417",
"134197",
"136747",
"139321",
"174967",
"195841",
"198919",
"203581",
"219511",
"226051",
"232687",
"236041",
"244531",
"247969",
"256669",
"258427",
"269101",
"272707",
"287371"
]
| [
"nonn"
]
| 19 | 1 | 1 | [
"A003215",
"A007304",
"A113530",
"A382628"
]
| null | Massimo Kofler, Apr 01 2025 | 2025-04-12T11:57:52 | oeisdata/seq/A382/A382628.seq | e8c2795ec72e9cde9403f99447091896 |
A382629 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (n-k)*T(n-1,k-1) + 2*(k+1)*T(n-1,k) + A102365(n,k) with T(n,k) = 0 if k < 0 or k > n. | [
"1",
"3",
"0",
"7",
"4",
"0",
"15",
"35",
"5",
"0",
"31",
"203",
"115",
"6",
"0",
"63",
"994",
"1428",
"315",
"7",
"0",
"127",
"4470",
"13421",
"7450",
"783",
"8",
"0",
"255",
"19185",
"108156",
"121314",
"32865",
"1839",
"9",
"0",
"511",
"80161",
"793704",
"1593902",
"870191",
"130665",
"4171",
"10",
"0",
"1023",
"329648",
"5483093",
"18269658",
"17591035",
"5383906",
"485166",
"9251",
"11",
"0"
]
| [
"nonn",
"tabl"
]
| 20 | 0 | 2 | [
"A098830",
"A102365",
"A126646",
"A180875",
"A382629"
]
| null | Seiichi Manyama, Apr 01 2025 | 2025-04-02T04:17:30 | oeisdata/seq/A382/A382629.seq | 32c45ecc837fcf28aac0d462143bc2a1 |
A382630 | a(n) is the number of ways that n can be written as b+c*d, where b, c and d are positive integers and b < c < d. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"1",
"1",
"1",
"2",
"0",
"2",
"1",
"2",
"2",
"3",
"0",
"3",
"2",
"2",
"1",
"3",
"1",
"4",
"2",
"3",
"3",
"3",
"1",
"4",
"3",
"3",
"1",
"4",
"2",
"5",
"3",
"3",
"4",
"5",
"1",
"5",
"3",
"4",
"3",
"5",
"2",
"4",
"3",
"5",
"5",
"6",
"1",
"6",
"5",
"4",
"4",
"5",
"3",
"6",
"4",
"5",
"3",
"6",
"2",
"7",
"6",
"5",
"5",
"6",
"4",
"7",
"3",
"6",
"6",
"7",
"2",
"6",
"6",
"6",
"4",
"7",
"3",
"7"
]
| [
"nonn"
]
| 22 | 0 | 14 | null | null | Jonatan Djurachkovitch, Apr 01 2025 | 2025-05-05T09:43:12 | oeisdata/seq/A382/A382630.seq | ca89124ff72b17c1a770aa0e18799d17 |
A382631 | Integers whose binary representation contains exactly four 1's, no two 1's being adjacent. | [
"85",
"149",
"165",
"169",
"170",
"277",
"293",
"297",
"298",
"325",
"329",
"330",
"337",
"338",
"340",
"533",
"549",
"553",
"554",
"581",
"585",
"586",
"593",
"594",
"596",
"645",
"649",
"650",
"657",
"658",
"660",
"673",
"674",
"676",
"680",
"1045",
"1061",
"1065",
"1066",
"1093",
"1097",
"1098",
"1105",
"1106",
"1108",
"1157",
"1161",
"1162",
"1169",
"1170"
]
| [
"nonn",
"easy",
"base"
]
| 42 | 1 | 1 | [
"A003714",
"A014312",
"A136318",
"A173589",
"A382631"
]
| null | Chai Wah Wu, Apr 07 2025 | 2025-04-07T16:05:13 | oeisdata/seq/A382/A382631.seq | 0770d3a38925c2469d9359cc186f671c |
A382632 | Numbers k such that one can make an equilateral triangle from a chain of linked rods of length 1, 2, 3, ..., k, with perimeter equal to the total length. | [
"9",
"90",
"125",
"153",
"189",
"440",
"819",
"989",
"1295",
"1394",
"1484",
"1701",
"2079",
"2448",
"2925",
"3024",
"4004",
"5453",
"6174",
"7865",
"8910",
"13509",
"13689",
"13923",
"16235",
"19683",
"20294",
"21824",
"24804",
"26649",
"32760",
"33488",
"37169",
"37925",
"39024",
"40733",
"42704",
"44225",
"44289",
"47915",
"48734",
"52325",
"97335",
"101870"
]
| [
"nonn"
]
| 9 | 1 | 1 | [
"A380867",
"A380868",
"A382268",
"A382605",
"A382632"
]
| null | Daniel Mondot, Apr 01 2025 | 2025-04-06T23:06:36 | oeisdata/seq/A382/A382632.seq | 1bac7ad9bbd88b8b8a7a81fc4aa8f8d4 |
A382633 | a(n) is the least k such that there are exactly n numbers i < k such that phi(i) divides phi(k-i), where phi = A000010. | [
"1",
"2",
"3",
"6",
"7",
"9",
"10",
"13",
"16",
"18",
"20",
"25",
"34",
"33",
"40",
"45",
"44",
"56",
"66",
"49",
"63",
"97",
"80",
"88",
"92",
"111",
"129",
"112",
"100",
"136",
"135",
"161",
"160",
"170",
"176",
"217",
"165",
"200",
"224",
"230",
"208",
"245",
"242",
"306",
"255",
"273",
"319",
"297",
"391",
"330",
"399",
"368",
"442",
"325",
"425",
"500",
"380",
"517",
"416",
"615",
"495",
"560",
"484",
"627",
"460",
"594"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A000010",
"A070547",
"A382633"
]
| null | Robert Israel, Apr 01 2025 | 2025-04-03T02:54:01 | oeisdata/seq/A382/A382633.seq | 71f3cb1d691fa65f68cac3f83bf8adc6 |
A382634 | Decimal expansion of the multiple prime zeta value p[2, 3]. | [
"0",
"2",
"9",
"1",
"8",
"5",
"1",
"6",
"6",
"5",
"0",
"4",
"0",
"1",
"2",
"5",
"7",
"1",
"0",
"4",
"0",
"6",
"4",
"1",
"3",
"4",
"4",
"0",
"9",
"0",
"2",
"7",
"9",
"1",
"9",
"6",
"7",
"4",
"7"
]
| [
"nonn",
"cons",
"more"
]
| 29 | 0 | 2 | [
"A085541",
"A085548",
"A085965",
"A258986",
"A382234",
"A382235",
"A382236",
"A382634",
"A382635"
]
| null | Artur Jasinski, Apr 01 2025 | 2025-04-27T00:45:31 | oeisdata/seq/A382/A382634.seq | 75c9129939ec2be5b08fb11d5f5db0b5 |
A382635 | Decimal expansion of the multiple prime zeta value p[3, 2]. | [
"0",
"1",
"4",
"0",
"9",
"5",
"7",
"6",
"8",
"7",
"5",
"4",
"8",
"0",
"3",
"8",
"3",
"3",
"5",
"1",
"2",
"7",
"2",
"0",
"3",
"1",
"3",
"5",
"9",
"9",
"8",
"7",
"9",
"9",
"7",
"4",
"8",
"8",
"5"
]
| [
"nonn",
"cons",
"more"
]
| 29 | 0 | 3 | [
"A085541",
"A085548",
"A085965",
"A258983",
"A382234",
"A382235",
"A382236",
"A382634",
"A382635"
]
| null | Artur Jasinski, Apr 01 2025 | 2025-04-27T00:37:29 | oeisdata/seq/A382/A382635.seq | 7cf1ec7e2e557a77a623bf89a6f3f3b2 |
A382636 | Decimal expansion of the multiple prime zeta value p[2, 1]. | [
"1",
"5",
"2",
"6",
"6",
"1",
"4",
"1",
"1",
"2",
"5",
"4",
"2"
]
| [
"nonn",
"cons",
"more"
]
| 21 | 0 | 2 | [
"A085541",
"A085548",
"A085965",
"A382234",
"A382235",
"A382236",
"A382634",
"A382635",
"A382636",
"A382637"
]
| null | Artur Jasinski, Apr 07 2025 | 2025-04-27T00:46:34 | oeisdata/seq/A382/A382636.seq | 4055e24cf5b534d82b34a2003e5ef1a2 |
A382637 | Decimal expansion of the multiple prime zeta value p[3, 1]. | [
"0",
"3",
"0",
"5",
"3",
"1",
"1",
"6",
"4",
"0",
"5",
"7",
"9",
"4"
]
| [
"nonn",
"cons",
"more"
]
| 17 | 0 | 2 | [
"A085541",
"A085548",
"A085965",
"A382234",
"A382235",
"A382236",
"A382634",
"A382635",
"A382636",
"A382637",
"A383432"
]
| null | Artur Jasinski, Apr 27 2025 | 2025-05-03T21:56:20 | oeisdata/seq/A382/A382637.seq | 125aa72bf1a782e223b3f6688585b7e0 |
A382638 | Numbers k for which the repeating part with leading 0's of 1/k in decimal is a palindrome and longer than one digit. | [
"1616",
"14208",
"16160",
"17472",
"142080",
"161600",
"174720",
"454656",
"511488",
"838656",
"1363968",
"1420800",
"1578125",
"1616000",
"1747200",
"1818624",
"1900992",
"4091904",
"4265625",
"4546560",
"4734375",
"5114880",
"8183808",
"8386560",
"13639680",
"14208000",
"15781250",
"16160000",
"17472000",
"18186240",
"19009920"
]
| [
"base",
"nonn"
]
| 42 | 1 | 1 | [
"A060283",
"A060284",
"A382176",
"A382638"
]
| null | Jean-Marc Rebert, Apr 01 2025 | 2025-04-27T09:07:54 | oeisdata/seq/A382/A382638.seq | dcc3a3e71ad1f103426c75b6e5657652 |
A382639 | Initial members of prime 16-tuples containing two prime octuplets at minimum distance. | [
"10458834002271815117",
"26476006821087640697",
"44350865905809142637",
"54014646858393564377",
"62155369550078511587",
"253586253591518370557",
"304079924911990894547",
"423291158347150012877",
"511505988322414165037",
"512761727903842750367",
"644424770171034352457",
"675759858713748355427"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A022012",
"A382639"
]
| null | Federico Salas, Apr 01 2025 | 2025-04-08T12:23:45 | oeisdata/seq/A382/A382639.seq | d5fc23894c66b436847d00e97d9f8a1a |
A382640 | a(n) = 90*binomial(n,6) + 90*binomial(n,5) + 54*binomial(n,4) + 24*binomial(n,3) + 9*binomial(n,2) + 3*n + 1. | [
"1",
"4",
"16",
"61",
"217",
"706",
"2074",
"5461",
"12961",
"28072",
"56236",
"105469",
"187081",
"316486",
"514102",
"806341",
"1226689",
"1816876",
"2628136",
"3722557",
"5174521",
"7072234",
"9519346",
"12636661",
"16563937",
"21461776",
"27513604",
"34927741",
"43939561",
"54813742",
"67846606",
"83368549",
"101746561"
]
| [
"nonn",
"easy"
]
| 16 | 0 | 2 | [
"A382618",
"A382640"
]
| null | Enrique Navarrete, Apr 01 2025 | 2025-04-13T21:43:40 | oeisdata/seq/A382/A382640.seq | dc847f93a85d1d95c33dfc6c3e2b42c4 |
A382641 | a(n) = round(c^n), where c is the supergolden ratio A092526. | [
"1",
"1",
"2",
"3",
"5",
"7",
"10",
"15",
"21",
"31",
"46",
"67",
"98",
"144",
"211",
"309",
"453",
"664",
"973",
"1426",
"2090",
"3063",
"4489",
"6579",
"9642",
"14131",
"20710",
"30352",
"44483",
"65193",
"95545",
"140028",
"205221",
"300766",
"440794",
"646015",
"946781",
"1387575",
"2033590",
"2980371",
"4367946",
"6401536",
"9381907",
"13749853"
]
| [
"nonn",
"easy"
]
| 17 | 0 | 3 | [
"A000930",
"A001609",
"A092526",
"A169985",
"A205579",
"A382641"
]
| null | Jwalin Bhatt, Apr 01 2025 | 2025-04-02T05:06:35 | oeisdata/seq/A382/A382641.seq | 38c44eaaf6b03e5e086ab307ff4d6a9f |
A382642 | a(n) = Sum_{k=0..n} (binomial(n,k) * binomial(n+k,k))^2 * 2^(n-k). | [
"1",
"6",
"112",
"2784",
"79716",
"2478936",
"81369856",
"2774798592",
"97345792804",
"3490750940376",
"127377525333312",
"4714499194430592",
"176563416839871504",
"6678628406445775968",
"254781841509308692992",
"9791397137378344986624",
"378713818451270226094884",
"14731112080159997036570328"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A001850",
"A005259",
"A069835",
"A382405",
"A382642"
]
| null | Ilya Gutkovskiy, Apr 08 2025 | 2025-04-10T03:25:19 | oeisdata/seq/A382/A382642.seq | 10e0619915500d1e508b58a596c1a485 |
A382643 | Expansion of e.g.f. exp( x/(1-3*x)^(4/3) ). | [
"1",
"1",
"9",
"109",
"1697",
"32401",
"733081",
"19167709",
"568351169",
"18833921857",
"689436160361",
"27616959669421",
"1201138514382049",
"56349982190989969",
"2835621797645900537",
"152321976433436677981",
"8697876904012444443521",
"526015632425455532060929",
"33581536744768011688139209"
]
| [
"nonn",
"easy"
]
| 26 | 0 | 3 | [
"A362188",
"A362205",
"A382643",
"A382652"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-17T03:53:22 | oeisdata/seq/A382/A382643.seq | 692293abd4321940723bbd4fdbd23dd4 |
A382644 | Number of king permutations on n elements not beginning with the smallest element. | [
"1",
"0",
"0",
"0",
"2",
"12",
"78",
"568",
"4674",
"42948",
"436358",
"4860432",
"58918602",
"772364956",
"10889141262",
"164314043112",
"2642564012498",
"45124893118068",
"815444024669334",
"15547394518030528",
"311913179428480218",
"6568416226627210572",
"144868131187935525662",
"3339555055674217441176",
"80315570986097045133282"
]
| [
"nonn",
"easy"
]
| 28 | 0 | 5 | [
"A001266",
"A002464",
"A382644",
"A382645"
]
| null | Dan Li, Apr 01 2025 | 2025-04-15T15:19:14 | oeisdata/seq/A382/A382644.seq | 92acbb6f2b1efb03dfd0d38de64c1fce |
A382645 | Number of king permutations on n elements not beginning with the smallest element and not ending with the largest element. | [
"1",
"0",
"0",
"0",
"2",
"10",
"68",
"500",
"4174",
"38774",
"397584",
"4462848",
"54455754",
"717909202",
"10171232060",
"154142811052",
"2488421201446",
"42636471916622",
"772807552752712",
"14774586965277816",
"297138592463202402",
"6271277634164008170",
"138596853553771517492",
"3200958202120445923684",
"77114612783976599209598"
]
| [
"nonn"
]
| 23 | 0 | 5 | [
"A002464",
"A382644",
"A382645"
]
| null | Dan Li, Apr 01 2025 | 2025-04-09T21:15:07 | oeisdata/seq/A382/A382645.seq | 84f0cd6499d80f32d0ffeb2236397c02 |
A382646 | Numbers k such that (k*2^d - 1)*(d*2^k - 1) is semiprime for some divisor d of k. | [
"2",
"3",
"6",
"7",
"12",
"18",
"19",
"21",
"30",
"31",
"42",
"60",
"75",
"81",
"115",
"123",
"126",
"132",
"133",
"225",
"249",
"306",
"324",
"362",
"384",
"462",
"468",
"512",
"606",
"607",
"612",
"751",
"822",
"1279",
"2170",
"2202",
"2281",
"5312",
"7755",
"9531",
"12379",
"14898",
"15822",
"18123",
"18819",
"18885",
"22971",
"23005",
"23208",
"41628",
"44497",
"51384",
"52540",
"98726"
]
| [
"nonn"
]
| 28 | 1 | 1 | [
"A001358",
"A002234",
"A003261",
"A382646",
"A382887"
]
| null | Juri-Stepan Gerasimov, Apr 01 2025 | 2025-04-16T05:31:18 | oeisdata/seq/A382/A382646.seq | 00c17a57c0cb5618f05f65d6c8e88dc8 |
A382647 | Expansion of 1/(1 - x*(1 + 4*x)^(1/2))^2. | [
"1",
"2",
"7",
"12",
"37",
"50",
"187",
"128",
"1057",
"-502",
"7679",
"-14420",
"73453",
"-212554",
"843019",
"-2848064",
"10602409",
"-37875706",
"139533151",
"-510006524",
"1885309253",
"-6974175142",
"25940881947",
"-96731191728",
"361980829841",
"-1358121976978",
"5109416286295",
"-19267391982612"
]
| [
"sign",
"easy"
]
| 11 | 0 | 2 | [
"A382539",
"A382647",
"A382649"
]
| null | Seiichi Manyama, Apr 02 2025 | 2025-05-16T19:28:50 | oeisdata/seq/A382/A382647.seq | 4e48c1e7ea3c71cc2c5ade98d99c3bae |
A382648 | Expansion of 1/(1 - x*(1 + 4*x)^(1/2))^3. | [
"1",
"3",
"12",
"28",
"87",
"171",
"522",
"810",
"2985",
"2583",
"18528",
"-5244",
"141875",
"-241815",
"1393314",
"-3905782",
"16326069",
"-54884079",
"209607744",
"-752322624",
"2812050471",
"-10351091321",
"38636724474",
"-143916146094",
"539225694641",
"-2023036045635",
"7615213571172",
"-28722320569796",
"108591659035131"
]
| [
"sign",
"easy"
]
| 12 | 0 | 2 | [
"A382540",
"A382648",
"A382650"
]
| null | Seiichi Manyama, Apr 02 2025 | 2025-05-16T19:29:11 | oeisdata/seq/A382/A382648.seq | a079cd18819ff32c5ad8918d475802e9 |
A382649 | Expansion of 1/(1 - x*(1 + 4*x)^(3/2))^2. | [
"1",
"2",
"15",
"52",
"213",
"834",
"3043",
"11576",
"41601",
"152458",
"544039",
"1950132",
"6895773",
"24403302",
"85542339",
"300101048",
"1044436937",
"3639851814",
"12594713911",
"43660404108",
"150357976533",
"518991977194",
"1780132570723",
"6122965091976",
"20928650616113",
"71779065646510",
"244590689773839"
]
| [
"sign",
"easy"
]
| 13 | 0 | 2 | [
"A382536",
"A382649",
"A382650"
]
| null | Seiichi Manyama, Apr 02 2025 | 2025-05-16T19:29:00 | oeisdata/seq/A382/A382649.seq | 0f99299df9597eed48330127f742509f |
A382650 | Expansion of 1/(1 - x*(1 + 4*x)^(3/2))^3. | [
"1",
"3",
"24",
"100",
"471",
"2043",
"8422",
"34818",
"137649",
"543655",
"2096508",
"8031948",
"30355155",
"113929497",
"423562614",
"1565841650",
"5745557853",
"20989365057",
"76206968356",
"275721399480",
"992423144247",
"3562075121911",
"12728422443654",
"45379998032202",
"161158522838105",
"571293893581389"
]
| [
"sign",
"easy"
]
| 8 | 0 | 2 | [
"A382536",
"A382649",
"A382650"
]
| null | Seiichi Manyama, Apr 02 2025 | 2025-04-02T09:44:35 | oeisdata/seq/A382/A382650.seq | 6b8b6511f7bcda1c8ac088e061e9aa09 |
A382651 | Number of king permutations on n elements without strict fixed points. | [
"1",
"0",
"0",
"0",
"2",
"10",
"68",
"500",
"4174",
"38770",
"397544",
"4462476",
"54452394",
"717877882",
"10170925492",
"154139627692",
"2488385952526",
"42636054584106",
"772802263942376",
"14774515232543556",
"297137552306148570",
"6271261537872652418",
"138596588342412866276",
"3200953561821628327956",
"77114526810424117688014"
]
| [
"nonn"
]
| 20 | 0 | 5 | [
"A002464",
"A382644",
"A382645",
"A382651"
]
| null | Dan Li, Apr 02 2025 | 2025-04-09T21:14:12 | oeisdata/seq/A382/A382651.seq | 245c34abd8fd58963bbaaa816bf17d89 |
A382652 | Expansion of e.g.f. exp( x/(1-3*x)^(5/3) ). | [
"1",
"1",
"11",
"151",
"2601",
"54401",
"1341571",
"38115351",
"1225252561",
"43935295681",
"1737463744251",
"75075845199191",
"3517448555579641",
"177538212306653121",
"9600694935999031411",
"553606933661659742551",
"33899768045328467219361",
"2196417680635853609034881",
"150094038119761737476004331"
]
| [
"nonn",
"easy"
]
| 24 | 0 | 3 | [
"A362188",
"A362205",
"A382643",
"A382652"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-19T05:44:17 | oeisdata/seq/A382/A382652.seq | eb129e4bdaae0bca686df1f68c1c0421 |
A382653 | Numbers k such that a regular k-gon (k>=3) cannot be constructed with a compass, straightedge and an angle quinsector. | [
"7",
"9",
"13",
"14",
"18",
"19",
"21",
"23",
"26",
"27",
"28",
"29",
"31",
"35",
"36",
"37",
"38",
"39",
"42",
"43",
"45",
"46",
"47",
"49",
"52",
"53",
"54",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"67",
"69",
"70",
"71",
"72",
"73",
"74",
"76",
"77",
"78",
"79",
"81",
"83",
"84",
"86",
"87",
"89",
"90",
"91",
"92",
"93",
"94",
"95",
"97",
"98",
"99",
"103",
"104",
"105",
"106"
]
| [
"nonn"
]
| 21 | 1 | 1 | [
"A048135",
"A048136",
"A382653",
"A382670"
]
| null | Chai Wah Wu, Apr 02 2025 | 2025-04-03T14:13:16 | oeisdata/seq/A382/A382653.seq | 9f68addab77877a88b596f013d236414 |
A382654 | a(1) = 1, for n > 1, a(n) = a(n - 1) / 2 if a(n - 1) is divisible by 2, otherwise a(n) = a(n - 1) + (first digit of (a(n - 1) + (n - 1))). | [
"1",
"3",
"8",
"4",
"2",
"1",
"8",
"4",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"3",
"5",
"7",
"10",
"5",
"8",
"4",
"2",
"1",
"4",
"2",
"1",
"4",
"2",
"1",
"4",
"2",
"1",
"4",
"2",
"1",
"5",
"9",
"14",
"7",
"12",
"6",
"3",
"8",
"4",
"2",
"1",
"6",
"3",
"8",
"4",
"2",
"1",
"6",
"3",
"9",
"16",
"8",
"4",
"2",
"1",
"7",
"14",
"7",
"14",
"7",
"14",
"7",
"15",
"23",
"32",
"16",
"8",
"4",
"2",
"1",
"9",
"18"
]
| [
"nonn",
"base",
"less"
]
| 43 | 1 | 2 | [
"A000030",
"A382654"
]
| null | Ctibor O. Zizka, Apr 12 2025 | 2025-04-13T16:19:26 | oeisdata/seq/A382/A382654.seq | 6a77e3b0a7d10a46cfa16347586c3889 |
A382655 | Lexicographically earliest sequence of distinct positive integers such that if m = a(n-1), a(n) is the smallest novel number k such that: g = gcd(m, k) > 1, m/g > 1, k/g >1 and gcd(m/g, k) = gcd(k/g, m) = 1. | [
"6",
"10",
"14",
"18",
"22",
"26",
"30",
"21",
"12",
"15",
"20",
"28",
"35",
"40",
"24",
"33",
"39",
"42",
"34",
"38",
"46",
"50",
"54",
"58",
"62",
"66",
"51",
"48",
"57",
"60",
"44",
"36",
"45",
"55",
"65",
"52",
"68",
"76",
"84",
"69",
"75",
"78",
"70",
"63",
"56",
"72",
"88",
"77",
"91",
"104",
"117",
"90",
"74",
"82",
"86",
"94",
"98",
"102",
"85",
"80",
"95",
"105",
"87",
"93",
"96"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A001694",
"A013929",
"A024619",
"A382655"
]
| null | David James Sycamore, Apr 01 2025 | 2025-04-14T05:36:01 | oeisdata/seq/A382/A382655.seq | 507853bd505b9e8fc8b1558e50480184 |
A382656 | a(n) = L(2*n+1)+4*n+2. | [
"3",
"10",
"21",
"43",
"94",
"221",
"547",
"1394",
"3605",
"9387",
"24518",
"64125",
"167811",
"439258",
"1149909",
"3010411",
"7881262",
"20633309",
"54018595",
"141422402",
"370248533",
"969323115",
"2537720726",
"6643838973",
"17393796099",
"45537549226",
"119218851477",
"312119005099",
"817138163710",
"2139295485917"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 1 | [
"A000032",
"A000204",
"A002878",
"A016825",
"A382656"
]
| null | Eric W. Weisstein, Apr 02 2025 | 2025-04-02T15:16:31 | oeisdata/seq/A382/A382656.seq | 7f1c5c3d1c53a525aa026fffb7a29860 |
A382657 | Number of minimum total dominating sets in the n-Goldberg graph. | [
"16",
"277",
"10",
"2386",
"28",
"33301",
"360",
"10",
"4334",
"60",
"67288",
"728",
"10",
"9856",
"102",
"150750",
"1292",
"10",
"19222",
"154",
"299368",
"2124",
"10",
"34112",
"216",
"549276",
"3306",
"10",
"56730",
"288",
"951456",
"4930",
"10",
"89916",
"370",
"1576202",
"7098",
"10",
"137268",
"462",
"2518596",
"9922",
"10",
"203274",
"564",
"3905148",
"13524",
"10"
]
| [
"nonn",
"easy"
]
| 20 | 3 | 1 | [
"A382431",
"A382657"
]
| null | Eric W. Weisstein, Apr 02 2025 | 2025-05-28T00:53:35 | oeisdata/seq/A382/A382657.seq | 18623ebab50bd7d3238fefac838ccfe1 |
A382658 | Number of forknesses on n elements. | [
"1",
"2",
"6",
"56",
"15026",
"1746994454",
"1235642810043131384",
"40822119528659637193235146998172",
"374299843632760183014518932671883409448485124695664",
"7237131063359733682672812567239149471890797777405500679038631641915376539420"
]
| [
"nonn"
]
| 25 | 0 | 2 | null | null | Tobias Boege, Apr 02 2025 | 2025-04-10T08:49:25 | oeisdata/seq/A382/A382658.seq | 07c7fc9d820361c1abce861e8d51753f |
A382659 | Numbers k such that k < A053669(k)^2 * A380539(k), i.e., k < A382248(k). | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"14",
"15",
"16",
"18",
"20",
"22",
"24",
"26",
"28",
"30",
"32",
"34",
"36",
"38",
"40",
"42",
"44",
"48",
"50",
"54",
"60",
"66",
"70",
"72",
"78",
"84",
"90",
"96",
"102",
"108",
"114",
"120",
"126",
"132",
"138",
"144",
"150",
"156",
"162",
"168",
"174",
"180",
"210",
"240",
"252",
"270",
"300",
"330",
"360",
"390"
]
| [
"nonn",
"easy",
"fini",
"full"
]
| 17 | 1 | 2 | [
"A048597",
"A051250",
"A053669",
"A126706",
"A303554",
"A380539",
"A382248",
"A382659",
"A382960"
]
| null | Michael De Vlieger, Apr 14 2025 | 2025-04-19T18:06:42 | oeisdata/seq/A382/A382659.seq | e77bb854f3c2e39c4f207b60cdf13c2d |
A382660 | The unitary totient function applied to the exponentially odd numbers (A268335). | [
"1",
"1",
"2",
"4",
"2",
"6",
"7",
"4",
"10",
"12",
"6",
"8",
"16",
"18",
"12",
"10",
"22",
"14",
"12",
"26",
"28",
"8",
"30",
"31",
"20",
"16",
"24",
"36",
"18",
"24",
"28",
"40",
"12",
"42",
"22",
"46",
"32",
"52",
"26",
"40",
"42",
"36",
"28",
"58",
"60",
"30",
"48",
"20",
"66",
"44",
"24",
"70",
"72",
"36",
"60",
"24",
"78",
"40",
"82",
"64",
"42",
"56",
"70",
"88",
"72",
"60",
"46",
"72"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 3 | [
"A013662",
"A047994",
"A065463",
"A268335",
"A358346",
"A363825",
"A366438",
"A366439",
"A366534",
"A366535",
"A367417",
"A368711",
"A368979",
"A374456",
"A382660",
"A382661"
]
| null | Amiram Eldar, Apr 02 2025 | 2025-04-02T12:43:50 | oeisdata/seq/A382/A382660.seq | fc7a1f24438022afa008f6c5b062561b |
A382661 | The unitary Jordan totient function applied to the exponentially odd numbers (A268335). | [
"1",
"3",
"8",
"24",
"24",
"48",
"63",
"72",
"120",
"168",
"144",
"192",
"288",
"360",
"384",
"360",
"528",
"504",
"504",
"728",
"840",
"576",
"960",
"1023",
"960",
"864",
"1152",
"1368",
"1080",
"1344",
"1512",
"1680",
"1152",
"1848",
"1584",
"2208",
"2304",
"2808",
"2184",
"2880",
"3024",
"2880",
"2520",
"3480",
"3720",
"2880",
"4032",
"2880",
"4488",
"4224"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 2 | [
"A013664",
"A065463",
"A191414",
"A268335",
"A358346",
"A363825",
"A366438",
"A366439",
"A366534",
"A366535",
"A367417",
"A368711",
"A368979",
"A374456",
"A382660",
"A382661"
]
| null | Amiram Eldar, Apr 02 2025 | 2025-04-02T12:43:45 | oeisdata/seq/A382/A382661.seq | 589c316713c3e7f52a94119c741fc480 |
A382662 | The unitary totient function applied to the cubefree numbers (A004709). | [
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"8",
"4",
"10",
"6",
"12",
"6",
"8",
"16",
"8",
"18",
"12",
"12",
"10",
"22",
"24",
"12",
"18",
"28",
"8",
"30",
"20",
"16",
"24",
"24",
"36",
"18",
"24",
"40",
"12",
"42",
"30",
"32",
"22",
"46",
"48",
"24",
"32",
"36",
"52",
"40",
"36",
"28",
"58",
"24",
"60",
"30",
"48",
"48",
"20",
"66",
"48",
"44",
"24",
"70",
"72",
"36",
"48",
"54",
"60",
"24",
"78",
"40"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 3 | [
"A002117",
"A004709",
"A047994",
"A366440",
"A366536",
"A366537",
"A368712",
"A368779",
"A369889",
"A376365",
"A376366",
"A379717",
"A382419",
"A382662",
"A382663"
]
| null | Amiram Eldar, Apr 02 2025 | 2025-04-02T12:44:01 | oeisdata/seq/A382/A382662.seq | f67e591cb713c3b7638d66891674b7d5 |
A382663 | The unitary Jordan totient function applied to the cubefree numbers (A004709). | [
"1",
"3",
"8",
"15",
"24",
"24",
"48",
"80",
"72",
"120",
"120",
"168",
"144",
"192",
"288",
"240",
"360",
"360",
"384",
"360",
"528",
"624",
"504",
"720",
"840",
"576",
"960",
"960",
"864",
"1152",
"1200",
"1368",
"1080",
"1344",
"1680",
"1152",
"1848",
"1800",
"1920",
"1584",
"2208",
"2400",
"1872",
"2304",
"2520",
"2808",
"2880",
"2880",
"2520",
"3480",
"2880"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 2 | [
"A002117",
"A004709",
"A191414",
"A366440",
"A366536",
"A366537",
"A368712",
"A368779",
"A369889",
"A376365",
"A376366",
"A379717",
"A382419",
"A382662",
"A382663"
]
| null | Amiram Eldar, Apr 02 2025 | 2025-04-02T12:43:56 | oeisdata/seq/A382/A382663.seq | ffea2806de2952c9039ace51b2976ffd |
A382664 | Partial sums of the exponentially odd numbers (A268335). | [
"1",
"3",
"6",
"11",
"17",
"24",
"32",
"42",
"53",
"66",
"80",
"95",
"112",
"131",
"152",
"174",
"197",
"221",
"247",
"274",
"303",
"333",
"364",
"396",
"429",
"463",
"498",
"535",
"573",
"612",
"652",
"693",
"735",
"778",
"824",
"871",
"922",
"975",
"1029",
"1084",
"1140",
"1197",
"1255",
"1314",
"1375",
"1437",
"1502",
"1568",
"1635",
"1704",
"1774",
"1845",
"1918"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 2 | [
"A065489",
"A173143",
"A174172",
"A268335",
"A358038",
"A362971",
"A382664"
]
| null | Amiram Eldar, Apr 02 2025 | 2025-04-02T12:44:15 | oeisdata/seq/A382/A382664.seq | 2dc49cbbd18b01d913f8930bdd4b9616 |
A382665 | Number of distinct degree sequences among all connected simple graphs with n vertices whose degrees are consecutive integers. | [
"1",
"1",
"1",
"2",
"5",
"14",
"35",
"88",
"212",
"492",
"1122"
]
| [
"nonn",
"more"
]
| 9 | 0 | 4 | [
"A001349",
"A381765",
"A382021",
"A382665"
]
| null | John P. McSorley, Apr 02 2025 | 2025-04-09T22:54:37 | oeisdata/seq/A382/A382665.seq | 7a247ef440d2b4ce97bd841258034b32 |
A382666 | Smallest k such that 7^(7^n) - k is prime. | [
"2",
"2",
"6",
"512",
"3918",
"48966"
]
| [
"nonn",
"hard",
"more"
]
| 40 | 0 | 1 | [
"A058220",
"A140331",
"A364452",
"A364453",
"A364454",
"A382666"
]
| null | J.W.L. (Jan) Eerland, Apr 08 2025 | 2025-05-04T23:44:00 | oeisdata/seq/A382/A382666.seq | 71a366c713bd35b5ccee61fd94596512 |
A382667 | Position of the first instance of prime(n), in base 2, in the binary representation of Pi after the binary point. | [
"3",
"11",
"16",
"11",
"16",
"15",
"25",
"60",
"91",
"14",
"11",
"126",
"58",
"393",
"207",
"18",
"14",
"13",
"6",
"180",
"141",
"169",
"58",
"243",
"47",
"326",
"168",
"475",
"15",
"291",
"451",
"108",
"64",
"87",
"327",
"421",
"358",
"41",
"356",
"468",
"343",
"16",
"618",
"107",
"80",
"179",
"57",
"206",
"291",
"325",
"361",
"205",
"427",
"12",
"95",
"108",
"436",
"6",
"996"
]
| [
"nonn",
"base"
]
| 55 | 1 | 1 | [
"A000040",
"A004601",
"A178707",
"A233836",
"A378472",
"A382307",
"A382667"
]
| null | James S. DeArmon, Apr 02 2025 | 2025-04-27T08:00:23 | oeisdata/seq/A382/A382667.seq | 76bb336b4bce43a6b4ab7dd2c7e00d8d |
A382668 | a(n) = C(n+1) - C(n-1) - 2*C(n-2) where C(n) = A000108(n) are the Catalan numbers. | [
"2",
"10",
"33",
"108",
"359",
"1214",
"4169",
"14508",
"51064",
"181492",
"650522",
"2348856",
"8535921",
"31197430",
"114601065",
"422891340",
"1566903060",
"5827192140",
"21743726430",
"81383916840",
"305465105790",
"1149489049644",
"4335921660522",
"16391329697528",
"62091796219904",
"235656705875304"
]
| [
"nonn",
"easy"
]
| 22 | 2 | 1 | [
"A000108",
"A026012",
"A280891",
"A382668"
]
| null | F. Chapoton, Apr 02 2025 | 2025-04-05T10:53:25 | oeisdata/seq/A382/A382668.seq | 761286169c5b5e1679b0096646bc9d48 |
A382669 | Even numbers m such that both p = m^2 + 1 and q = (p^2 + 1)/2 are primes. | [
"2",
"10",
"150",
"160",
"230",
"270",
"400",
"890",
"910",
"920",
"1060",
"1430",
"1550",
"1970",
"2700",
"2960",
"3280",
"3290",
"3520",
"3660",
"4140",
"4330",
"4510",
"4700",
"4780",
"4850",
"4920",
"5180",
"5360",
"5500",
"5560",
"5620",
"5880",
"5960",
"6220",
"6460",
"6980",
"7160",
"7190",
"7520",
"7550",
"7820",
"9630",
"9760",
"9900"
]
| [
"nonn"
]
| 35 | 1 | 1 | [
"A002522",
"A005574",
"A048161",
"A382669"
]
| null | Ya-Ping Lu, Apr 24 2025 | 2025-05-02T11:29:44 | oeisdata/seq/A382/A382669.seq | 9eece4b192664ee8a44cb4b5e0b06b91 |
A382670 | Numbers k such that a regular k-gon (k>=3) can be constructed with a compass, straightedge and an angle quinsector. | [
"3",
"4",
"5",
"6",
"8",
"10",
"11",
"12",
"15",
"16",
"17",
"20",
"22",
"24",
"25",
"30",
"32",
"33",
"34",
"40",
"41",
"44",
"48",
"50",
"51",
"55",
"60",
"64",
"66",
"68",
"75",
"80",
"82",
"85",
"88",
"96",
"100",
"101",
"102",
"110",
"120",
"123",
"125",
"128",
"132",
"136",
"150",
"160",
"164",
"165",
"170",
"176",
"187",
"192",
"200",
"202",
"204",
"205",
"220",
"240"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A048135",
"A048136",
"A382653",
"A382670"
]
| null | Chai Wah Wu, Apr 02 2025 | 2025-04-03T14:57:38 | oeisdata/seq/A382/A382670.seq | a2318b2634e179292df8c9aa2665a5c4 |
A382671 | a(1) = 1 and thereafter a(n) = a(n-1) + j(n-1) where j(1) = 1 and then j(n) = j(n-1)-1 if a(n) is composite or j(n) = 2*j(n-1) if a(n) is prime. | [
"1",
"2",
"4",
"5",
"7",
"11",
"19",
"35",
"50",
"64",
"77",
"89",
"113",
"161",
"208",
"254",
"299",
"343",
"386",
"428",
"469",
"509",
"589",
"668",
"746",
"823",
"977",
"1285",
"1592",
"1898",
"2203",
"2813",
"3422",
"4030",
"4637",
"5851",
"8279",
"10706",
"13132",
"15557",
"17981",
"22829",
"27676",
"32522",
"37367",
"42211",
"47054",
"51896",
"56737",
"66419",
"76100",
"85780",
"95459"
]
| [
"nonn"
]
| 26 | 1 | 2 | null | null | Alexander Markovsky, Apr 02 2025 | 2025-04-12T09:42:40 | oeisdata/seq/A382/A382671.seq | 2337913574e4561747e3944e1f1cf919 |
A382672 | Number of integer solutions to Product_{k=1..n} (3 + c(k)) = 3 * Product_{k=1..n} c(k) with 0 < c(k) <= c(k+1). | [
"0",
"2",
"17",
"450",
"35472",
"12127741"
]
| [
"nonn",
"more"
]
| 15 | 1 | 2 | [
"A263207",
"A375787",
"A380749",
"A381644",
"A382672"
]
| null | Zhining Yang, Apr 03 2025 | 2025-04-08T18:20:15 | oeisdata/seq/A382/A382672.seq | 88def5aa16077b2fc2e840f01bdcfa77 |
A382673 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3. | [
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"10",
"10",
"1",
"1",
"22",
"52",
"22",
"1",
"1",
"46",
"208",
"208",
"46",
"1",
"1",
"94",
"736",
"1372",
"736",
"94",
"1",
"1",
"190",
"2440",
"7516",
"7516",
"2440",
"190",
"1",
"1",
"382",
"7792",
"37012",
"60316",
"37012",
"7792",
"382",
"1",
"1",
"766",
"24328",
"170668",
"418996",
"418996",
"170668",
"24328",
"766",
"1",
"1",
"1534",
"74896",
"754132",
"2653036",
"3964684",
"2653036",
"754132",
"74896",
"1534",
"1"
]
| [
"nonn",
"tabl"
]
| 21 | 0 | 5 | [
"A000012",
"A033484",
"A099594",
"A136126",
"A382673",
"A382674",
"A382675",
"A382676",
"A382735"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-06T03:48:13 | oeisdata/seq/A382/A382673.seq | 23354fca3cc49c9ec1dc13ea6285392a |
A382674 | Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4. | [
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"13",
"13",
"1",
"1",
"29",
"77",
"29",
"1",
"1",
"61",
"325",
"325",
"61",
"1",
"1",
"125",
"1181",
"2357",
"1181",
"125",
"1",
"1",
"253",
"3973",
"13621",
"13621",
"3973",
"253",
"1",
"1",
"509",
"12797",
"69269",
"118061",
"69269",
"12797",
"509",
"1",
"1",
"1021",
"40165",
"326005",
"862261",
"862261",
"326005",
"40165",
"1021",
"1"
]
| [
"nonn",
"tabl"
]
| 17 | 0 | 5 | [
"A000012",
"A036563",
"A099594",
"A136126",
"A382673",
"A382674",
"A382677",
"A382678",
"A382736"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-06T03:48:28 | oeisdata/seq/A382/A382674.seq | aff40cb5b0bdae8cc1da5d38283745a4 |
A382675 | a(n) = 4 - 15 * 2^n + 12 * 3^n. | [
"1",
"10",
"52",
"208",
"736",
"2440",
"7792",
"24328",
"74896",
"228520",
"693232",
"2095048",
"6315856",
"19009000",
"57149872",
"171695368",
"515577616",
"1547715880",
"4645113712",
"13939273288",
"41825684176",
"125492781160",
"376509800752",
"1129592316808",
"3388902779536",
"10166959996840"
]
| [
"nonn",
"easy"
]
| 6 | 0 | 2 | [
"A382673",
"A382675"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-03T08:58:59 | oeisdata/seq/A382/A382675.seq | a62d8b54035140dc5792dbee28c373ac |
A382676 | a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling2(n+1,k+1)^2. | [
"1",
"4",
"52",
"1372",
"60316",
"3964684",
"363503932",
"44280657292",
"6913081723516",
"1345238707327564",
"319137578070718012",
"90648956570718822412",
"30369040605677566161916",
"11848724306426305222109644",
"5325560174867275152102351292",
"2731649923185995549312271694732"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A048163",
"A092552",
"A382673",
"A382676",
"A382678"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-04T06:31:29 | oeisdata/seq/A382/A382676.seq | c15e7ef4fa94aae3a7f86c31da9b4b89 |
A382677 | a(n) = 9 - 28 * 2^n + 20 * 3^n. | [
"1",
"13",
"77",
"325",
"1181",
"3973",
"12797",
"40165",
"124061",
"379333",
"1152317",
"3485605",
"10514141",
"31657093",
"95200637",
"286060645",
"859099421",
"2579133253",
"7741069757",
"23230549285",
"69706327901",
"209148343813",
"627503751677",
"1882628695525",
"5648120967581",
"16944832664773"
]
| [
"nonn",
"easy"
]
| 7 | 0 | 2 | [
"A382674",
"A382677"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-03T08:58:46 | oeisdata/seq/A382/A382677.seq | b078895739c2fdddd175d19cc140bb38 |
A382678 | a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+3,3) * Stirling2(n+1,k+1)^2. | [
"1",
"5",
"77",
"2357",
"118061",
"8712245",
"886143917",
"118592620277",
"20176999414061",
"4249819031692085",
"1084956766012858157",
"329975948760472311797",
"117851658189070970988461",
"48830366210401091606537525",
"23228207308210113849419226797",
"12571433948267218576823401692917"
]
| [
"nonn"
]
| 10 | 0 | 2 | [
"A048163",
"A092552",
"A382674",
"A382676",
"A382678"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-04T06:21:37 | oeisdata/seq/A382/A382678.seq | 7e88e72e054040cb5313c6f02027c968 |
A382679 | a(n) = A381968(A380817(n)). | [
"1",
"5",
"3",
"4",
"2",
"6",
"14",
"10",
"12",
"8",
"11",
"9",
"13",
"7",
"15",
"27",
"21",
"25",
"19",
"23",
"17",
"22",
"20",
"24",
"18",
"26",
"16",
"28",
"44",
"36",
"42",
"34",
"40",
"32",
"38",
"30",
"37",
"35",
"39",
"33",
"41",
"31",
"43",
"29",
"45",
"65",
"55",
"63",
"53",
"61",
"51",
"59",
"49",
"57",
"47",
"56",
"54",
"58",
"52",
"60",
"50",
"62",
"48",
"64",
"46",
"66"
]
| [
"nonn",
"tabf"
]
| 14 | 1 | 2 | [
"A000027",
"A000384",
"A016813",
"A056023",
"A376214",
"A378684",
"A378762",
"A379342",
"A379343",
"A380200",
"A380245",
"A380815",
"A380817",
"A381662",
"A381663",
"A381664",
"A381968",
"A382679",
"A382680",
"A383419",
"A383589",
"A383590",
"A383722",
"A383723",
"A383724"
]
| null | Boris Putievskiy, Apr 03 2025 | 2025-05-30T23:30:39 | oeisdata/seq/A382/A382679.seq | 7ebc063c67a4bf3207754a6f4a4b2eae |
A382680 | a(n) = A382499(A380817(n)). | [
"1",
"5",
"3",
"4",
"2",
"6",
"12",
"10",
"14",
"8",
"11",
"7",
"13",
"9",
"15",
"23",
"21",
"25",
"19",
"27",
"17",
"22",
"16",
"24",
"18",
"26",
"20",
"28",
"38",
"36",
"40",
"34",
"42",
"32",
"44",
"30",
"37",
"29",
"39",
"31",
"41",
"33",
"43",
"35",
"45",
"57",
"55",
"59",
"53",
"61",
"51",
"63",
"49",
"65",
"47",
"56",
"46",
"58",
"48",
"60",
"50",
"62",
"52",
"64",
"54",
"66"
]
| [
"nonn",
"tabf"
]
| 18 | 1 | 2 | [
"A000027",
"A000384",
"A016813",
"A056023",
"A376214",
"A378684",
"A378762",
"A379342",
"A379343",
"A380200",
"A380245",
"A380815",
"A380817",
"A381662",
"A381663",
"A381664",
"A381968",
"A382499",
"A382679",
"A382680",
"A383419",
"A383589",
"A383590",
"A383722",
"A383723",
"A383724"
]
| null | Boris Putievskiy, Apr 03 2025 | 2025-06-08T21:42:35 | oeisdata/seq/A382/A382680.seq | 387f4771977310ea0a285718e7535c4b |
A382681 | Conjecturally, the numbers k (not multiples of 5) such that for all x >= 0, k*2^x has a '0' in its decimal expansion. | [
"7501221",
"7508793",
"10006109",
"10625334",
"12970254",
"15002442",
"15017586",
"15685077",
"17975049",
"20012218",
"20752359",
"21250668",
"22500771",
"23501007",
"24625029",
"24875024",
"25033207",
"25034183",
"25034771",
"25940508",
"29003907",
"29057504",
"29450021",
"29590047",
"29625044",
"29850293",
"30004884",
"30035172",
"30175941"
]
| [
"nonn",
"base"
]
| 25 | 1 | 1 | [
"A007377",
"A027870",
"A130694",
"A382681"
]
| null | Brian Kehrig, Jun 02 2025 | 2025-06-12T00:52:17 | oeisdata/seq/A382/A382681.seq | 6b870392ff14444b42eaffc066087da0 |
A382682 | Number of integer partitions of n with origin-to-boundary graph-distance equal to 3. | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"4",
"8",
"15",
"23",
"32",
"43",
"54",
"67",
"82",
"97",
"114",
"133",
"152",
"173",
"196",
"219",
"244",
"271",
"298",
"327",
"358",
"389",
"422",
"457",
"492",
"529",
"568",
"607",
"648",
"691",
"734",
"779",
"826",
"873",
"922",
"973",
"1024",
"1077",
"1132",
"1187",
"1244",
"1303",
"1362",
"1423",
"1486",
"1549",
"1614",
"1681",
"1748",
"1817",
"1888",
"1959"
]
| [
"nonn",
"easy"
]
| 43 | 0 | 8 | [
"A130130",
"A325168",
"A325188",
"A382682"
]
| null | N Guru Sharan, Jun 03 2025 | 2025-06-24T13:45:15 | oeisdata/seq/A382/A382682.seq | 4f68d50961ad6ad7a8b3a7c916605565 |
A382683 | Expansion of (1-x^2) / (1-x-3*x^2+x^3). | [
"1",
"1",
"3",
"5",
"13",
"25",
"59",
"121",
"273",
"577",
"1275",
"2733",
"5981",
"12905",
"28115",
"60849",
"132289",
"286721",
"622739",
"1350613",
"2932109",
"6361209",
"13806923",
"29958441",
"65018001",
"141086401",
"306181963",
"664423165",
"1441882653",
"3128970185",
"6790194979",
"14735222881",
"31976837633"
]
| [
"nonn",
"walk",
"easy"
]
| 24 | 0 | 3 | [
"A000079",
"A000244",
"A026581",
"A087640",
"A108411",
"A382683",
"K4"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-04T17:08:50 | oeisdata/seq/A382/A382683.seq | 5993a16637be9b8fa73d1255ab8c74b1 |
A382684 | Consecutive internal states of the linear congruential pseudo-random number generator for BCPL when started at 1. | [
"1",
"2862137630",
"1410400247",
"1369397724",
"1652384221",
"2669374922",
"2140954419",
"1701427304",
"2594835833",
"3034226998",
"3288120879",
"389815220",
"357129941",
"541493090",
"3104757995",
"2854522816",
"2013295089",
"2081295438",
"2466720615",
"4256030860",
"3056739021",
"751492090"
]
| [
"nonn",
"easy"
]
| 17 | 1 | 2 | [
"A084277",
"A096550",
"A096561",
"A382684"
]
| null | Sean A. Irvine, Jun 02 2025 | 2025-06-18T23:51:29 | oeisdata/seq/A382/A382684.seq | 7bb3df286be5dd05c0b11e9702f9bd27 |
A382685 | a(n) is the least integer k requiring any combination of at least n 1's or 2's to build using + and *. | [
"1",
"3",
"5",
"7",
"11",
"19",
"23",
"43",
"59",
"107",
"173",
"283",
"383",
"719",
"1103",
"1439",
"3019",
"4283",
"8563",
"14207",
"20719",
"31667",
"52919",
"105838",
"165749",
"290219",
"495359",
"880799",
"1529279",
"2417399",
"4085639",
"6973259"
]
| [
"nonn",
"more",
"new"
]
| 42 | 1 | 2 | [
"A005245",
"A005520",
"A382685"
]
| null | Zhining Yang, Jun 02 2025 | 2025-07-02T16:51:24 | oeisdata/seq/A382/A382685.seq | 2b41c21b419a6b870e6e9ed8c4c5a8b6 |
A382686 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372272. | [
"3",
"6",
"0",
"7",
"6",
"1",
"5",
"7",
"3",
"0",
"4",
"8",
"1",
"3",
"8",
"6",
"0",
"7",
"5",
"6",
"9",
"8",
"3",
"3",
"5",
"1",
"3",
"8",
"3",
"7",
"7",
"1",
"6",
"1",
"1",
"1",
"6",
"6",
"1",
"5",
"2",
"1",
"8",
"9",
"2",
"7",
"4",
"6",
"7",
"4",
"5",
"4",
"8",
"2",
"2",
"8",
"9",
"7",
"3",
"9",
"2",
"4",
"0",
"2",
"3",
"7",
"1",
"4",
"0",
"0",
"3",
"7",
"8",
"3",
"7",
"2",
"6",
"1",
"7",
"1",
"8",
"3",
"2",
"0",
"9",
"6",
"2"
]
| [
"nonn",
"cons"
]
| 10 | 0 | 1 | [
"A372272",
"A382686"
]
| null | A.H.M. Smeets, Apr 03 2025 | 2025-04-24T16:41:12 | oeisdata/seq/A382/A382686.seq | 676008a208167d0345c3932c840176ba |
A382687 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372273. | [
"1",
"7",
"1",
"3",
"2",
"4",
"4",
"9",
"2",
"3",
"7",
"9",
"1",
"7",
"0",
"3",
"4",
"5",
"0",
"4",
"0",
"2",
"9",
"6",
"1",
"4",
"2",
"1",
"7",
"2",
"7",
"3",
"2",
"8",
"9",
"3",
"5",
"2",
"6",
"8",
"2",
"2",
"5",
"0",
"1",
"4",
"8",
"4",
"0",
"4",
"3",
"9",
"8",
"2",
"3",
"9",
"8",
"6",
"3",
"5",
"4",
"3",
"9",
"7",
"9",
"8",
"9",
"4",
"5",
"7",
"6",
"0",
"5",
"4",
"2",
"3",
"4",
"0",
"1",
"5",
"4",
"6",
"4",
"7",
"9",
"2",
"7"
]
| [
"nonn",
"cons"
]
| 9 | 0 | 2 | [
"A372273",
"A382687"
]
| null | A.H.M. Smeets, Apr 03 2025 | 2025-04-24T16:40:59 | oeisdata/seq/A382/A382687.seq | d5f931f37494471fbe2e5944b593ca41 |
A382688 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372274. | [
"3",
"8",
"1",
"8",
"3",
"0",
"0",
"5",
"0",
"5",
"0",
"5",
"1",
"1",
"8",
"9",
"4",
"4",
"9",
"5",
"0",
"3",
"6",
"9",
"7",
"7",
"5",
"4",
"8",
"8",
"9",
"7",
"5",
"1",
"3",
"3",
"8",
"7",
"8",
"3",
"6",
"5",
"0",
"8",
"3",
"5",
"3",
"3",
"8",
"6",
"2",
"7",
"3",
"4",
"7",
"5",
"1",
"0",
"8",
"3",
"4",
"5",
"1",
"0",
"3",
"0",
"7",
"0",
"5",
"5",
"4",
"6",
"4",
"3",
"4",
"1",
"2",
"9",
"7",
"0",
"8",
"3",
"4"
]
| [
"nonn",
"cons"
]
| 8 | 0 | 1 | [
"A372274",
"A382688"
]
| null | A.H.M. Smeets, Apr 03 2025 | 2025-04-24T16:41:17 | oeisdata/seq/A382/A382688.seq | 77102b538a28adf5ad4a8310b0665aab |
A382689 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372275. | [
"2",
"7",
"9",
"7",
"0",
"5",
"3",
"9",
"1",
"4",
"8",
"9",
"2",
"7",
"6",
"6",
"6",
"7",
"9",
"0",
"1",
"4",
"6",
"7",
"7",
"7",
"1",
"4",
"2",
"3",
"7",
"7",
"9",
"5",
"8",
"2",
"4",
"8",
"6",
"9",
"2",
"5",
"0",
"6",
"5",
"2",
"2",
"6",
"5",
"9",
"8",
"7",
"6",
"4",
"5",
"3",
"7",
"0",
"1",
"4",
"0",
"3",
"2",
"6",
"9",
"3",
"6",
"1",
"8",
"8",
"1",
"0",
"4",
"3",
"0",
"5",
"6",
"2",
"6",
"7",
"6",
"8",
"1",
"3",
"2",
"4",
"0"
]
| [
"nonn",
"cons"
]
| 8 | 0 | 1 | [
"A372275",
"A382689"
]
| null | A.H.M. Smeets, Apr 03 2025 | 2025-04-24T16:41:24 | oeisdata/seq/A382/A382689.seq | 82b5dc3441a1d617a71f9e9b68bcc62f |
A382690 | Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372276. | [
"1",
"2",
"9",
"4",
"8",
"4",
"9",
"6",
"6",
"1",
"6",
"8",
"8",
"6",
"9",
"6",
"9",
"3",
"2",
"7",
"0",
"6",
"1",
"1",
"4",
"3",
"2",
"6",
"7",
"9",
"0",
"8",
"2",
"0",
"1",
"8",
"3",
"2",
"8",
"5",
"8",
"7",
"4",
"0",
"2",
"2",
"5",
"9",
"9",
"4",
"6",
"6",
"6",
"3",
"9",
"7",
"7",
"2",
"0",
"8",
"6",
"3",
"8",
"7",
"2",
"4",
"6",
"5",
"5",
"2",
"3",
"4",
"9",
"7",
"2",
"0",
"4",
"2",
"3",
"0",
"8",
"7",
"1",
"5",
"6",
"2",
"5"
]
| [
"nonn",
"cons"
]
| 9 | 0 | 2 | [
"A372276",
"A382690"
]
| null | A.H.M. Smeets, Apr 03 2025 | 2025-05-01T21:41:59 | oeisdata/seq/A382/A382690.seq | 0a48e135d1b2bb118806798068bfe566 |
A382691 | Alternating sum of the characteristic functions of k-th powers, with k >= 2: characteristic function of squares - c.f. of cubes + c.f. of 4th powers - ... . | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"-1",
"0",
"0",
"0",
"0",
"-1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0"
]
| [
"sign"
]
| 24 | 1 | 16 | [
"A001597",
"A010052",
"A010057",
"A089723",
"A259362",
"A374016",
"A381042",
"A382691",
"A382692"
]
| null | Friedjof Tellkamp, Apr 05 2025 | 2025-04-22T07:52:36 | oeisdata/seq/A382/A382691.seq | 8826e557dbfd2eb1a3f3bc1199d5d1e9 |
A382692 | a(n) = floor of alternating sum of k-th roots of n, with k >= 2. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6"
]
| [
"nonn"
]
| 22 | 0 | 17 | [
"A000196",
"A048766",
"A178487",
"A178489",
"A255270",
"A381042",
"A382691",
"A382692"
]
| null | Friedjof Tellkamp, Apr 05 2025 | 2025-04-22T07:53:47 | oeisdata/seq/A382/A382692.seq | d059bc9fae3c23caa3ea0634ccd5f136 |
A382693 | Number of dense symmetric binary relations on {1,...,n}. | [
"1",
"2",
"4",
"20",
"234",
"6308",
"374586",
"47740076",
"12788143462",
"7090729971308"
]
| [
"nonn",
"more"
]
| 47 | 0 | 2 | [
"A382693",
"A382839"
]
| null | Mark Bowron, Apr 03 2025 | 2025-05-28T01:04:01 | oeisdata/seq/A382/A382693.seq | a03ae7299c6e14ab3321e2189e07560c |
A382694 | Expansion of g.f. exp(Sum_{n>=1} A295438(n)*x^n/n). | [
"1",
"42",
"2871",
"237911",
"21862425",
"2143052865",
"219564220919",
"23230203884874",
"2518599785053086",
"278360576221715553",
"31245378300319142280",
"3552279132160612518246",
"408200655806919057705682",
"47335784826964879842829119",
"5532281346887930405994060960",
"650990818255231425636329295522"
]
| [
"nonn"
]
| 9 | 0 | 2 | [
"A295438",
"A382694"
]
| null | Karol A. Penson, Apr 03 2025 | 2025-04-03T20:40:24 | oeisdata/seq/A382/A382694.seq | 64c2579f57e81ebf4a8e4a71233302de |
A382695 | Number of minimum total dominating sets in the n-Hanoi graph. | [
"3",
"12",
"51",
"1056",
"1536000",
"606930418532352",
"4374489334128158137726429035382613999616",
"185102732203902439689337302716548387149641795774758138929665845212282586523432979080034900256693930098164987068416"
]
| [
"nonn"
]
| 9 | 1 | 1 | null | null | Eric W. Weisstein, Apr 03 2025 | 2025-05-24T01:47:23 | oeisdata/seq/A382/A382695.seq | 86dcaa24bb6d86710711f7c6938877f1 |
A382696 | Centered pentagonal numbers that are abundant. | [
"276",
"456",
"1266",
"1626",
"2176",
"2976",
"3516",
"5406",
"6126",
"8556",
"9456",
"12426",
"13506",
"17016",
"18276",
"22326",
"23766",
"28356",
"29976",
"35106",
"36906",
"39376",
"42576",
"44556",
"50766",
"52926",
"59676",
"62016",
"69306",
"71826",
"79656",
"82356",
"89776",
"90726",
"93606",
"94576",
"102516",
"105576",
"115026",
"118266",
"128256",
"131676",
"142206",
"145806"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A005101",
"A005891",
"A379264",
"A382696"
]
| null | Massimo Kofler, Apr 03 2025 | 2025-04-12T11:58:27 | oeisdata/seq/A382/A382696.seq | 3c250627befe2eb59604f3dd9d427a11 |
A382697 | Decimal expansion of 195^(1/7). | [
"2",
"1",
"2",
"3",
"9",
"6",
"7",
"1",
"7",
"9",
"8",
"7",
"3",
"5",
"9",
"0",
"3",
"1",
"4",
"7",
"9",
"4",
"8",
"2",
"3",
"8",
"3",
"6",
"1",
"6",
"9",
"7",
"7",
"0",
"7",
"3",
"5",
"8",
"6",
"6",
"1",
"8",
"5",
"6",
"3",
"4",
"7",
"8",
"7",
"1",
"6",
"4",
"1",
"9",
"9",
"5",
"3",
"3",
"8",
"3",
"8",
"9",
"0",
"3",
"9",
"8",
"8",
"6",
"9",
"9",
"1",
"0",
"1",
"6",
"5",
"9",
"0",
"4",
"7",
"9",
"6",
"7",
"0",
"9",
"1",
"7",
"2",
"2",
"6",
"6",
"9",
"4",
"2",
"4",
"5",
"5",
"4",
"4",
"2",
"3"
]
| [
"nonn",
"cons",
"easy"
]
| 11 | 1 | 1 | null | null | Stefano Spezia, Apr 03 2025 | 2025-04-05T10:52:36 | oeisdata/seq/A382/A382697.seq | d4f8966977c2ad0a6d2527ffd167d17f |
A382698 | First member of the least set of 3 consecutive primes such that the sum of each pair of consecutive primes in this set is a multiple of n. | [
"2",
"3",
"5",
"3",
"43",
"5",
"977",
"53",
"313",
"43",
"787",
"137",
"9587",
"977",
"2473",
"541",
"3967",
"313",
"28979",
"947",
"3121",
"787",
"72823",
"283",
"47441",
"9587",
"81463",
"4363",
"61153",
"2473",
"478001",
"21617",
"160243",
"3967",
"132763",
"8017",
"227873",
"28979",
"218279",
"12163",
"1772119",
"3121",
"3070187",
"57413",
"841459"
]
| [
"nonn",
"easy"
]
| 23 | 1 | 1 | [
"A254862",
"A382698",
"A382699",
"A382700"
]
| null | Paolo P. Lava, Apr 04 2025 | 2025-04-15T08:26:56 | oeisdata/seq/A382/A382698.seq | 2172869a558435a8782b8e5a94aa7430 |
A382699 | First member of the least set of 4 consecutive primes such that the sum of each pair of consecutive primes in this set is a multiple of n. | [
"2",
"3",
"5",
"23",
"157",
"5",
"977",
"53",
"5171",
"157",
"33871",
"137",
"159293",
"977",
"2969",
"541",
"406873",
"5171",
"471313",
"6047",
"166739",
"33871",
"2112193",
"5309",
"520763",
"159293",
"207869",
"5443",
"2404471",
"2969",
"1531487",
"88919",
"2673791",
"406873",
"6056569",
"95737",
"8480357",
"471313",
"561829",
"73477"
]
| [
"nonn"
]
| 20 | 1 | 1 | [
"A254862",
"A382698",
"A382699",
"A382700"
]
| null | Paolo P. Lava, Apr 04 2025 | 2025-04-19T18:10:12 | oeisdata/seq/A382/A382699.seq | 1ddf4970d34ce77d100e16c6060eef12 |
A382700 | First member of the least set of 5 consecutive primes such that the sum of each pair of consecutive primes in this set is a multiple of n. | [
"2",
"3",
"5",
"47",
"3593",
"5",
"10487",
"523",
"38377",
"3593",
"1796671",
"409",
"947423",
"10487",
"60383",
"62501",
"18164651",
"38377",
"15095579",
"32633",
"3272567",
"1796671",
"116863451",
"67819",
"65835479",
"947423",
"7005239",
"1165217",
"1154953243",
"60383",
"800037461",
"7442557",
"15442121",
"18164651",
"771405431"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A254862",
"A382698",
"A382699",
"A382700"
]
| null | Paolo P. Lava, Apr 04 2025 | 2025-04-15T08:26:50 | oeisdata/seq/A382/A382700.seq | 66f8e75453ed5886645d62649c80e83e |
A382701 | Expansion of e.g.f. -log(1 - x)^3 * exp(3*x) / 6. | [
"0",
"0",
"0",
"1",
"18",
"215",
"2205",
"21469",
"209356",
"2111318",
"22448130",
"254297241",
"3083362326",
"40046861205",
"556384764663",
"8248646054349",
"130120383122136",
"2177629350914412",
"38552967519050628",
"720104832324072081",
"14154891429467595258",
"292132391046470467443",
"6316572474787017069297"
]
| [
"nonn"
]
| 22 | 0 | 5 | [
"A327997",
"A381022",
"A382701"
]
| null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T11:06:37 | oeisdata/seq/A382/A382701.seq | 9b6d8424fcf9918c42f6628b55ebd504 |
A382702 | Indices k where b(k) > k, where b is the EKG sequence A064413. | [
"3",
"4",
"6",
"7",
"9",
"11",
"12",
"13",
"15",
"16",
"18",
"19",
"21",
"22",
"23",
"24",
"25",
"26",
"29",
"30",
"31",
"32",
"34",
"35",
"36",
"38",
"39",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"49",
"51",
"52",
"53",
"54",
"55",
"56",
"58",
"59",
"60",
"62",
"63",
"65",
"66",
"68",
"69",
"70",
"71",
"72",
"73",
"75",
"76",
"77",
"79",
"80",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"90",
"91",
"92",
"94",
"95",
"96",
"97",
"98",
"99",
"101",
"102",
"103",
"104",
"105",
"106",
"108"
]
| [
"nonn"
]
| 19 | 1 | 1 | [
"A064413",
"A152458",
"A382702",
"A382703",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:32:33 | oeisdata/seq/A382/A382702.seq | 93b962400e76bee79da927cd07350d91 |
A382703 | Numbers k which appear "prematurely" in A064413, that is, k appears before the k-th term. | [
"4",
"6",
"9",
"12",
"10",
"15",
"18",
"14",
"21",
"24",
"20",
"22",
"33",
"27",
"30",
"25",
"35",
"28",
"39",
"36",
"32",
"34",
"51",
"42",
"38",
"57",
"45",
"44",
"46",
"69",
"48",
"50",
"52",
"54",
"56",
"63",
"60",
"55",
"65",
"70",
"58",
"87",
"66",
"62",
"93",
"72",
"68",
"74",
"111",
"75",
"78",
"76",
"80",
"82",
"123",
"81",
"84",
"88",
"86",
"129",
"90",
"85",
"95",
"100",
"92",
"94",
"141",
"96",
"98",
"104",
"102",
"99",
"105",
"108",
"106",
"159",
"114",
"110",
"112",
"116"
]
| [
"nonn"
]
| 12 | 1 | 1 | [
"A064413",
"A152458",
"A382702",
"A382703",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:32:41 | oeisdata/seq/A382/A382703.seq | 50aafec439c3622f59deeb3faf084cc1 |
A382704 | Indices k where b(k) < k, where b is the EKG sequence A064413. | [
"5",
"10",
"14",
"17",
"20",
"27",
"28",
"33",
"37",
"43",
"50",
"57",
"61",
"67",
"74",
"78",
"81",
"89",
"93",
"100",
"107",
"115",
"124",
"128",
"134",
"138",
"151",
"160",
"167",
"171",
"182",
"189",
"197",
"203",
"207",
"210",
"213",
"216",
"236",
"253",
"259",
"264",
"279",
"287",
"290",
"297",
"305",
"314",
"328",
"336",
"344",
"363",
"371",
"377",
"381",
"401",
"420",
"430",
"438",
"444",
"458",
"462",
"474",
"487",
"501",
"510",
"517",
"530",
"540",
"549"
]
| [
"nonn"
]
| 18 | 1 | 1 | [
"A064413",
"A152458",
"A382702",
"A382704",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:32:52 | oeisdata/seq/A382/A382704.seq | 5c00ade0cd93d5762ac3078139caee3d |
A382705 | Numbers k which are "delayed" in A064413, that is, k appears after the k-th term. | [
"3",
"5",
"7",
"16",
"11",
"26",
"13",
"17",
"19",
"23",
"49",
"29",
"31",
"37",
"41",
"77",
"43",
"47",
"91",
"53",
"59",
"61",
"121",
"67",
"71",
"73",
"79",
"83",
"89",
"169",
"97",
"101",
"103",
"107",
"109",
"205",
"209",
"113",
"127",
"131",
"137",
"139",
"149",
"151",
"289",
"157",
"163",
"167",
"173",
"179",
"181",
"191",
"193",
"197",
"199",
"211",
"223",
"227",
"229",
"233",
"239",
"241",
"251",
"257",
"263",
"269",
"271",
"277",
"281",
"283",
"293",
"307",
"311"
]
| [
"nonn"
]
| 18 | 1 | 1 | [
"A064413",
"A152458",
"A382702",
"A382705",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:33:09 | oeisdata/seq/A382/A382705.seq | 0beefe7aa9719c900dbb831735be0b07 |
A382706 | a(n) = number of indices k, 1 <= k <= n, such that A064413(k) > k. | [
"0",
"0",
"1",
"2",
"2",
"3",
"4",
"4",
"5",
"5",
"6",
"7",
"8",
"8",
"9",
"10",
"10",
"11",
"12",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"18",
"18",
"19",
"20",
"21",
"22",
"22",
"23",
"24",
"25",
"25",
"26",
"27",
"27",
"28",
"29",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"41",
"42",
"43",
"44",
"44",
"45",
"46",
"46",
"47",
"48",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"54",
"55",
"56",
"57",
"57",
"58",
"59",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66"
]
| [
"nonn"
]
| 10 | 1 | 4 | [
"A064413",
"A152458",
"A382702",
"A382706",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:33:18 | oeisdata/seq/A382/A382706.seq | 5bb16be96fa7bd55603ef343642b18ef |
A382707 | a(n) = number of indices k, 1 <= k <= n, such that A064413(k) < k. | [
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"7",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"9",
"9",
"9",
"9",
"9",
"9",
"10",
"10",
"10",
"10",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"13",
"13",
"13",
"13",
"13",
"13",
"14",
"14",
"14",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"15",
"16",
"16",
"16",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"18",
"18",
"18",
"18",
"19"
]
| [
"nonn"
]
| 12 | 1 | 10 | [
"A064413",
"A152458",
"A382702",
"A382707",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-04-05T02:33:32 | oeisdata/seq/A382/A382707.seq | 41fdca6b141f68c1734a350c613136a2 |
A382708 | Number of triples (i,j,k), 1 <= i < j < k <= n such that A064413(i) < A064413(k) < A064413(j). | [
"0",
"0",
"0",
"0",
"4",
"4",
"4",
"14",
"20",
"39",
"39",
"39",
"59",
"97",
"97",
"97",
"134",
"162",
"177",
"260",
"260",
"280",
"300",
"360",
"360",
"423",
"525",
"694",
"694",
"722",
"817",
"895",
"1129",
"1129",
"1162",
"1254",
"1546",
"1546",
"1615",
"1751",
"1856",
"1925",
"2326",
"2326",
"2436",
"2546",
"2625",
"2704",
"2783",
"3061",
"3104",
"3196",
"3415",
"3458",
"3458",
"3699",
"4439",
"4439",
"4590",
"4890",
"5725",
"5725",
"5842"
]
| [
"nonn",
"changed"
]
| 21 | 1 | 5 | [
"A064413",
"A152458",
"A382702",
"A382707",
"A382708"
]
| null | N. J. A. Sloane, Apr 04 2025 | 2025-07-09T05:08:53 | oeisdata/seq/A382/A382708.seq | 96419bd6f1d69c040b4c8a95c4faad0c |
A382709 | Numerator of (2^n - 1)*n! / 2^(n+1). | [
"0",
"1",
"3",
"21",
"45",
"465",
"2835",
"40005",
"80325",
"1448685",
"14501025",
"319178475",
"1915538625",
"49810085325",
"697383762075",
"20922151375125",
"41844941263125",
"1422738857665125",
"25609397130442125",
"973158947113728375",
"9731598751921921875",
"408727342477198119375",
"8992003678359610033125",
"413632218513350843881875"
]
| [
"nonn",
"frac",
"changed"
]
| 23 | 0 | 3 | [
"A117973",
"A382709"
]
| null | N. J. A. Sloane, Apr 06 2025, following a suggestion from Fernando Galve Mauricio | 2025-07-09T05:09:00 | oeisdata/seq/A382/A382709.seq | 4385fe36a76aabf876de2aca094b61b8 |
A382710 | Smallest missing number after A019444(n) has been computed. | [
"2",
"2",
"4",
"4",
"4",
"5",
"5",
"7",
"7",
"7",
"9",
"9",
"9",
"10",
"10",
"12",
"12",
"12",
"13",
"13",
"15",
"15",
"15",
"17",
"17",
"17",
"18",
"18",
"20",
"20",
"20",
"22",
"22",
"22",
"23",
"23",
"25",
"25",
"25",
"26",
"26",
"28",
"28",
"28",
"30",
"30",
"30",
"31",
"31",
"33",
"33",
"33",
"34",
"34",
"36",
"36",
"36",
"38",
"38",
"38",
"39",
"39",
"41",
"41",
"41",
"43",
"43",
"43",
"44",
"44",
"46",
"46",
"46",
"47",
"47",
"49",
"49",
"49",
"51",
"51",
"51",
"52",
"52",
"54",
"54",
"54",
"56"
]
| [
"nonn"
]
| 4 | 1 | 1 | [
"A019444",
"A282162",
"A382710"
]
| null | N. J. A. Sloane, Apr 06 2025 | 2025-04-07T12:48:05 | oeisdata/seq/A382/A382710.seq | 08f6a2beaac18efffcfdb7541be25553 |
A382711 | Regarding A381019 as a permutation of the natural numbers, this is the cycle with smallest term 8, read in the forward direction. | [
"8",
"13",
"9",
"17",
"41",
"139",
"677",
"4651",
"43037"
]
| [
"nonn",
"more"
]
| 8 | 1 | 1 | [
"A381019",
"A382711",
"A382712"
]
| null | N. J. A. Sloane, Apr 06 2025 | 2025-04-09T14:34:26 | oeisdata/seq/A382/A382711.seq | 56b4eb56d6191cbaec3beb5c5d3bca30 |
A382712 | Regarding A381019 as a permutation of the natural numbers, this is the cycle with smallest term 8, read in the reverse direction. | [
"8",
"16",
"64",
"975",
"126300"
]
| [
"nonn",
"more"
]
| 6 | 1 | 1 | [
"A381019",
"A382711",
"A382712"
]
| null | N. J. A. Sloane, Apr 06 2025 | 2025-04-07T12:49:01 | oeisdata/seq/A382/A382712.seq | 4b7c60cd2d2047ab2edeb8e75073be85 |
A382713 | Simple continued fraction expansion of sqrt(3/2). | [
"1",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2"
]
| [
"nonn",
"cofr",
"easy"
]
| 18 | 0 | 2 | [
"A010694",
"A040003",
"A105397",
"A106469",
"A115754",
"A142238",
"A142239",
"A382713"
]
| null | N. J. A. Sloane, Apr 08 2025 | 2025-04-14T09:04:56 | oeisdata/seq/A382/A382713.seq | 9851149cada716d51b4daeaf4296ed79 |
A382714 | Simple continued fraction for the decimal number 10.100001100... defined in A379651. | [
"10",
"9",
"1",
"9089",
"10",
"1343237306",
"2",
"80",
"4",
"6",
"3",
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"7",
"4",
"2",
"1",
"11",
"4",
"1",
"1",
"19",
"3",
"2",
"1",
"7",
"1",
"4",
"1",
"13",
"1",
"1",
"3",
"1",
"1",
"25",
"5",
"3",
"273",
"4",
"13",
"12",
"2",
"1",
"2",
"3",
"3",
"1",
"1",
"81",
"2",
"3",
"3",
"5",
"4",
"4",
"9",
"1",
"1",
"2",
"1",
"17",
"1",
"1",
"7",
"1",
"4",
"1",
"2",
"1",
"3",
"5",
"1",
"1",
"2",
"2",
"4",
"3",
"6",
"1",
"4",
"2",
"2",
"1",
"3",
"4",
"5",
"1",
"1",
"3",
"6",
"3",
"13",
"4",
"4",
"1"
]
| [
"nonn",
"cofr"
]
| 6 | 0 | 1 | [
"A379651",
"A382714"
]
| null | N. J. A. Sloane, Apr 08 2025 | 2025-04-09T14:32:17 | oeisdata/seq/A382/A382714.seq | 85e0db853291db966665c43a2e71913d |
A382715 | The term in A377091 that immediately precedes n, or 0 if n does not appear in A377091. | [
"0",
"1",
"-1",
"3",
"4",
"-3",
"6",
"7",
"13",
"9",
"10",
"11",
"-12",
"18",
"14",
"15",
"16",
"-18",
"20",
"21",
"25",
"23",
"19",
"28",
"-24",
"22",
"26",
"27",
"30",
"31",
"32",
"-32",
"29",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"-39",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"-49",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"-59",
"62",
"63",
"64",
"65"
]
| [
"sign"
]
| 35 | 1 | 4 | [
"A377091",
"A379059",
"A379789",
"A382715",
"A382716",
"A382717",
"A382718"
]
| null | N. J. A. Sloane, Apr 09 2025 | 2025-04-13T03:26:56 | oeisdata/seq/A382/A382715.seq | 37687bbf2d0858ba5a979e734f6a6bdf |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.