sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382416 | Numbers with at least one zero in their base-6 representation. | [
"0",
"6",
"12",
"18",
"24",
"30",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"48",
"54",
"60",
"66",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"84",
"90",
"96",
"102",
"108",
"109",
"110",
"111",
"112",
"113",
"114",
"120",
"126",
"132",
"138",
"144",
"145",
"146",
"147",
"148",
"149",
"150",
"156",
"162",
"168",
"174",
"180",
"181",
"182",
"183",
"184",
"185",
"186",
"192",
"198"
]
| [
"nonn",
"base",
"easy"
]
| 6 | 1 | 2 | [
"A007092",
"A011540",
"A043369",
"A062289",
"A081605",
"A196032",
"A248910",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
]
| null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:11 | oeisdata/seq/A382/A382416.seq | 44bfa9f93756b8a2ec9ba6eac2e4e758 |
A382417 | Numbers with at least one zero in their base-8 representation. | [
"0",
"8",
"16",
"24",
"32",
"40",
"48",
"56",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"80",
"88",
"96",
"104",
"112",
"120",
"128",
"129",
"130",
"131",
"132",
"133",
"134",
"135",
"136",
"144",
"152",
"160",
"168",
"176",
"184",
"192",
"193",
"194",
"195",
"196",
"197",
"198",
"199",
"200",
"208",
"216",
"224",
"232",
"240",
"248",
"256",
"257",
"258",
"259",
"260"
]
| [
"nonn",
"base",
"easy"
]
| 6 | 1 | 2 | [
"A007094",
"A011540",
"A043421",
"A062289",
"A081605",
"A196032",
"A255805",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
]
| null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:20 | oeisdata/seq/A382/A382417.seq | 6cf1b4c19a2d340e043f697e044cb15b |
A382418 | Numbers with at least one zero in their base-9 representation. | [
"0",
"9",
"18",
"27",
"36",
"45",
"54",
"63",
"72",
"81",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"89",
"90",
"99",
"108",
"117",
"126",
"135",
"144",
"153",
"162",
"163",
"164",
"165",
"166",
"167",
"168",
"169",
"170",
"171",
"180",
"189",
"198",
"207",
"216",
"225",
"234",
"243",
"244",
"245",
"246",
"247",
"248",
"249",
"250",
"251",
"252",
"261",
"270",
"279",
"288",
"297"
]
| [
"nonn",
"base",
"easy"
]
| 6 | 1 | 2 | [
"A007095",
"A011540",
"A043453",
"A062289",
"A081605",
"A196032",
"A255808",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
]
| null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:27 | oeisdata/seq/A382/A382418.seq | b1ed4ece688a64be3b966d3e761f0e28 |
A382419 | The product of exponents in the prime factorization of the cubefree numbers. | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"2",
"4",
"1",
"1"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 4 | [
"A002117",
"A004709",
"A005361",
"A330594",
"A368712",
"A376366",
"A382419",
"A382421",
"A382422"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:40 | oeisdata/seq/A382/A382419.seq | 309877ce3f390f854f768261bf5f554f |
A382420 | The number of non-unitary prime divisors of the noncubefree numbers. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 11 | [
"A002117",
"A046099",
"A085548",
"A376366",
"A382420"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-25T08:55:53 | oeisdata/seq/A382/A382420.seq | 27fd7c8fd575f7b665c6e29603f7b7d8 |
A382421 | The product of exponents in the prime factorization of the noncubefree numbers. | [
"3",
"4",
"3",
"3",
"5",
"3",
"4",
"3",
"3",
"6",
"6",
"4",
"4",
"3",
"5",
"3",
"6",
"4",
"3",
"3",
"7",
"3",
"3",
"8",
"3",
"5",
"4",
"3",
"4",
"3",
"3",
"6",
"6",
"4",
"9",
"5",
"3",
"4",
"5",
"3",
"3",
"8",
"3",
"3",
"4",
"3",
"10",
"3",
"3",
"4",
"3",
"6",
"8",
"3",
"4",
"3",
"3",
"3",
"5",
"6",
"4",
"3",
"3",
"3",
"7",
"6",
"8",
"4",
"3",
"5",
"3",
"12",
"3",
"6",
"3",
"3",
"4",
"3",
"5",
"5",
"3",
"4",
"6",
"6",
"9",
"3",
"3"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 1 | [
"A002117",
"A005361",
"A013661",
"A013664",
"A046099",
"A082695",
"A330594",
"A368039",
"A382419",
"A382421"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:45 | oeisdata/seq/A382/A382421.seq | 523426702ac727a8840def7b90112808 |
A382422 | The product of exponents in the prime factorization of the biquadratefree numbers. | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 4 | [
"A003586",
"A005361",
"A013662",
"A046100",
"A082695",
"A375766",
"A375768",
"A382422",
"A382423",
"A382424"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:51 | oeisdata/seq/A382/A382422.seq | 6ac227a54b36f5521ff4dbb6207d5e7e |
A382423 | The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 2. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0"
]
| [
"nonn",
"easy"
]
| 11 | 1 | 34 | [
"A013662",
"A046100",
"A369427",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-26T11:38:24 | oeisdata/seq/A382/A382423.seq | 8fbb93b788c080304b8ccf3bf5f72a4c |
A382424 | The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 3. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0"
]
| [
"nonn",
"easy"
]
| 12 | 1 | null | [
"A013662",
"A046100",
"A295883",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-26T11:38:29 | oeisdata/seq/A382/A382424.seq | cd5a0048db4f5dd1e6756393ad3ae3a8 |
A382425 | The number of non-unitary prime divisors of the biquadratefree numbers. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0"
]
| [
"nonn",
"easy"
]
| 12 | 1 | 34 | [
"A013662",
"A046100",
"A056170",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
]
| null | Amiram Eldar, Mar 25 2025 | 2025-03-25T08:55:36 | oeisdata/seq/A382/A382425.seq | 4851237a1c6933679a90ae8523b96077 |
A382426 | MM-numbers of sets of constant multisets with distinct sums. | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"30",
"31",
"33",
"34",
"38",
"41",
"42",
"46",
"51",
"53",
"55",
"57",
"59",
"62",
"66",
"67",
"69",
"77",
"82",
"83",
"85",
"93",
"95",
"97",
"102",
"103",
"106",
"109",
"110",
"114",
"115",
"118",
"119",
"123",
"127",
"131",
"133",
"134",
"138",
"154",
"155",
"157",
"159",
"161",
"165",
"166"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000688",
"A000720",
"A000961",
"A055396",
"A056239",
"A061395",
"A112798",
"A279786",
"A302242",
"A302492",
"A302494",
"A321469",
"A326534",
"A326535",
"A355743",
"A356065",
"A381635",
"A381636",
"A381716",
"A382201",
"A382203",
"A382215",
"A382304",
"A382426"
]
| null | Gus Wiseman, Apr 01 2025 | 2025-04-03T14:57:53 | oeisdata/seq/A382/A382426.seq | f65669b3f85f2f4f2a647772cbd7600d |
A382427 | Number of integer partitions of n that can be partitioned into constant blocks with distinct sums. | [
"1",
"1",
"2",
"3",
"4",
"7",
"11",
"14",
"19",
"28",
"39",
"50",
"70",
"91",
"120",
"161",
"203",
"260",
"338",
"426",
"556",
"695",
"863",
"1082",
"1360",
"1685"
]
| [
"nonn",
"more"
]
| 13 | 0 | 3 | [
"A000009",
"A000041",
"A000688",
"A001055",
"A006171",
"A045778",
"A047966",
"A050361",
"A265947",
"A279784",
"A279786",
"A295935",
"A300383",
"A300385",
"A317141",
"A326535",
"A353864",
"A355743",
"A381453",
"A381455",
"A381633",
"A381635",
"A381636",
"A381716",
"A381717",
"A381718",
"A381990",
"A381991",
"A381992",
"A381993",
"A382075",
"A382079",
"A382203",
"A382301",
"A382427",
"A382876"
]
| null | Gus Wiseman, Mar 26 2025 | 2025-04-27T09:09:21 | oeisdata/seq/A382/A382427.seq | 94ca33da9d145fb64d9aa4da0394547c |
A382428 | Number of normal multiset partitions of weight n into sets with distinct sizes. | [
"1",
"1",
"1",
"6",
"8",
"35",
"292",
"673",
"2818",
"16956",
"219772",
"636748",
"3768505",
"20309534",
"183403268",
"3227600747",
"12272598308",
"81353466578",
"561187259734",
"4416808925866",
"50303004612136",
"1238783066956740",
"5566249468690291",
"44970939483601100",
"330144217684933896",
"3131452652308459402"
]
| [
"nonn"
]
| 14 | 0 | 4 | [
"A000110",
"A000670",
"A001055",
"A007716",
"A019536",
"A034691",
"A035310",
"A045778",
"A050320",
"A050326",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A296119",
"A317532",
"A318360",
"A326517",
"A326518",
"A326519",
"A331638",
"A333217",
"A358830",
"A381633",
"A381718",
"A382214",
"A382216",
"A382428",
"A382429"
]
| null | Gus Wiseman, Mar 29 2025 | 2025-03-31T13:38:47 | oeisdata/seq/A382/A382428.seq | 3108d26568937e60d4ebf42c2a4e2a87 |
A382429 | Number of normal multiset partitions of weight n into sets with a common sum. | [
"1",
"1",
"2",
"3",
"5",
"7",
"13",
"26",
"57",
"113",
"283",
"854",
"2401",
"6998",
"24072",
"85061",
"308956",
"1190518",
"4770078",
"19949106",
"87059592"
]
| [
"nonn",
"more"
]
| 17 | 0 | 3 | [
"A000110",
"A000670",
"A001055",
"A019536",
"A034691",
"A035310",
"A038041",
"A045778",
"A050320",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A279785",
"A279788",
"A296119",
"A304969",
"A317532",
"A317583",
"A318360",
"A321469",
"A326517",
"A326518",
"A326520",
"A326535",
"A331638",
"A333217",
"A381633",
"A381635",
"A381636",
"A381716",
"A381718",
"A381806",
"A381870",
"A381996",
"A382080",
"A382203",
"A382204",
"A382214",
"A382216",
"A382429"
]
| null | Gus Wiseman, Mar 26 2025 | 2025-04-06T14:05:06 | oeisdata/seq/A382/A382429.seq | 0a7555c20eb6752ddb4a5a253f26c88a |
A382430 | Number of non-isomorphic finite multisets of size n that cannot be partitioned into sets with distinct sums. | [
"0",
"0",
"1",
"1",
"2",
"3",
"5",
"6",
"9",
"12",
"17",
"22",
"32"
]
| [
"nonn",
"more"
]
| 5 | 0 | 5 | [
"A050326",
"A116539",
"A279785",
"A292432",
"A292444",
"A293243",
"A358914",
"A381633",
"A381718",
"A381806",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382430",
"A382523"
]
| null | Gus Wiseman, Apr 01 2025 | 2025-04-01T10:27:12 | oeisdata/seq/A382/A382430.seq | c2ab478d0e627ef4c0990c95947bba99 |
A382431 | Number of minimum dominating sets in the n-Goldberg graph. | [
"63",
"12",
"5",
"1395",
"504",
"204",
"27",
"5",
"7370",
"1728",
"390",
"42",
"5",
"21052",
"3825",
"621",
"57",
"5",
"46011",
"6930",
"897",
"72",
"5",
"86216",
"11178",
"1218",
"87",
"5",
"146041",
"16704",
"1584",
"102",
"5",
"230265",
"23643",
"1995",
"117",
"5",
"344072",
"32130",
"2451",
"132",
"5",
"493051",
"42300",
"2952",
"147",
"5",
"683196",
"54288",
"3498",
"162",
"5"
]
| [
"nonn",
"easy"
]
| 24 | 3 | 1 | [
"A364668",
"A382384",
"A382431",
"A382657"
]
| null | Eric W. Weisstein, Mar 25 2025 | 2025-05-31T09:34:41 | oeisdata/seq/A382/A382431.seq | a285f143b422d4b38dc64f528cc1f367 |
A382432 | a(n) = A074829(2*n-1, n). | [
"1",
"2",
"8",
"30",
"114",
"436",
"1676",
"6468",
"25040",
"97190",
"378050",
"1473254",
"5750390",
"22476090",
"87958306",
"344593314",
"1351330642",
"5303953012",
"20834616860",
"81900891372",
"322168053848",
"1268071841744",
"4994044075204",
"19678407053280",
"77578340524444",
"305977596195556",
"1207325722552016",
"4765772559893268"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A074829",
"A382432"
]
| null | Michel Marcus, Mar 25 2025 | 2025-03-31T06:48:05 | oeisdata/seq/A382/A382432.seq | 0347c827d5b5a24700298b77f3a528b1 |
A382433 | a(n) = S(6,n), where S(r,n) = Sum_{k=0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. | [
"1",
"1",
"2",
"65",
"794",
"19722",
"562692",
"15105729",
"553537490",
"18107304842",
"716747344436",
"27247858130506",
"1137502720488532",
"47573235297987700",
"2085487143991309320",
"92820152112054862785",
"4246321874111740074210",
"197525644801830489637170",
"9363425291004877645851300"
]
| [
"nonn"
]
| 19 | 0 | 3 | [
"A000108",
"A008315",
"A120730",
"A129123",
"A357824",
"A382433",
"A382435"
]
| null | Seiichi Manyama, Mar 25 2025 | 2025-04-01T20:09:29 | oeisdata/seq/A382/A382433.seq | 6f9965406cb5395af8d45fddb0c57dc1 |
A382434 | a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^4. | [
"1",
"1",
"3",
"33",
"195",
"1763",
"15623",
"156257",
"1630947",
"17911299",
"203739015",
"2389928995",
"28749060871",
"353362388551",
"4424242664975",
"56290517376737",
"726355164976547",
"9490129871680355",
"125375330053632455",
"1672895457018337859",
"22522481793315373319",
"305695116823973096519"
]
| [
"nonn"
]
| 19 | 0 | 3 | [
"A080233",
"A129123",
"A131428",
"A156644",
"A382434",
"A382435"
]
| null | Seiichi Manyama, Mar 25 2025 | 2025-03-31T06:30:46 | oeisdata/seq/A382/A382434.seq | 3618db99bd2eafbdf02c7ea31da326e8 |
A382435 | a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6. | [
"1",
"1",
"3",
"129",
"1587",
"39443",
"1125383",
"30211457",
"1107074979",
"36214609683",
"1433494688871",
"54495716261011",
"2275005440977063",
"95146470595975399",
"4170974287982618639",
"185640304224109725569",
"8492643748223480148419",
"395051289603660979274339",
"18726850582009755291702599"
]
| [
"nonn"
]
| 15 | 0 | 3 | [
"A080233",
"A131428",
"A156644",
"A382433",
"A382434",
"A382435"
]
| null | Seiichi Manyama, Mar 25 2025 | 2025-03-25T12:56:36 | oeisdata/seq/A382/A382435.seq | 3a998646deadd7545a6240294617d120 |
A382436 | Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"6",
"1",
"1",
"9",
"17",
"9",
"1",
"1",
"12",
"36",
"36",
"12",
"1",
"1",
"15",
"64",
"101",
"64",
"15",
"1",
"1",
"18",
"101",
"227",
"227",
"101",
"18",
"1",
"1",
"21",
"147",
"440",
"627",
"440",
"147",
"21",
"1",
"1",
"24",
"202",
"767",
"1459",
"1459",
"767",
"202",
"24",
"1",
"1",
"27",
"266",
"1235",
"2994",
"3999",
"2994",
"1235",
"266",
"27",
"1"
]
| [
"nonn",
"tabl",
"changed"
]
| 30 | 0 | 5 | [
"A008288",
"A056594",
"A077938",
"A103450",
"A339565",
"A382436",
"A382444"
]
| null | F. Chapoton, Mar 25 2025 | 2025-07-09T05:08:47 | oeisdata/seq/A382/A382436.seq | 2798e26348fff0e2b3735803767e270d |
A382437 | a(n) = a(n-1)^2 + 4 * a(n-1), with a(0) = 2. | [
"2",
"12",
"192",
"37632",
"1416317952",
"2005956546822746112",
"4023861667741036022825635656102100992",
"16191462721115671781777559070120513664958590125499158514329308740975788032"
]
| [
"nonn"
]
| 25 | 0 | 1 | [
"A002812",
"A003010",
"A382437"
]
| null | V. Barbera, Mar 25 2025 | 2025-04-06T22:18:05 | oeisdata/seq/A382/A382437.seq | b07bac2dbd7bbc1bb10d885d8ba37d3a |
A382438 | Numbers k in A024619 such that all residues r (mod k) in row k of A381801 are such that rad(r) divides k, where rad = A007947. | [
"6",
"12",
"14",
"24",
"39",
"62",
"155",
"254",
"3279",
"5219",
"16382",
"19607",
"70643",
"97655",
"208919",
"262142",
"363023",
"402233",
"712979",
"1040603",
"1048574",
"1508597",
"2265383",
"2391483",
"4685519",
"5207819",
"6728903",
"21243689",
"25239899",
"56328959",
"61035155",
"67977559",
"150508643"
]
| [
"nonn"
]
| 36 | 1 | 1 | [
"A007947",
"A024619",
"A381750",
"A381801",
"A382438"
]
| null | Michael De Vlieger, Mar 27 2025 | 2025-05-31T05:52:30 | oeisdata/seq/A382/A382438.seq | 1729d8c231b6c9a1ba1f9c9785ef2feb |
A382439 | Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x). | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"5",
"5",
"1",
"1",
"7",
"12",
"7",
"1",
"1",
"9",
"24",
"24",
"9",
"1",
"1",
"11",
"40",
"60",
"40",
"11",
"1",
"1",
"13",
"60",
"124",
"124",
"60",
"13",
"1",
"1",
"15",
"84",
"224",
"308",
"224",
"84",
"15",
"1",
"1",
"17",
"112",
"368",
"656",
"656",
"368",
"112",
"17",
"1",
"1",
"19",
"144",
"564",
"1248",
"1620",
"1248",
"564",
"144",
"19",
"1"
]
| [
"nonn",
"tabl"
]
| 27 | 0 | 5 | [
"A008288",
"A245990",
"A382436",
"A382439"
]
| null | F. Chapoton, Mar 25 2025 | 2025-03-27T10:02:54 | oeisdata/seq/A382/A382439.seq | faa6c74f319796a7e40d8833f5da6587 |
A382440 | Number of rooted full binary trees with n internal nodes, up to their multiset of subtree sizes. | [
"1",
"1",
"2",
"3",
"6",
"11",
"23",
"45",
"95",
"194",
"414",
"863",
"1850",
"3910",
"8413",
"17887",
"38517",
"82249",
"177133",
"378871",
"815265",
"1745006",
"3750385",
"8024725",
"17219142",
"36817113"
]
| [
"nonn",
"more"
]
| 13 | 1 | 3 | [
"A000108",
"A001190",
"A247139",
"A382440"
]
| null | Ludovic Schwob, Mar 25 2025 | 2025-04-04T15:14:32 | oeisdata/seq/A382/A382440.seq | 8ad975d3d409df63577bc2c4b15a48bb |
A382441 | Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose decimal expansion appears as a contiguous subword in the concatenation of the previous terms. | [
"1",
"2",
"5",
"7",
"8",
"9",
"10",
"16",
"20",
"32",
"40",
"50",
"51",
"53",
"64",
"83",
"93",
"100",
"117",
"118",
"126",
"160",
"186",
"200",
"207",
"224",
"250",
"288",
"311",
"320",
"352",
"372",
"391",
"400",
"448",
"480",
"500",
"625",
"640",
"713",
"800",
"960",
"979",
"1000",
"1011",
"1039",
"1043",
"1097",
"1099",
"1173",
"1200",
"1250",
"1359",
"1426"
]
| [
"nonn",
"base"
]
| 13 | 1 | 2 | [
"A048991",
"A382441",
"A382442",
"A382445"
]
| null | Rémy Sigrist, Mar 25 2025 | 2025-03-28T08:03:26 | oeisdata/seq/A382/A382441.seq | 8571b3bffeacb87dda91d2bf92bf3a3e |
A382442 | Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose binary expansion appears as a contiguous subword in the concatenation of the previous terms. | [
"1",
"2",
"4",
"7",
"8",
"16",
"18",
"27",
"32",
"42",
"54",
"64",
"84",
"126",
"128",
"133",
"172",
"238",
"256",
"276",
"379",
"381",
"444",
"512",
"524",
"582",
"621",
"765",
"948",
"1024",
"1048",
"1179",
"1241",
"1449",
"1496",
"1557",
"1861",
"1896",
"1982",
"2048",
"2132",
"2155",
"2227",
"2386",
"2667",
"2900",
"3013",
"3058",
"3236",
"3444",
"3613"
]
| [
"nonn",
"base"
]
| 6 | 1 | 2 | [
"A382441",
"A382442"
]
| null | Rémy Sigrist, Mar 26 2025 | 2025-03-28T08:03:30 | oeisdata/seq/A382/A382442.seq | 5326f59b7d29719a5a80b00e7d3d645f |
A382443 | a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4. | [
"1",
"1",
"4",
"65",
"566",
"10912",
"164032",
"3237313",
"62253130",
"1314421886",
"28392213224",
"639799858304",
"14785604868256",
"350615631856960",
"8485316740880384",
"209179475361783233",
"5239271305444731698",
"133100429387161703962",
"3424142506153260211720",
"89090362800169426107070"
]
| [
"nonn"
]
| 30 | 0 | 3 | [
"A000108",
"A129123",
"A381676",
"A382433",
"A382434",
"A382443",
"A382446"
]
| null | Seiichi Manyama, Mar 26 2025 | 2025-03-29T16:25:59 | oeisdata/seq/A382/A382443.seq | d033c389d572527ce9cf51c33db4c796 |
A382444 | Triangle read by rows, defined by the two-variable g.f. (1 + y*x^2 + (y^2 + y)*x^3)/(1-(1+y)*x-y*x^2). | [
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"7",
"7",
"1",
"1",
"9",
"18",
"9",
"1",
"1",
"11",
"34",
"34",
"11",
"1",
"1",
"13",
"54",
"86",
"54",
"13",
"1",
"1",
"15",
"78",
"174",
"174",
"78",
"15",
"1",
"1",
"17",
"106",
"306",
"434",
"306",
"106",
"17",
"1",
"1",
"19",
"138",
"490",
"914",
"914",
"490",
"138",
"19",
"1",
"1",
"21",
"174",
"734",
"1710",
"2262",
"1710",
"734",
"174",
"21",
"1"
]
| [
"nonn",
"tabl"
]
| 28 | 0 | 5 | [
"A008288",
"A103450",
"A265107",
"A382436",
"A382444"
]
| null | F. Chapoton, Mar 25 2025 | 2025-03-26T09:18:10 | oeisdata/seq/A382/A382444.seq | c73b290b106d15100a6d63fe331b8f25 |
A382445 | Lexicographically least increasing sequence of distinct positive integers such that for any n > 1, a(n) does not divide the concatenation of the earlier terms. | [
"1",
"2",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70"
]
| [
"nonn",
"base"
]
| 8 | 1 | 2 | [
"A007978",
"A096098",
"A382441",
"A382445"
]
| null | Rémy Sigrist, Mar 25 2025 | 2025-03-28T08:03:17 | oeisdata/seq/A382/A382445.seq | 79488196e9cb4283c0fa094bc55f44c0 |
A382446 | a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6. | [
"1",
"1",
"4",
"257",
"4286",
"258952",
"11816512",
"632854273",
"43732565914",
"2637804065366",
"207379028199080",
"14568483339859880",
"1205457271871693920",
"95108827011788280160",
"8187664948710535579904",
"698818327346476962092801",
"62477582066507173352034866",
"5627626080883126186936773514"
]
| [
"nonn"
]
| 19 | 0 | 3 | [
"A000108",
"A129123",
"A381676",
"A382433",
"A382435",
"A382443",
"A382446"
]
| null | Seiichi Manyama, Mar 26 2025 | 2025-03-30T09:52:53 | oeisdata/seq/A382/A382446.seq | 625c4e1f051b81e303f14e84fbb7f448 |
A382447 | Number of positive k <= n such that k*2^n - 1 is prime. | [
"0",
"2",
"2",
"2",
"2",
"3",
"2",
"1",
"1",
"3",
"3",
"2",
"3",
"2",
"2",
"4",
"6",
"3",
"1",
"3",
"3",
"0",
"1",
"0",
"1",
"1",
"2",
"3",
"2",
"3",
"4",
"2",
"2",
"1",
"5",
"2",
"4",
"2",
"1",
"3",
"4",
"3",
"4",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"3",
"4",
"5",
"2",
"2",
"3",
"1",
"3",
"3",
"3",
"4",
"3",
"1",
"0",
"1",
"2",
"1",
"4",
"3",
"3",
"5",
"3",
"3",
"6",
"2",
"3",
"3",
"3",
"2",
"3",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"2"
]
| [
"nonn"
]
| 10 | 1 | 2 | [
"A002234",
"A003261",
"A061411",
"A061414",
"A382119",
"A382447"
]
| null | Juri-Stepan Gerasimov, Mar 26 2025 | 2025-04-01T21:30:49 | oeisdata/seq/A382/A382447.seq | 8c7dc6c36424ae196fac7e03ed5eb2b8 |
A382448 | Triangle read by rows, defined by the two-variable g.f. (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"6",
"1",
"1",
"8",
"15",
"8",
"1",
"1",
"10",
"29",
"29",
"10",
"1",
"1",
"12",
"47",
"73",
"47",
"12",
"1",
"1",
"14",
"69",
"149",
"149",
"69",
"14",
"1",
"1",
"16",
"95",
"265",
"371",
"265",
"95",
"16",
"1",
"1",
"18",
"125",
"429",
"785",
"785",
"429",
"125",
"18",
"1",
"1",
"20",
"159",
"649",
"1479",
"1941",
"1479",
"649",
"159",
"20",
"1"
]
| [
"nonn",
"tabl"
]
| 12 | 0 | 5 | [
"A008288",
"A103450",
"A105082",
"A382436",
"A382444",
"A382448"
]
| null | F. Chapoton, Mar 26 2025 | 2025-03-27T10:12:29 | oeisdata/seq/A382/A382448.seq | 7fc7d1feed5a53f69287adf16f508f7a |
A382449 | Expansion of e.g.f. exp( x/(1-2*x)^(3/2) ). | [
"1",
"1",
"7",
"64",
"745",
"10576",
"177121",
"3414622",
"74389729",
"1805424040",
"48264466321",
"1408241206186",
"44508262018177",
"1514115583435924",
"55142123112150985",
"2139885098048098486",
"88128888655032851521",
"3838126991973342097072",
"176206944426651875454049"
]
| [
"nonn",
"easy"
]
| 32 | 0 | 3 | [
"A001879",
"A362204",
"A382449"
]
| null | Seiichi Manyama, Apr 03 2025 | 2025-04-13T03:25:29 | oeisdata/seq/A382/A382449.seq | 2fdd34623ab61095f11d137f9d5e042b |
A382450 | G.f. A(x) satisfies A(x) = 1/( 1 - x*A(2*x*A(x)) ). | [
"1",
"1",
"3",
"19",
"221",
"4597",
"174007",
"12328367",
"1674839513",
"443624694633",
"231531387336683",
"239620527240665643",
"493608618766634690997",
"2028225390820399637729437",
"16643586506902581140427736799",
"272938023130910288846692573380167",
"8947998686305041917555662919172783921"
]
| [
"nonn"
]
| 28 | 0 | 3 | [
"A382450",
"A384777"
]
| null | Seiichi Manyama, Jun 10 2025 | 2025-06-10T13:57:22 | oeisdata/seq/A382/A382450.seq | 3c758bf6587932e0c089526de17cb27a |
A382451 | Centered pentagonal numbers which are the products of four distinct primes. | [
"5406",
"12426",
"20026",
"23766",
"40641",
"55131",
"83266",
"115026",
"118266",
"136306",
"142206",
"145806",
"176226",
"184281",
"205206",
"209526",
"245706",
"279726",
"284766",
"315951",
"326706",
"371526",
"387106",
"407031",
"413106",
"419226",
"425391",
"498406",
"505126",
"553426",
"623751",
"638826",
"672106",
"685131"
]
| [
"nonn"
]
| 8 | 1 | 1 | [
"A005891",
"A046386",
"A364610",
"A382451"
]
| null | Massimo Kofler, Mar 26 2025 | 2025-03-31T21:27:11 | oeisdata/seq/A382/A382451.seq | a6b0aae4914fea927e94bc6193604bd4 |
A382452 | Number of self numbers <= 10^n. | [
"5",
"13",
"102",
"983",
"9784",
"97786",
"977787",
"9777788",
"97777789",
"977777790",
"9777777791"
]
| [
"nonn",
"base",
"more"
]
| 14 | 1 | 1 | [
"A003052",
"A382452"
]
| null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-01T23:14:31 | oeisdata/seq/A382/A382452.seq | 1dd66e19fd9b66d49904f26092dcc52d |
A382453 | Lexicographically earliest sequence of distinct terms such that no term is a substring of the sum of any two terms. | [
"1",
"3",
"21",
"23",
"25",
"39",
"41",
"43",
"45",
"47",
"49",
"221",
"223",
"241",
"243",
"2001",
"2003",
"2021",
"2023",
"2025",
"2039",
"2041",
"2043",
"2045",
"2047",
"2049",
"2221",
"2223",
"2241",
"2243",
"2601",
"2603",
"2621",
"2623",
"2639",
"2641",
"2643",
"2645",
"4001",
"4003",
"4021",
"4023",
"4025",
"4039",
"4041",
"4043",
"4045",
"4047"
]
| [
"nonn",
"base"
]
| 8 | 1 | 2 | [
"A381242",
"A382453"
]
| null | Dominic McCarty, Mar 26 2025 | 2025-03-26T21:47:47 | oeisdata/seq/A382/A382453.seq | c5b6282be896627ccf4eeb70e2b48361 |
A382454 | Number of solutions winning the Tchoukaillon game with n seeds and 2n pits. | [
"1",
"2",
"9",
"49",
"285",
"1717",
"10569",
"66013",
"416687",
"2651355",
"16976806",
"109256095",
"706071989",
"4579020513",
"29784426945",
"194231327451",
"1269457354069",
"8313189986612",
"54534379879411",
"358298017624625",
"2357331709694072",
"15528887031395023",
"102412421113465576",
"676104332189192702"
]
| [
"nonn"
]
| 40 | 0 | 2 | [
"A000707",
"A008302",
"A382454"
]
| null | Darío Clavijo, May 26 2025 | 2025-06-02T18:28:06 | oeisdata/seq/A382/A382454.seq | 05b50edc0d3de338c444ea58840329b3 |
A382455 | Order 3 perimeter magic squares of magic sum n, all elements distinct and 1 in the set; bracelet symmetry. | [
"3",
"9",
"23",
"45",
"75",
"109",
"178",
"220",
"324",
"403",
"545",
"623",
"872",
"945",
"1238",
"1397",
"1725",
"1878",
"2390",
"2530",
"3087",
"3317",
"3968",
"4212",
"5057",
"5256",
"6186",
"6569",
"7569",
"7893",
"9201",
"9511",
"10890",
"11359",
"12863",
"13340",
"15135",
"15543",
"17492",
"18145",
"20170",
"20739",
"23212",
"23784",
"26325",
"27100",
"29813",
"30598",
"33727"
]
| [
"nonn"
]
| 6 | 12 | 1 | [
"A084569",
"A380962",
"A382455"
]
| null | R. J. Mathar, Mar 26 2025 | 2025-03-26T13:26:16 | oeisdata/seq/A382/A382455.seq | ef79a52171cdd3e5b4cf69039895d735 |
A382456 | Number of self-primes <= 10^n. | [
"3",
"6",
"21",
"115",
"836",
"6943",
"63113",
"585517",
"5263827",
"45808290",
"398309972"
]
| [
"nonn",
"base",
"more"
]
| 5 | 1 | 1 | [
"A003052",
"A006378",
"A006880",
"A382452",
"A382456"
]
| null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-01T23:15:12 | oeisdata/seq/A382/A382456.seq | 125d720e6c9bcd967defa2140ecd2143 |
A382457 | Number of twin self-primes <= 10^n. | [
"2",
"2",
"2",
"2",
"12",
"87",
"534",
"3683",
"27738",
"231431",
"2061879"
]
| [
"nonn",
"base",
"more"
]
| 11 | 1 | 1 | [
"A003052",
"A006378",
"A006880",
"A007508",
"A380713",
"A380715",
"A382452",
"A382456",
"A382457"
]
| null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-04T04:18:17 | oeisdata/seq/A382/A382457.seq | 99917ecdfbc47bf729978c14578c354d |
A382458 | Number of normal multisets of size n that can be partitioned into a set of sets in exactly one way. | [
"1",
"1",
"0",
"2",
"1",
"3",
"0",
"7",
"3",
"11",
"18",
"9"
]
| [
"nonn",
"more"
]
| 8 | 0 | 4 | [
"A000045",
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A296120",
"A302478",
"A302494",
"A317532",
"A318360",
"A318361",
"A326519",
"A358914",
"A381633",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382428",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
]
| null | Gus Wiseman, Mar 30 2025 | 2025-03-31T21:55:36 | oeisdata/seq/A382/A382458.seq | ff5076f81032893e2118e5c54f1080fe |
A382459 | Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way. | [
"1",
"1",
"0",
"2",
"1",
"3",
"2",
"7",
"4",
"10",
"19"
]
| [
"nonn",
"more"
]
| 7 | 0 | 4 | [
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A296120",
"A302478",
"A302494",
"A317532",
"A318360",
"A318361",
"A321469",
"A326519",
"A358914",
"A381078",
"A381441",
"A381633",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382202",
"A382214",
"A382216",
"A382428",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
]
| null | Gus Wiseman, Apr 01 2025 | 2025-04-03T20:34:46 | oeisdata/seq/A382/A382459.seq | 7d52eecd41ae6645d132743b664e5a23 |
A382460 | Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way. | [
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"6",
"5",
"10",
"10",
"13",
"15",
"22",
"20",
"32",
"32",
"43",
"49",
"65",
"64",
"92",
"96",
"121",
"140",
"173",
"192"
]
| [
"nonn",
"more"
]
| 7 | 0 | 5 | [
"A000009",
"A000041",
"A002846",
"A047966",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A213427",
"A265947",
"A270995",
"A279785",
"A293243",
"A293511",
"A296119",
"A296120",
"A299202",
"A302478",
"A317142",
"A318360",
"A318361",
"A358914",
"A381441",
"A381454",
"A381633",
"A381636",
"A381718",
"A381806",
"A381870",
"A381990",
"A381991",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382301",
"A382460"
]
| null | Gus Wiseman, Mar 29 2025 | 2025-03-31T21:55:50 | oeisdata/seq/A382/A382460.seq | 0299474ae9b4cc7a1262b77238e94695 |
A382461 | a(n) is the smallest number whose sum of digits is 2^n. | [
"1",
"2",
"4",
"8",
"79",
"5999",
"19999999",
"299999999999999",
"49999999999999999999999999999",
"899999999999999999999999999999999999999999999999999999999",
"799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999"
]
| [
"nonn",
"base",
"easy"
]
| 10 | 0 | 2 | [
"A000079",
"A007953",
"A051885",
"A054750",
"A060712",
"A136308",
"A180083",
"A382461"
]
| null | Stefano Spezia, Mar 27 2025 | 2025-03-30T09:53:19 | oeisdata/seq/A382/A382461.seq | e7cce4e080d23acfaee46d2bad7e23dd |
A382462 | Lexicographically earliest sequence of distinct positive integers such that if a digit d in the digit stream (ignoring commas) is even, the previous digit is < d. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"31",
"21",
"23",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"51",
"24",
"53",
"41",
"25",
"55",
"56",
"57",
"58",
"59",
"71",
"26",
"73",
"43",
"45",
"61",
"27",
"75",
"63",
"46",
"77",
"78",
"79",
"91",
"28",
"93",
"47",
"81",
"29",
"95",
"65",
"67",
"83",
"48",
"97",
"85",
"68",
"99",
"111",
"49",
"112",
"69"
]
| [
"nonn",
"base",
"look"
]
| 25 | 1 | 2 | [
"A342042",
"A342043",
"A342044",
"A342045",
"A382462",
"A382463",
"A382464",
"A382465",
"A382466",
"A382621",
"A382935",
"A383059"
]
| null | Paolo Xausa, Mar 27 2025 | 2025-05-13T11:34:11 | oeisdata/seq/A382/A382462.seq | 4f49a3dce7f239815abb75c5f00d9870 |
A382463 | First differences of A382462. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"12",
"-10",
"2",
"10",
"1",
"1",
"1",
"1",
"1",
"1",
"12",
"-27",
"29",
"-12",
"-16",
"30",
"1",
"1",
"1",
"1",
"12",
"-45",
"47",
"-30",
"2",
"16",
"-34",
"48",
"-12",
"-17",
"31",
"1",
"1",
"12",
"-63",
"65",
"-46",
"34",
"-52",
"66",
"-30",
"2",
"16",
"-35",
"49",
"-12",
"-17",
"31",
"12",
"-62",
"63",
"-43",
"44"
]
| [
"sign",
"base"
]
| 5 | 1 | 9 | [
"A382462",
"A382463"
]
| null | Paolo Xausa, Mar 28 2025 | 2025-03-29T18:12:17 | oeisdata/seq/A382/A382463.seq | 63af435107e92cc9e5e7600547774f4e |
A382464 | Positive integers that contain an even digit d immediately preceded by a digit >= d. | [
"10",
"20",
"22",
"30",
"32",
"40",
"42",
"44",
"50",
"52",
"54",
"60",
"62",
"64",
"66",
"70",
"72",
"74",
"76",
"80",
"82",
"84",
"86",
"88",
"90",
"92",
"94",
"96",
"98",
"100",
"101",
"102",
"103",
"104",
"105",
"106",
"107",
"108",
"109",
"110",
"120",
"122",
"130",
"132",
"140",
"142",
"144",
"150",
"152",
"154",
"160",
"162",
"164",
"166",
"170",
"172",
"174",
"176",
"180"
]
| [
"nonn",
"base",
"easy"
]
| 16 | 1 | 1 | [
"A347298",
"A382462",
"A382464",
"A382465",
"A382623",
"A382937",
"A383061",
"A383245",
"A383247",
"A383249",
"A383500"
]
| null | Paolo Xausa, Mar 28 2025 | 2025-04-30T11:09:02 | oeisdata/seq/A382/A382464.seq | 6d6a8f36a4377ec7610cb1c12630daf8 |
A382465 | Positive integers such that every even digit except the first is immediately preceded by a smaller digit. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"21",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"43",
"45",
"46",
"47",
"48",
"49",
"51",
"53",
"55",
"56",
"57",
"58",
"59",
"61",
"63",
"65",
"67",
"68",
"69",
"71",
"73",
"75",
"77",
"78",
"79",
"81",
"83",
"85",
"87",
"89",
"91",
"93",
"95",
"97",
"99"
]
| [
"nonn",
"base",
"easy"
]
| 14 | 1 | 2 | [
"A377912",
"A382462",
"A382464",
"A382465",
"A382624",
"A382938",
"A383062",
"A383246",
"A383248",
"A383250",
"A383501"
]
| null | Paolo Xausa, Mar 28 2025 | 2025-04-30T11:08:58 | oeisdata/seq/A382/A382465.seq | 9a015021102a8af236eaf2d3f9a73dd1 |
A382466 | Split A382462 into runs of increasing elements. a(n) is the length of the n-th run. | [
"19",
"10",
"2",
"1",
"7",
"2",
"3",
"2",
"1",
"5",
"2",
"2",
"2",
"3",
"2",
"1",
"3",
"2",
"2",
"61",
"11",
"9",
"8",
"8",
"7",
"7",
"6",
"6",
"3",
"2",
"4",
"8",
"2",
"8",
"2",
"7",
"2",
"6",
"2",
"6",
"2",
"1",
"8",
"2",
"5",
"2",
"2",
"2",
"1",
"2",
"1",
"6",
"2",
"2",
"1",
"1",
"2",
"8",
"6",
"2",
"6",
"3",
"2",
"1",
"5",
"2",
"2",
"1",
"4",
"2",
"1",
"2",
"6",
"6",
"3",
"2",
"2",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"5",
"5",
"4",
"2",
"2",
"4"
]
| [
"nonn",
"base"
]
| 16 | 1 | 1 | [
"A382462",
"A382466"
]
| null | Paolo Xausa, Mar 28 2025 | 2025-03-31T11:56:12 | oeisdata/seq/A382/A382466.seq | 7a62bab00fcde6cda7e5abef6f48833a |
A382467 | Irregular triangle read by rows, where row n lists the integers from 0 to 2^n - 1 sorted by the number of zeros in their binary representation (in case of ties, by their decimal value). | [
"0",
"0",
"1",
"0",
"1",
"3",
"2",
"0",
"1",
"3",
"7",
"2",
"5",
"6",
"4",
"0",
"1",
"3",
"7",
"15",
"2",
"5",
"6",
"11",
"13",
"14",
"4",
"9",
"10",
"12",
"8",
"0",
"1",
"3",
"7",
"15",
"31",
"2",
"5",
"6",
"11",
"13",
"14",
"23",
"27",
"29",
"30",
"4",
"9",
"10",
"12",
"19",
"21",
"22",
"25",
"26",
"28",
"8",
"17",
"18",
"20",
"24",
"16",
"0",
"1",
"3",
"7",
"15",
"31",
"63",
"2",
"5",
"6",
"11",
"13",
"14",
"23",
"27",
"29",
"30"
]
| [
"nonn",
"tabf",
"look",
"base",
"easy"
]
| 16 | 0 | 6 | [
"A000225",
"A006516",
"A080791",
"A131577",
"A294648",
"A382467"
]
| null | Paolo Xausa, Mar 31 2025 | 2025-04-02T18:48:40 | oeisdata/seq/A382/A382467.seq | 4efad31ef5d13a608c5046ee2a0ca692 |
A382468 | a(n) = (largest prime factor of n) minus (its remaining distinct prime factors). | [
"2",
"3",
"2",
"5",
"1",
"7",
"2",
"3",
"3",
"11",
"1",
"13",
"5",
"2",
"2",
"17",
"1",
"19",
"3",
"4",
"9",
"23",
"1",
"5",
"11",
"3",
"5",
"29",
"0",
"31",
"2",
"8",
"15",
"2",
"1",
"37",
"17",
"10",
"3",
"41",
"2",
"43",
"9",
"2",
"21",
"47",
"1",
"7",
"3",
"14",
"11",
"53",
"1",
"6",
"5",
"16",
"27",
"59",
"0",
"61",
"29",
"4",
"2",
"8",
"6",
"67",
"15",
"20",
"0",
"71",
"1",
"73",
"35",
"2",
"17",
"4",
"8",
"79",
"3",
"3"
]
| [
"sign",
"easy"
]
| 20 | 2 | 1 | [
"A006530",
"A008472",
"A027748",
"A212665",
"A215142",
"A382468",
"A382469"
]
| null | Paolo Xausa, Mar 31 2025 | 2025-04-01T05:43:50 | oeisdata/seq/A382/A382468.seq | cf6e711d70b789391ace80d4abf07761 |
A382469 | Numbers k such that the largest prime factor of k equals the sum of its remaining distinct prime factors. | [
"30",
"60",
"70",
"90",
"120",
"140",
"150",
"180",
"240",
"270",
"280",
"286",
"300",
"350",
"360",
"450",
"480",
"490",
"540",
"560",
"572",
"600",
"646",
"700",
"720",
"750",
"810",
"900",
"960",
"980",
"1080",
"1120",
"1144",
"1200",
"1292",
"1350",
"1400",
"1440",
"1500",
"1620",
"1750",
"1798",
"1800",
"1920",
"1960",
"2160",
"2240",
"2250",
"2288",
"2400",
"2430",
"2450",
"2584",
"2700",
"2800",
"2880",
"3000",
"3135",
"3146",
"3240"
]
| [
"nonn"
]
| 19 | 1 | 1 | [
"A006530",
"A027748",
"A071140",
"A221054",
"A365795",
"A382468",
"A382469"
]
| null | Paolo Xausa, Mar 31 2025 | 2025-05-31T19:26:42 | oeisdata/seq/A382/A382469.seq | 99921200f720b1a9cb5358d4b722211b |
A382470 | a(n) = Sum_{k=0..n} binomial(k+3,3) * binomial(2*k,2*n-2*k). | [
"1",
"4",
"14",
"80",
"345",
"1336",
"5074",
"18404",
"64460",
"220276",
"736242",
"2415128",
"7798043",
"24833160",
"78131242",
"243211412",
"749926963",
"2292771088",
"6956262660",
"20959406680",
"62753991192",
"186809711448",
"553172044548",
"1630068765840",
"4781871397429",
"13969460520764"
]
| [
"nonn",
"easy"
]
| 21 | 0 | 2 | [
"A034839",
"A108479",
"A377148",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-10T12:58:11 | oeisdata/seq/A382/A382470.seq | bfc95b0eb03f3f9ce1e5a00f78b80364 |
A382471 | a(n) = Sum_{k=0..n} binomial(k+4,4) * binomial(2*k,2*n-2*k). | [
"1",
"5",
"20",
"125",
"610",
"2611",
"10815",
"42610",
"161005",
"590155",
"2106362",
"7348265",
"25141430",
"84569395",
"280246795",
"916465742",
"2961805180",
"9470735650",
"29994694130",
"94172180660",
"293326457342",
"907028460410",
"2786036875580",
"8505001839950",
"25815678641935",
"77945771624609"
]
| [
"nonn",
"easy"
]
| 20 | 0 | 2 | [
"A034839",
"A108479",
"A377152",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-10T14:57:13 | oeisdata/seq/A382/A382471.seq | 66f84b619d66a15c9dfd4b4e41786317 |
A382472 | a(n) = Sum_{k=0..n} binomial(k+5,5) * binomial(2*k,2*n-2*k). | [
"1",
"6",
"27",
"182",
"987",
"4620",
"20678",
"87732",
"355095",
"1387462",
"5258967",
"19416222",
"70086803",
"248046540",
"862694058",
"2954279732",
"9977518122",
"33278815920",
"109749059308",
"358231786128",
"1158357919194",
"3713416860580",
"11810098024410",
"37285901203740",
"116917784689237"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 2 | [
"A034839",
"A108479",
"A377153",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-11T01:26:18 | oeisdata/seq/A382/A382472.seq | 08bb4224852a5a69e286cd49252be6b7 |
A382473 | a(n) = Sum_{k=0..n} binomial(k+6,6) * binomial(2*k,2*n-2*k). | [
"1",
"7",
"35",
"252",
"1498",
"7602",
"36498",
"165600",
"713769",
"2957647",
"11850223",
"46111352",
"174956250",
"649284286",
"2362771938",
"8449241836",
"29744151416",
"103237104740",
"353744829032",
"1198001464940",
"4013905507150",
"13316690882670",
"43780154987030",
"142726581203640"
]
| [
"nonn",
"easy"
]
| 22 | 0 | 2 | [
"A034839",
"A108479",
"A377158",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-11T07:59:04 | oeisdata/seq/A382/A382473.seq | d661bfc95b22f2c14ca07a0d59af46be |
A382474 | a(n) = Sum_{k=0..n} binomial(k+7,7) * binomial(2*k,2*n-2*k). | [
"1",
"8",
"44",
"336",
"2166",
"11832",
"60576",
"292248",
"1334817",
"5840296",
"24637976",
"100684376",
"400255050",
"1553016960",
"5897388492",
"21967711160",
"80425346844",
"289868771928",
"1029979010972",
"3612517052608",
"12520285820362",
"42919328903928",
"145643017892472",
"489606988741128"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 2 | [
"A034839",
"A108479",
"A377159",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-22T21:54:55 | oeisdata/seq/A382/A382474.seq | 7bd082fef6445bea7a1c8a806fdae584 |
A382475 | Numbers k where record values occur for A129132(k)/k = A380264(k)/A380265(k), the mean value of the maximum exponent in the prime factorization of the numbers {1, 2, ..., k}. | [
"1",
"2",
"3",
"4",
"8",
"9",
"16",
"18",
"20",
"24",
"25",
"27",
"28",
"32",
"56",
"64",
"81",
"128",
"162",
"176",
"192",
"256",
"352",
"384",
"736",
"768",
"896",
"1026",
"1029",
"1056",
"1280",
"1792",
"1863",
"1864",
"1928",
"2052",
"2058",
"2064",
"2080",
"2304",
"2432",
"2560",
"2944",
"3776",
"4376",
"4384",
"4480",
"4482",
"5104",
"5120",
"5121",
"5125"
]
| [
"nonn",
"easy",
"fini",
"full"
]
| 10 | 1 | 2 | [
"A033150",
"A051903",
"A129132",
"A380264",
"A380265",
"A382475",
"A382476"
]
| null | Amiram Eldar, Mar 28 2025 | 2025-03-28T08:00:15 | oeisdata/seq/A382/A382475.seq | 980bc4d2ed910301ad15bf1f5f8e261e |
A382476 | Numbers k where record low values occur for abs(A129132(k)/k - c) = abs(A380264(k)/A380265(k) - c), where c = A033150 is Niven's constant. | [
"1",
"2",
"3",
"4",
"8",
"9",
"16",
"18",
"20",
"24",
"25",
"27",
"28",
"32",
"56",
"64",
"81",
"128",
"162",
"176",
"192",
"256",
"352",
"384",
"736",
"768",
"896",
"1026",
"1029",
"1056",
"1280",
"1792",
"1863",
"1864",
"1928",
"2052",
"2058",
"2064",
"2080",
"2304",
"2432",
"2560",
"2944",
"3776",
"4376",
"4384",
"4480",
"4482",
"5104",
"5120",
"5121",
"5125"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A033150",
"A051903",
"A129132",
"A380264",
"A380265",
"A382475",
"A382476"
]
| null | Amiram Eldar, Mar 28 2025 | 2025-03-28T08:00:07 | oeisdata/seq/A382/A382476.seq | f800125c6ed4e64780a69320e4dd1cda |
A382477 | If n = Product (p_j^k_j) then a(n) = -Sum ((-1)^k_j * k_j * p_j). | [
"0",
"2",
"3",
"-4",
"5",
"5",
"7",
"6",
"-6",
"7",
"11",
"-1",
"13",
"9",
"8",
"-8",
"17",
"-4",
"19",
"1",
"10",
"13",
"23",
"9",
"-10",
"15",
"9",
"3",
"29",
"10",
"31",
"10",
"14",
"19",
"12",
"-10",
"37",
"21",
"16",
"11",
"41",
"12",
"43",
"7",
"-1",
"25",
"47",
"-5",
"-14",
"-8",
"20",
"9",
"53",
"11",
"16",
"13",
"22",
"31",
"59",
"4",
"61",
"33",
"1",
"-12",
"18",
"16",
"67",
"13",
"26",
"14",
"71",
"0",
"73",
"39",
"-7"
]
| [
"sign"
]
| 39 | 1 | 2 | [
"A001414",
"A008472",
"A316523",
"A332422",
"A332423",
"A332424",
"A340901",
"A366749",
"A382331",
"A382477"
]
| null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-17T14:54:39 | oeisdata/seq/A382/A382477.seq | dcf38ee633095fb52a8cf7436a2ac03c |
A382478 | Number of palindromic binary strings of length n having no 4-runs of 1's. | [
"1",
"2",
"2",
"4",
"3",
"7",
"6",
"14",
"12",
"27",
"23",
"52",
"44",
"100",
"85",
"193",
"164",
"372",
"316",
"717",
"609",
"1382",
"1174",
"2664",
"2263",
"5135",
"4362",
"9898",
"8408",
"19079",
"16207",
"36776",
"31240",
"70888",
"60217",
"136641",
"116072",
"263384",
"223736",
"507689",
"431265",
"978602",
"831290",
"1886316",
"1602363",
"3635991",
"3088654",
"7008598",
"5953572"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 2 | [
"A001590",
"A001630",
"A001631",
"A123231",
"A251653",
"A382478",
"A382479"
]
| null | R. J. Mathar, Mar 28 2025 | 2025-05-19T14:57:17 | oeisdata/seq/A382/A382478.seq | b21ddab440e02e242fbc8b59b97fdb91 |
A382479 | Number of palindromic binary strings of length n having no 6-runs of 1's. | [
"1",
"2",
"2",
"4",
"4",
"8",
"7",
"15",
"14",
"30",
"28",
"60",
"56",
"119",
"111",
"236",
"220",
"468",
"436",
"928",
"865",
"1841",
"1716",
"3652",
"3404",
"7244",
"6752",
"14369",
"13393",
"28502",
"26566",
"56536",
"52696",
"112144",
"104527",
"222447",
"207338",
"441242",
"411272",
"875240",
"815792",
"1736111",
"1618191",
"3443720",
"3209816",
"6830904",
"6366936"
]
| [
"nonn",
"easy"
]
| 14 | 0 | 2 | [
"A001590",
"A123231",
"A251653",
"A251707",
"A251708",
"A382478",
"A382479"
]
| null | R. J. Mathar, Mar 28 2025 | 2025-05-20T15:48:19 | oeisdata/seq/A382/A382479.seq | dec47bd8daffd728e93eda01df80c1d4 |
A382480 | Number of minimum connected dominating sets in the n-transposition graph. | [
"1",
"2",
"9",
"18",
"28800"
]
| [
"nonn",
"more"
]
| 4 | 1 | 2 | null | null | Eric W. Weisstein, Mar 28 2025 | 2025-03-28T14:13:14 | oeisdata/seq/A382/A382480.seq | adc0a5dcf1d7e2b9b2c7536f567398c6 |
A382481 | a(n) is the number of primes less than 4^(n^2). | [
"0",
"2",
"54",
"23000",
"203280221",
"33483379603407",
"96601075195075186855"
]
| [
"nonn",
"hard",
"more"
]
| 17 | 0 | 2 | [
"A000290",
"A000302",
"A000720",
"A007053",
"A060757",
"A382481"
]
| null | Stefano Spezia, Mar 28 2025 | 2025-03-30T09:53:30 | oeisdata/seq/A382/A382481.seq | b2e2bde952bad872def33152d2e100c9 |
A382482 | a(1) = 1. Let a(n) be the most recently defined term. At each step, check for an undefined term with index < n. If such a term exists, then where i is the earliest such index, set a(i) = a(n) - (n - i). If no such term exists, then where i is the first undefined index >= n + a(n), set a(i) = the smallest integer not yet used. | [
"1",
"2",
"2",
"3",
"4",
"2",
"5",
"6",
"5",
"5",
"4",
"7",
"6",
"5",
"8",
"9",
"8",
"5",
"10",
"11",
"11",
"4",
"13",
"13",
"12",
"15",
"6",
"12",
"7",
"13",
"8",
"14",
"17",
"16",
"7",
"19",
"16",
"19",
"21",
"18",
"8",
"23",
"20",
"20",
"7",
"21",
"8",
"22",
"25",
"22",
"11",
"27",
"22",
"11",
"29",
"24",
"24",
"12",
"23",
"14",
"24",
"31",
"16",
"26",
"33",
"26",
"28",
"16",
"26",
"30",
"35"
]
| [
"look",
"nonn"
]
| 17 | 1 | 2 | null | null | Sameer Khan, Mar 28 2025 | 2025-04-03T20:49:27 | oeisdata/seq/A382/A382482.seq | 54fa6bfb82129729ab3b6d6c9db1282e |
A382483 | a(n) = smallest number k such that at least one of sigma(n) - k and sigma(n) + k is a perfect number. | [
"5",
"3",
"2",
"1",
"0",
"6",
"2",
"9",
"7",
"10",
"6",
"0",
"8",
"4",
"4",
"3",
"10",
"11",
"8",
"14",
"4",
"8",
"4",
"32",
"3",
"14",
"12",
"28",
"2",
"44",
"4",
"35",
"20",
"26",
"20",
"63",
"10",
"32",
"28",
"62",
"14",
"68",
"16",
"56",
"50",
"44",
"20",
"96",
"29",
"65",
"44",
"70",
"26",
"92",
"44",
"92",
"52",
"62",
"32",
"140",
"34",
"68",
"76",
"99",
"56",
"116",
"40",
"98",
"68",
"116",
"44",
"167",
"46",
"86",
"96",
"112",
"68",
"140"
]
| [
"nonn",
"easy"
]
| 27 | 1 | 1 | [
"A000396",
"A081357",
"A146542",
"A382483",
"A382506"
]
| null | Leo Hennig, Mar 27 2025 | 2025-04-08T21:58:29 | oeisdata/seq/A382/A382483.seq | cf38e8bf9bcedf466386a8c9aeba41dc |
A382484 | Least composite squarefree numbers k > n such that p + n divides k - n, for each prime p dividing k. | [
"385",
"182",
"195",
"1054",
"165",
"26781",
"1015",
"4958",
"2193",
"79222",
"5159",
"113937",
"5593",
"160937",
"6351",
"196009",
"3657",
"6318638",
"2755",
"1227818",
"12669",
"41302",
"2795",
"152358",
"12121",
"366821",
"21827",
"17578",
"36569",
"12677695",
"38335",
"457907",
"2553",
"15334",
"141155",
"69722351",
"1045",
"14003",
"4823",
"2943805"
]
| [
"nonn"
]
| 18 | 1 | 1 | [
"A208728",
"A225702",
"A225710",
"A225711",
"A225720",
"A382484"
]
| null | Paolo P. Lava, Mar 29 2025 | 2025-03-30T09:49:12 | oeisdata/seq/A382/A382484.seq | fe7cbbadef05eb480641b4ee20f14544 |
A382485 | a(n) = ceiling(n/d^2) where d is the largest divisor of n which is not greater than the square root of n. | [
"1",
"2",
"3",
"1",
"5",
"2",
"7",
"2",
"1",
"3",
"11",
"2",
"13",
"4",
"2",
"1",
"17",
"2",
"19",
"2",
"3",
"6",
"23",
"2",
"1",
"7",
"3",
"2",
"29",
"2",
"31",
"2",
"4",
"9",
"2",
"1",
"37",
"10",
"5",
"2",
"41",
"2",
"43",
"3",
"2",
"12",
"47",
"2",
"1",
"2",
"6",
"4",
"53",
"2",
"3",
"2",
"7",
"15",
"59",
"2",
"61",
"16",
"2",
"1",
"3",
"2",
"67",
"5",
"8",
"2",
"71",
"2",
"73",
"19",
"3",
"5",
"2",
"3",
"79",
"2",
"1",
"21",
"83",
"2",
"4",
"22",
"10",
"2",
"89"
]
| [
"nonn",
"look"
]
| 64 | 1 | 2 | [
"A033676",
"A033677",
"A056737",
"A382485"
]
| null | Clive Tooth, Mar 30 2025 | 2025-05-01T01:40:27 | oeisdata/seq/A382/A382485.seq | 4f9f3ec350ba4ea7436ea9e852a54224 |
A382486 | Product of distinct prime divisors of n that are <= sqrt(n). | [
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"6",
"1",
"2",
"3",
"2",
"1",
"6",
"1",
"2",
"3",
"2",
"1",
"6",
"5",
"2",
"3",
"2",
"1",
"30",
"1",
"2",
"3",
"2",
"5",
"6",
"1",
"2",
"3",
"10",
"1",
"6",
"1",
"2",
"15",
"2",
"1",
"6",
"7",
"10",
"3",
"2",
"1",
"6",
"5",
"14",
"3",
"2",
"1",
"30",
"1",
"2",
"21",
"2",
"5",
"6",
"1",
"2",
"3",
"70",
"1",
"6",
"1",
"2",
"15",
"2",
"7",
"6",
"1",
"10",
"3",
"2",
"1",
"42",
"5"
]
| [
"nonn"
]
| 24 | 1 | 4 | [
"A007947",
"A007955",
"A072499",
"A097974",
"A382486"
]
| null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-17T14:54:55 | oeisdata/seq/A382/A382486.seq | 6c0391dab609de2a4995133a51c4e6ef |
A382487 | The number of divisors of n whose largest prime factor is 3. | [
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"0",
"3",
"0",
"0",
"1",
"0",
"0",
"4",
"0",
"0",
"1",
"0",
"0",
"4",
"0",
"0",
"3",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"6",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"0",
"5",
"0",
"0",
"1",
"0",
"0",
"6",
"0",
"0",
"1",
"0",
"0",
"3",
"0",
"0",
"2",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"0",
"8",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"4",
"0",
"0",
"3",
"0",
"0",
"1"
]
| [
"nonn",
"easy"
]
| 8 | 1 | 6 | [
"A001511",
"A001651",
"A007949",
"A051064",
"A065119",
"A072078",
"A169611",
"A301461",
"A306771",
"A382487"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:24:22 | oeisdata/seq/A382/A382487.seq | 0ae025e31f61d935ccebc2d830da87c1 |
A382488 | The number of unitary 3-smooth divisors of n. | [
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2"
]
| [
"nonn",
"easy",
"mult"
]
| 7 | 1 | 2 | [
"A003586",
"A005117",
"A034444",
"A065331",
"A072078",
"A134451",
"A181982",
"A382487",
"A382488",
"A382489"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:24:09 | oeisdata/seq/A382/A382488.seq | 84eae8037bd98d81e18e2c531ff29d46 |
A382489 | The number of unitary 5-smooth divisors of n. | [
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"4",
"2",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"4",
"2",
"2",
"2",
"2",
"1",
"8",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"4",
"2",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"4",
"2",
"2",
"2",
"2",
"1",
"8",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"4",
"2",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"4",
"2",
"2",
"2"
]
| [
"nonn",
"easy",
"mult"
]
| 7 | 1 | 2 | [
"A002110",
"A005117",
"A034444",
"A051037",
"A054640",
"A134451",
"A236435",
"A236436",
"A355582",
"A355583",
"A382488",
"A382489"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:23:46 | oeisdata/seq/A382/A382489.seq | a8ba53afa360ba26e30faf5bee2ab0e2 |
A382490 | The number of infinitary 3-smooth divisors of n. | [
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"8",
"1",
"2",
"4",
"2",
"1",
"4",
"1",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"8",
"1",
"4",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"8",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"2"
]
| [
"nonn",
"easy",
"mult"
]
| 8 | 1 | 2 | [
"A000120",
"A003586",
"A007310",
"A007814",
"A007949",
"A036537",
"A037445",
"A065331",
"A138302",
"A382488",
"A382490"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:23:28 | oeisdata/seq/A382/A382490.seq | 57adb62d59d6e9cfce241b52e18efd82 |
A382491 | a(n) is the numerator of the asymptotic density of the numbers whose number of 3-smooth divisors is n. | [
"1",
"5",
"13",
"71",
"97",
"1355",
"793",
"19163",
"53473",
"292355",
"60073",
"13102907",
"535537",
"78584915",
"790859641",
"3523099499",
"43112257",
"99646519235",
"387682633",
"2764285630427",
"7604811750289",
"7337148996275",
"31385253913",
"2226944658077771",
"3656440886376673",
"2341258386360995",
"80539587570991081"
]
| [
"nonn",
"easy",
"frac"
]
| 7 | 1 | 2 | [
"A007310",
"A072078",
"A081341",
"A169604",
"A171126",
"A382491"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:23:13 | oeisdata/seq/A382/A382491.seq | a3f3438bfa42b8eaabc3128e8b27df0b |
A382492 | a(n) is the least number that has exactly n 3-smooth divisors. | [
"1",
"2",
"4",
"6",
"16",
"12",
"64",
"24",
"36",
"48",
"1024",
"72",
"4096",
"192",
"144",
"216",
"65536",
"288",
"262144",
"432",
"576",
"3072",
"4194304",
"864",
"1296",
"12288",
"2304",
"1728",
"268435456",
"2592",
"1073741824",
"3456",
"9216",
"196608",
"5184",
"6912",
"68719476736",
"786432",
"36864",
"10368",
"1099511627776",
"15552",
"4398046511104"
]
| [
"nonn",
"easy"
]
| 12 | 1 | 2 | [
"A003586",
"A005179",
"A025487",
"A037143",
"A046022",
"A072078",
"A382492",
"A382493"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-04-26T03:33:09 | oeisdata/seq/A382/A382492.seq | b0f8ab7bbb77ebcb68542f8f1e45ebea |
A382493 | a(n) is the 2-adic valuation of the least number that has exactly n 3-smooth divisors. | [
"0",
"1",
"2",
"1",
"4",
"2",
"6",
"3",
"2",
"4",
"10",
"3",
"12",
"6",
"4",
"3",
"16",
"5",
"18",
"4",
"6",
"10",
"22",
"5",
"4",
"12",
"8",
"6",
"28",
"5",
"30",
"7",
"10",
"16",
"6",
"8",
"36",
"18",
"12",
"7",
"40",
"6",
"42",
"10",
"8",
"22",
"46",
"7",
"6",
"9",
"16",
"12",
"52",
"8",
"10",
"7",
"18",
"28",
"58",
"9",
"60",
"30",
"8",
"7",
"12",
"10",
"66",
"16",
"22",
"9",
"70",
"11",
"72",
"36",
"14"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 3 | [
"A007814",
"A007949",
"A037143",
"A099311",
"A382492",
"A382493"
]
| null | Amiram Eldar, Mar 29 2025 | 2025-03-29T04:22:53 | oeisdata/seq/A382/A382493.seq | 0d3840137eafcd743ac4fad7fa532c92 |
A382494 | a(n) = Sum_{k=0..floor(n/2)} binomial(k+2,2) * binomial(2*k,2*n-4*k). | [
"1",
"0",
"3",
"3",
"6",
"36",
"16",
"150",
"165",
"430",
"1071",
"1365",
"4453",
"6258",
"14841",
"29169",
"49941",
"115356",
"190091",
"404811",
"750792",
"1393956",
"2808438",
"4988268",
"9905746",
"18207126",
"34231566",
"65278964",
"119255889",
"227648406",
"418394087",
"782045001",
"1457704212",
"2681909302"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 3 | [
"A034839",
"A376729",
"A377146",
"A382230",
"A382300",
"A382494",
"A382495"
]
| null | Seiichi Manyama, Mar 29 2025 | 2025-05-11T22:05:08 | oeisdata/seq/A382/A382494.seq | 7a667548a06e9d438e97680a3522ef2c |
A382495 | a(n) = Sum_{k=0..floor(n/2)} binomial(k+3,3) * binomial(2*k,2*n-4*k). | [
"1",
"0",
"4",
"4",
"10",
"60",
"30",
"300",
"335",
"1000",
"2506",
"3500",
"11879",
"17304",
"44220",
"88592",
"161865",
"385704",
"660964",
"1475100",
"2807956",
"5459860",
"11313094",
"20816004",
"42774780",
"80798128",
"157292750",
"307887904",
"579776799",
"1138007940",
"2146348214",
"4126143900",
"7878910238",
"14878269368"
]
| [
"nonn",
"easy"
]
| 16 | 0 | 3 | [
"A034839",
"A376729",
"A382300",
"A382470",
"A382494",
"A382495"
]
| null | Seiichi Manyama, Mar 29 2025 | 2025-05-12T10:13:57 | oeisdata/seq/A382/A382495.seq | 85fa115c915c80f4b6bada5efca06e28 |
A382496 | a(n) = Sum_{k=0..floor(n/3)} (k+1) * binomial(2*k,2*n-6*k). | [
"1",
"0",
"0",
"2",
"2",
"0",
"3",
"18",
"3",
"4",
"60",
"60",
"9",
"140",
"350",
"146",
"275",
"1260",
"1267",
"732",
"3471",
"6476",
"4193",
"8470",
"24040",
"25104",
"24388",
"72810",
"117368",
"102672",
"202031",
"440750",
"490884",
"612012",
"1419042",
"2121626",
"2281049",
"4267188",
"7951185",
"9511604",
"13402924",
"26600984",
"38465043",
"47376620"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 4 | [
"A034839",
"A375470",
"A381421",
"A382300",
"A382496"
]
| null | Seiichi Manyama, Mar 29 2025 | 2025-05-12T10:13:53 | oeisdata/seq/A382/A382496.seq | d9aa21cc95f50084f79eb836a9c1edb4 |
A382497 | Decimal expansion of 3*log(x0)/(log(8*x0/3) - 8 + Pi/sqrt(3)), where x0 is the unique real root of 96*x^3 - 786663*x^2 + 17288*x - 96 = 0. | [
"7",
"1",
"0",
"3",
"2",
"0",
"5",
"3",
"3",
"4",
"1",
"3",
"7",
"0",
"0",
"1",
"7",
"2",
"7",
"5",
"0",
"5",
"7",
"7",
"3",
"4",
"2",
"2",
"8",
"1",
"0",
"3",
"0",
"8",
"4",
"9",
"8",
"5",
"2",
"4",
"7",
"8",
"9",
"9",
"9",
"1",
"7",
"8",
"7",
"1",
"8",
"0",
"8",
"3",
"3",
"7",
"8",
"1",
"3",
"9",
"9",
"7",
"1",
"7",
"9",
"7",
"3",
"1",
"3",
"5",
"8",
"9",
"5",
"2",
"1",
"4",
"6",
"4",
"6",
"1",
"0",
"5",
"9",
"9",
"6",
"4",
"2",
"2",
"1",
"1"
]
| [
"nonn",
"cons"
]
| 16 | 1 | 1 | [
"A000796",
"A002194",
"A093602",
"A382497"
]
| null | Jianing Song, Mar 29 2025 | 2025-05-12T00:28:50 | oeisdata/seq/A382/A382497.seq | 182733ac4f21517107e39b852c8ebe8f |
A382498 | Smallest k such that the fractional part of 1/k is pandigital in base n. | [
"3",
"5",
"13",
"7",
"11",
"11",
"11",
"43",
"17",
"13",
"17",
"19",
"17",
"19",
"79",
"23",
"29",
"23",
"23",
"23",
"31",
"47",
"31",
"73",
"29",
"29",
"41",
"41",
"41",
"47",
"37",
"43",
"41",
"37",
"137",
"59",
"47",
"47",
"47",
"47",
"59",
"47",
"47",
"47",
"67",
"59",
"53",
"241",
"53",
"53",
"59",
"71",
"59",
"59",
"59",
"67",
"73",
"61",
"73",
"67",
"71",
"67",
"383",
"71",
"79"
]
| [
"nonn",
"base"
]
| 18 | 2 | 1 | [
"A001913",
"A261773",
"A382498"
]
| null | Joshua Searle, Mar 29 2025 | 2025-03-30T12:49:10 | oeisdata/seq/A382/A382498.seq | d64e3e53941551a0c73d7d52fee6c5bc |
A382499 | Inverse permutation to A381968. | [
"1",
"5",
"3",
"4",
"2",
"6",
"12",
"8",
"14",
"10",
"11",
"9",
"13",
"7",
"15",
"23",
"17",
"25",
"19",
"27",
"21",
"22",
"20",
"24",
"18",
"26",
"16",
"28",
"38",
"30",
"40",
"32",
"42",
"34",
"44",
"36",
"37",
"35",
"39",
"33",
"41",
"31",
"43",
"29",
"45",
"57",
"47",
"59",
"49",
"61",
"51",
"63",
"53",
"65",
"55",
"56",
"54",
"58",
"52",
"60",
"50",
"62",
"48",
"64",
"46",
"66"
]
| [
"nonn",
"tabf"
]
| 18 | 1 | 2 | [
"A000027",
"A000384",
"A016813",
"A056023",
"A376214",
"A378684",
"A378762",
"A379342",
"A379343",
"A380200",
"A380245",
"A380815",
"A380817",
"A381662",
"A381663",
"A381664",
"A381968",
"A382499",
"A382679",
"A382680",
"A383419",
"A383589",
"A383590",
"A383722",
"A383723",
"A383724"
]
| null | Boris Putievskiy, Mar 29 2025 | 2025-05-30T23:30:53 | oeisdata/seq/A382/A382499.seq | efa6512bc0e3a7110b3e3358cec46565 |
A382500 | Number of minimum connected dominating sets in the n-flower graph. | [
"1",
"9",
"6",
"219",
"20",
"1968",
"56",
"10779",
"144",
"52488",
"352",
"231984",
"832",
"977133",
"1920",
"3966699",
"4352",
"15720639",
"9728",
"61191312",
"21504",
"235009107",
"47104",
"893270016",
"102400",
"3367409412",
"221184",
"12609435873",
"475136",
"46953650535",
"1015808",
"174014499435",
"2162688",
"642287275092",
"4587520",
"2362247579547"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 2 | [
"A362807",
"A382500"
]
| null | Eric W. Weisstein, Mar 29 2025 | 2025-05-24T19:01:03 | oeisdata/seq/A382/A382500.seq | eb5d53466b3c8a9bdfa03cf21362480a |
A382501 | Lexicographically earliest infinite sequence of positive integers such that, for any given k, every subsequence {a(j), a(j+k), a(j+2k)} (j, k >= 1) is unique. | [
"1",
"1",
"1",
"2",
"1",
"1",
"3",
"1",
"2",
"4",
"3",
"1",
"1",
"4",
"1",
"3",
"2",
"5",
"2",
"4",
"2",
"3",
"4",
"1",
"2",
"5",
"3",
"2",
"4",
"6",
"1",
"3",
"5",
"5",
"6",
"1",
"1",
"7",
"2",
"3",
"8",
"4",
"8",
"7",
"1",
"2",
"6",
"5",
"3",
"1",
"4",
"3",
"8",
"7",
"2",
"8",
"2",
"6",
"9",
"1",
"9",
"1",
"4",
"6",
"9",
"4",
"5",
"9",
"2",
"7",
"5",
"7",
"3",
"4",
"3",
"10",
"10",
"4",
"9",
"1",
"3",
"6",
"2",
"5",
"8",
"2",
"9"
]
| [
"nonn"
]
| 12 | 1 | 4 | [
"A364057",
"A382501",
"A382502"
]
| null | Neal Gersh Tolunsky, Mar 29 2025 | 2025-04-06T16:49:26 | oeisdata/seq/A382/A382501.seq | 84bea887338b9f302ea212859c279098 |
A382502 | Lexicographically earliest sequence of positive integers such that no two subsequences {a(j), a(j+k), a(j+2k)} and {a(i), a(i+m), a(i+2m)} with different k and m values are the same. | [
"1",
"1",
"1",
"2",
"3",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"1",
"9",
"2",
"3",
"4",
"5",
"6",
"1",
"10",
"7",
"8",
"11",
"9",
"12",
"7",
"10",
"5",
"13",
"12",
"14",
"4",
"6",
"15",
"16",
"11",
"17",
"8",
"18",
"2",
"3",
"9",
"5",
"18",
"1",
"19",
"14",
"5",
"15",
"4",
"20",
"21",
"13",
"12",
"22",
"23",
"24",
"2",
"21",
"11",
"25",
"8",
"26",
"16",
"20",
"3",
"27",
"17",
"12",
"28",
"29",
"30",
"31"
]
| [
"nonn"
]
| 19 | 1 | 4 | [
"A364057",
"A382501",
"A382502"
]
| null | Neal Gersh Tolunsky, Mar 29 2025 | 2025-04-07T08:09:53 | oeisdata/seq/A382/A382502.seq | af69c47626201f347255f59762e8af0f |
A382503 | a(n) = Sum_{d|n} binomial(2*d-1,d). | [
"1",
"4",
"11",
"39",
"127",
"476",
"1717",
"6474",
"24321",
"92508",
"352717",
"1352589",
"5200301",
"20060020",
"77558897",
"300546669",
"1166803111",
"4537592436",
"17672631901",
"68923356953",
"269128938947",
"1052049834580",
"4116715363801",
"16123803200574",
"63205303219003",
"247959271674356"
]
| [
"nonn"
]
| 35 | 1 | 2 | [
"A000005",
"A000984",
"A001700",
"A045630",
"A072929",
"A088218",
"A382503"
]
| null | Ilya Gutkovskiy, Apr 10 2025 | 2025-04-17T14:54:34 | oeisdata/seq/A382/A382503.seq | 99ca97a0b0c76605cd8f658aa457b5c3 |
A382504 | Numbers k such that one or both of sigma(k) + k and sigma(k) - k is a perfect number. | [
"6",
"10",
"25",
"28",
"496",
"652",
"8128",
"10682",
"10828",
"33550336",
"44655764",
"8589869056",
"8623554304"
]
| [
"nonn",
"more"
]
| 50 | 1 | 1 | [
"A000203",
"A000396",
"A237286",
"A382504"
]
| null | Leo Hennig, Mar 29 2025 | 2025-04-08T22:03:19 | oeisdata/seq/A382/A382504.seq | 9a80e90a952394836e4ed508fb5e75d2 |
A382505 | a(n) is the number of distinct numbers of diagonal transversals in Brown's diagonal Latin squares of order 2n. | [
"0",
"1",
"2",
"20",
"349"
]
| [
"nonn",
"more",
"hard"
]
| 8 | 1 | 3 | [
"A339641",
"A344105",
"A381971",
"A382505"
]
| null | Eduard I. Vatutin, Mar 29 2025 | 2025-04-03T21:22:41 | oeisdata/seq/A382/A382505.seq | 5ac5e790bf8e336ac395e6c11203b926 |
A382506 | a(n) is the smallest k such that sigma(n) + k is a perfect number. | [
"5",
"3",
"2",
"21",
"0",
"16",
"20",
"13",
"15",
"10",
"16",
"0",
"14",
"4",
"4",
"465",
"10",
"457",
"8",
"454",
"464",
"460",
"4",
"436",
"465",
"454",
"456",
"440",
"466",
"424",
"464",
"433",
"448",
"442",
"448",
"405",
"458",
"436",
"440",
"406",
"454",
"400",
"452",
"412",
"418",
"424",
"448",
"372",
"439",
"403",
"424",
"398",
"442",
"376",
"424",
"376",
"416",
"406",
"436",
"328",
"434",
"400"
]
| [
"nonn"
]
| 55 | 1 | 1 | [
"A000203",
"A000396",
"A081357",
"A146542",
"A382506",
"A382929"
]
| null | Leo Hennig, Mar 29 2025 | 2025-04-12T09:43:49 | oeisdata/seq/A382/A382506.seq | f6577c0780b65fc556d9a63f3d747f73 |
A382507 | Number of half turn symmetric lattice congruences of the weak order on the symmetric group S_n. | [
"1",
"2",
"3",
"16",
"66",
"13726",
"11547029"
]
| [
"nonn",
"more"
]
| 4 | 1 | 2 | [
"A091687",
"A382507"
]
| null | Ludovic Schwob, Mar 30 2025 | 2025-04-04T22:46:08 | oeisdata/seq/A382/A382507.seq | 61375cc9e3f28764245ce49e069fbd65 |
A382508 | a(n) is the number of solutions to the problem described in A381621 with smallest price equal to n. | [
"4728",
"2314",
"1165",
"2169",
"1429",
"703",
"304",
"1006",
"283",
"1532",
"129",
"351",
"135",
"241",
"595",
"668",
"58",
"175",
"72",
"511",
"60",
"136",
"52",
"166",
"994",
"51",
"36",
"110",
"35",
"331",
"15",
"123",
"12",
"49",
"109",
"69",
"20",
"39",
"12",
"301",
"18",
"36",
"20",
"37",
"57",
"31",
"19",
"74",
"6",
"315",
"11",
"29",
"8",
"10",
"38",
"24",
"10",
"25",
"6",
"95"
]
| [
"nonn",
"fini",
"full"
]
| 11 | 1 | 1 | [
"A381619",
"A381620",
"A381621",
"A382508"
]
| null | Hugo Pfoertner, Mar 30 2025 | 2025-03-31T08:59:09 | oeisdata/seq/A382/A382508.seq | 53a06a7c3352292e2a9f3a258146b41c |
A382509 | Integers s = (p1+p2)/4 such that p1 and p2 are consecutive primes and s can be written in the form p*2^k with k>=0 and p>2 prime. | [
"3",
"6",
"13",
"17",
"28",
"38",
"43",
"67",
"80",
"88",
"96",
"118",
"127",
"137",
"167",
"178",
"188",
"193",
"218",
"223",
"272",
"283",
"298",
"302",
"328",
"368",
"472",
"487",
"508",
"563",
"592",
"613",
"617",
"634",
"643",
"647",
"662",
"718",
"773",
"778",
"802",
"808",
"872",
"878",
"932",
"1033",
"1142",
"1168",
"1172",
"1187",
"1193",
"1198",
"1256",
"1277"
]
| [
"nonn",
"easy"
]
| 21 | 1 | 1 | [
"A001043",
"A118134",
"A382509"
]
| null | Karl-Heinz Hofmann and Hugo Pfoertner, Apr 18 2025 | 2025-04-21T13:23:55 | oeisdata/seq/A382/A382509.seq | 5ce5378b28cab5aa479efad41e4622ba |
A382510 | a(n) is the number of solutions to the "sum equals product" riddle with n prices v_j, i.e., find positive integers v_j, v_{j+1}>=v_j such that 100^(n-1)*Sum_{k=1..n} v_k = Product_{k=1..n} v_k. | [
"1",
"13",
"622",
"22640"
]
| [
"nonn",
"bref",
"hard",
"more"
]
| 6 | 1 | 2 | [
"A380887",
"A381619",
"A381620",
"A381621",
"A382508",
"A382510"
]
| null | Hugo Pfoertner, Apr 01 2025 | 2025-04-01T21:37:34 | oeisdata/seq/A382/A382510.seq | 25e0459d8c93ec0d2ce0912586dda3a5 |
A382511 | Expansion of Sum_{p prime} x^p / (1 - x^p)^3. | [
"0",
"1",
"1",
"3",
"1",
"9",
"1",
"10",
"6",
"18",
"1",
"31",
"1",
"31",
"21",
"36",
"1",
"66",
"1",
"65",
"34",
"69",
"1",
"114",
"15",
"94",
"45",
"115",
"1",
"196",
"1",
"136",
"72",
"156",
"43",
"249",
"1",
"193",
"97",
"246",
"1",
"357",
"1",
"263",
"165",
"279",
"1",
"436",
"28",
"380",
"159",
"361",
"1",
"549",
"81",
"442",
"196",
"438",
"1",
"753",
"1",
"499",
"276",
"528",
"106"
]
| [
"nonn"
]
| 4 | 1 | 4 | [
"A000217",
"A001221",
"A007437",
"A069359",
"A305614",
"A322078",
"A382511"
]
| null | Ilya Gutkovskiy, Mar 30 2025 | 2025-04-04T22:45:26 | oeisdata/seq/A382/A382511.seq | 57b3f8f0a6591b1111613dc614ce23dc |
A382512 | Expansion of Sum_{p prime} x^p / (1 - x^p)^p. | [
"0",
"1",
"1",
"2",
"1",
"6",
"1",
"4",
"6",
"10",
"1",
"16",
"1",
"14",
"30",
"8",
"1",
"30",
"1",
"45",
"56",
"22",
"1",
"48",
"70",
"26",
"45",
"98",
"1",
"196",
"1",
"16",
"132",
"34",
"420",
"96",
"1",
"38",
"182",
"350",
"1",
"588",
"1",
"308",
"615",
"46",
"1",
"160",
"924",
"740",
"306",
"481",
"1",
"198",
"2002",
"1744",
"380",
"58",
"1",
"1605",
"1",
"62",
"3234",
"32",
"3640"
]
| [
"nonn"
]
| 4 | 1 | 4 | [
"A001221",
"A069359",
"A157019",
"A322078",
"A373458",
"A373459",
"A382512"
]
| null | Ilya Gutkovskiy, Mar 30 2025 | 2025-04-04T22:45:35 | oeisdata/seq/A382/A382512.seq | 44eb717b093943443c6f63280025fc0b |
A382513 | Expansion of Sum_{p prime} p * x^p / (1 - p * x^p). | [
"0",
"2",
"3",
"4",
"5",
"17",
"7",
"16",
"27",
"57",
"11",
"145",
"13",
"177",
"368",
"256",
"17",
"1241",
"19",
"1649",
"2530",
"2169",
"23",
"10657",
"3125",
"8361",
"19683",
"18785",
"29",
"107442",
"31",
"65536",
"178478",
"131361",
"94932",
"793585",
"37",
"524649",
"1596520",
"1439201",
"41",
"6997770",
"43",
"4208945",
"16302032"
]
| [
"nonn"
]
| 4 | 1 | 2 | [
"A008472",
"A055225",
"A069359",
"A373458",
"A373459",
"A382513"
]
| null | Ilya Gutkovskiy, Mar 30 2025 | 2025-04-04T22:44:56 | oeisdata/seq/A382/A382513.seq | 2f935f3a828d2f58d7c66bcc84380e82 |
A382514 | Expansion of 1/(1 - x/(1 - 4*x)^(3/2)). | [
"1",
"1",
"7",
"43",
"255",
"1493",
"8695",
"50517",
"293163",
"1700335",
"9859019",
"57156631",
"331332423",
"1920621431",
"11132911939",
"64531189379",
"374047777319",
"2168115796941",
"12567146992975",
"72843402779669",
"422224417571347",
"2447350774345341",
"14185640454054279",
"82224565359415849"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 3 | [
"A002457",
"A026671",
"A382514",
"A382515"
]
| null | Seiichi Manyama, Mar 30 2025 | 2025-04-09T23:40:05 | oeisdata/seq/A382/A382514.seq | b1e5b089908043cea900ca86eb8ec3f5 |
A382515 | Expansion of 1/(1 - x/(1 - 4*x)^(5/2)). | [
"1",
"1",
"11",
"91",
"691",
"5101",
"37323",
"272405",
"1987047",
"14493479",
"105718071",
"771148119",
"5625136651",
"41032826127",
"299316769887",
"2183389173811",
"15926906427179",
"116180104751925",
"847485191674867",
"6182049517420133",
"45095462188117951",
"328952511222499589",
"2399570809473795931"
]
| [
"nonn",
"easy"
]
| 19 | 0 | 3 | [
"A002802",
"A026671",
"A382514",
"A382515"
]
| null | Seiichi Manyama, Mar 30 2025 | 2025-03-31T07:09:48 | oeisdata/seq/A382/A382515.seq | a32df15cef91f26d9a012adc7d0f17c7 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.