sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382358 | Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the variation of the Josephus elimination process for n people, where in each round, the first person is skipped, the second eliminated and the third is skipped. | [
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"3",
"4",
"2",
"5",
"4",
"1",
"3",
"2",
"5",
"3",
"1",
"4",
"6",
"2",
"5",
"1",
"6",
"4",
"7",
"3",
"2",
"5",
"8",
"4",
"1",
"7",
"3",
"6",
"2",
"5",
"8",
"3",
"7",
"4",
"1",
"6",
"9",
"2",
"5",
"8",
"1",
"6",
"10",
"7",
"4",
"9",
"3",
"2",
"5",
"8",
"11",
"4",
"9",
"3",
"10",
"7",
"1",
"6",
"2",
"5",
"8",
"11",
"3",
"7",
"12",
"6",
"1",
"10",
"4",
"9",
"2",
"5",
"8",
"11",
"1",
"6",
"10",
"3",
"9",
"4",
"13",
"7",
"12"
] | [
"nonn",
"tabl"
] | 13 | 1 | 2 | [
"A006257",
"A225381",
"A321298",
"A378635",
"A382354",
"A382355",
"A382356",
"A382358"
] | null | Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025 | 2025-04-05T23:40:52 | oeisdata/seq/A382/A382358.seq | 3f89fda4633a3d309fe0458c4d2b6e1b |
A382359 | Number of labeled deterministic finite automata with n states and two letters. | [
"2",
"128",
"17496",
"4194304",
"1562500000",
"835884417024",
"607687873272704",
"576460752303423488",
"691636079448571949568",
"1024000000000000000000000",
"1833841138186726138360895488",
"3907429033741066770846918377472",
"9769232732262334599652925506494464"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A036289",
"A062206",
"A155957",
"A382359"
] | null | Anand Jain, Mar 22 2025 | 2025-03-30T15:28:00 | oeisdata/seq/A382/A382359.seq | a6cd77b0ccf6da74bf83b9d8bd81f335 |
A382360 | a(n) is the unique k such that A382357(k) = 2^n. | [
"1",
"2",
"5",
"6",
"27",
"28",
"87",
"88",
"371",
"372",
"1303",
"1304",
"5717",
"5718",
"27099",
"27100",
"100637",
"100638",
"429041",
"429042",
"1676037",
"1676038",
"6566201",
"6566202",
"26703687",
"26703688",
"105939329",
"105939330",
"424972311",
"424972312",
"1688465121",
"1688465122",
"6744826613",
"6744826614"
] | [
"nonn",
"base"
] | 6 | 0 | 2 | [
"A382357",
"A382360"
] | null | Rémy Sigrist, Mar 22 2025 | 2025-03-26T16:16:57 | oeisdata/seq/A382/A382360.seq | 9fa0cd538c3aef37d2123f36c780505b |
A382362 | Number of oriented Eulerian circuits from a fixed start vertex in the complete digraph K_n, counting distinct first arcs. | [
"1",
"6",
"768",
"3888000",
"1238347284480",
"36133511823360000000",
"132525036775962102988800000000",
"80290170669240213088301154828288000000000",
"10219925826442937385376011199621103616000000000000000000",
"338787616987540767092926393308400759448386388551011812769792000000000000"
] | [
"nonn",
"walk"
] | 32 | 2 | 2 | [
"A000272",
"A124355",
"A135388",
"A232545",
"A369820",
"A382362"
] | null | Florian Ragwitz, Mar 23 2025 | 2025-03-25T19:51:09 | oeisdata/seq/A382/A382362.seq | e8d638497a13af437b1b001a1eb3dcba |
A382363 | Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"2",
"2",
"1",
"0",
"8",
"7",
"3",
"1",
"0",
"64",
"44",
"15",
"4",
"1",
"0",
"1024",
"508",
"129",
"26",
"5",
"1",
"0",
"32768",
"10976",
"1962",
"284",
"40",
"6",
"1",
"0",
"2097152",
"450496",
"54036",
"5371",
"530",
"57",
"7",
"1",
"0",
"268435456",
"35535872",
"2747880",
"180424",
"11995",
"888",
"77",
"8",
"1",
"0",
"68719476736",
"5435551744",
"262091808",
"10997576",
"476165",
"23409",
"1379",
"100",
"9",
"1"
] | [
"nonn",
"tabl"
] | 29 | 0 | 8 | [
"A006125",
"A382223",
"A382363"
] | null | Geoffrey Critzer, Mar 23 2025 | 2025-03-24T06:12:39 | oeisdata/seq/A382/A382363.seq | 6357ba9a817abe3ce2acf135f2e9add1 |
A382364 | a(n) is the smallest squarefree number k such that the sum of the digit counts of the prime factors of k equals the sum of n and the digit count of k | [
"6",
"66",
"858",
"72930",
"6374082",
"643782282",
"66309575046"
] | [
"nonn",
"base",
"more"
] | 52 | 1 | 1 | [
"A055642",
"A095411",
"A382364"
] | null | Jean-Marc Rebert, Mar 24 2025 | 2025-04-08T23:29:22 | oeisdata/seq/A382/A382364.seq | 95299ff35d13de19a40381d7e94c920e |
A382365 | Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/2). | [
"1",
"2",
"10",
"46",
"232",
"1174",
"6078",
"31786",
"167836",
"892258",
"4770466",
"25622286",
"138146540",
"747253022",
"4053224974",
"22038282338",
"120079277626",
"655486778654",
"3584062901182",
"19625809294386",
"107610733877720",
"590751275348362",
"3246588926918074",
"17860031073624694"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A327736",
"A382187",
"A382365",
"A382366"
] | null | Seiichi Manyama, Mar 22 2025 | 2025-03-23T10:08:26 | oeisdata/seq/A382/A382365.seq | b99e5700667b91b0d8388a7ce150dd31 |
A382366 | Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/3). | [
"1",
"3",
"24",
"201",
"1818",
"17004",
"163068",
"1590798",
"15718899",
"156860076",
"1577644998",
"15969030780",
"162498057048",
"1660951840611",
"17042090466264",
"175436835017475",
"1811209862304735",
"18746380864328061",
"194465530800628908",
"2021343414865754583",
"21048513676138546848"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A327736",
"A382188",
"A382365",
"A382366"
] | null | Seiichi Manyama, Mar 22 2025 | 2025-03-23T10:08:22 | oeisdata/seq/A382/A382366.seq | df4587af38248644632f55e65fb0a447 |
A382367 | Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ). | [
"1",
"1",
"2",
"5",
"10",
"21",
"46",
"97",
"206",
"442",
"940",
"2002",
"4272",
"9103",
"19400",
"41360",
"88156",
"187901",
"400534",
"853747",
"1819782",
"3878965",
"8268160",
"17623888",
"37566072",
"80073580",
"170680002",
"363811370",
"775478548",
"1652963605",
"3523358532",
"7510180375",
"16008251264",
"34122231512"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A051064",
"A327736",
"A382367",
"A382368",
"A382369",
"A382372",
"A382373",
"A382378"
] | null | Seiichi Manyama, Mar 22 2025 | 2025-03-23T10:08:18 | oeisdata/seq/A382/A382367.seq | 55adb4d6d72daeab93ea2fe495dc7bcb |
A382368 | Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/2). | [
"1",
"2",
"8",
"36",
"162",
"750",
"3536",
"16858",
"81100",
"392914",
"1914268",
"9369190",
"46032396",
"226898158",
"1121510176",
"5556731592",
"27589816042",
"137240945530",
"683808343416",
"3412128301538",
"17048743841882",
"85286538527304",
"427112389604968",
"2141096012912290",
"10743017708448232"
] | [
"nonn"
] | 7 | 0 | 2 | [
"A382367",
"A382368",
"A382369"
] | null | Seiichi Manyama, Mar 22 2025 | 2025-03-23T10:08:13 | oeisdata/seq/A382/A382368.seq | 97e5237b9c241f7cc9f0daa6c5a24dba |
A382369 | Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/3). | [
"1",
"3",
"21",
"168",
"1416",
"12396",
"111219",
"1015221",
"9386643",
"87650775",
"824926152",
"7813623234",
"74403686022",
"711670543635",
"6833183666862",
"65826593737206",
"635962416394296",
"6159757277793783",
"59796182640515031",
"581643107427461664",
"5667929195670139296",
"55322424966010598556"
] | [
"nonn"
] | 8 | 0 | 2 | [
"A382367",
"A382368",
"A382369"
] | null | Seiichi Manyama, Mar 22 2025 | 2025-03-23T10:08:09 | oeisdata/seq/A382/A382369.seq | cd332ce099938b75bc8dc8e782f543a9 |
A382370 | Numbers k such that (k - 1)^(k + 1) - k is prime. | [
"3",
"4",
"5",
"7",
"10",
"11",
"21",
"46",
"59",
"839",
"21920"
] | [
"nonn",
"more"
] | 18 | 1 | 1 | [
"A238378",
"A240532",
"A382370"
] | null | Juri-Stepan Gerasimov, Mar 23 2025 | 2025-04-05T16:40:45 | oeisdata/seq/A382/A382370.seq | 4d750f13b3d904b84e0484ec4cc660f0 |
A382371 | Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as large as possible. If no digits remain, a(n)=0. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"2",
"2",
"0",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"3",
"3",
"3",
"0",
"4",
"5",
"6",
"7",
"8",
"9",
"4",
"4",
"4",
"4",
"0",
"5",
"6",
"7",
"8",
"9",
"5",
"5",
"5",
"5",
"5",
"0",
"6",
"7",
"8",
"9",
"6",
"6",
"6",
"6",
"6",
"6",
"0",
"7",
"8",
"9",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"0",
"8",
"9",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8"
] | [
"nonn",
"base",
"look"
] | 12 | 1 | 12 | [
"A010785",
"A382102",
"A382371"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-23T23:22:39 | oeisdata/seq/A382/A382371.seq | 5ead58ffced734a88759289cf8fdfa00 |
A382372 | Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ). | [
"1",
"1",
"2",
"4",
"9",
"18",
"37",
"76",
"158",
"325",
"670",
"1381",
"2850",
"5876",
"12117",
"24986",
"51530",
"106262",
"219131",
"451885",
"931876",
"1921695",
"3962884",
"8172182",
"16852538",
"34752996",
"71667001",
"147790386",
"304770689",
"628492615",
"1296066140",
"2672724207",
"5511643710",
"11366012289"
] | [
"nonn"
] | 13 | 0 | 3 | [
"A115362",
"A327736",
"A382367",
"A382372",
"A382373",
"A382378"
] | null | Seiichi Manyama, Mar 23 2025 | 2025-03-23T10:08:05 | oeisdata/seq/A382/A382372.seq | 505344931cf62480581d920f4b13929a |
A382373 | Expansion of 1/( 1 - Sum_{k>=0} x^(5^k) / (1 - x^(5^k)) ). | [
"1",
"1",
"2",
"4",
"8",
"17",
"34",
"69",
"140",
"284",
"578",
"1173",
"2382",
"4837",
"9822",
"19948",
"40508",
"82261",
"167050",
"339233",
"688896",
"1398964",
"2840926",
"5769169",
"11715654",
"23791402",
"48314044",
"98113049",
"199241660",
"404607125",
"821650100",
"1668554099",
"3388392198",
"6880928638",
"13973346686"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A055457",
"A327736",
"A382367",
"A382372",
"A382373",
"A382378"
] | null | Seiichi Manyama, Mar 23 2025 | 2025-03-23T10:08:01 | oeisdata/seq/A382/A382373.seq | 9b5051d25915d966c67bf31f06ed1858 |
A382374 | Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of adjacent terms differ exactly by one. | [
"1",
"2",
"4",
"3",
"6",
"5",
"9",
"7",
"10",
"8",
"14",
"11",
"15",
"12",
"16",
"18",
"21",
"13",
"22",
"17",
"25",
"19",
"26",
"20",
"24",
"27",
"33",
"23",
"34",
"28",
"35",
"29",
"38",
"30",
"36",
"32",
"40",
"42",
"39",
"31",
"46",
"37",
"49",
"41",
"51",
"43",
"55",
"44",
"54",
"45",
"56",
"48",
"60",
"50",
"57",
"47",
"58",
"52",
"62",
"53",
"65",
"59",
"69",
"61",
"74",
"63",
"77"
] | [
"nonn"
] | 11 | 1 | 2 | [
"A001222",
"A382229",
"A382357",
"A382374",
"A382375",
"A382376"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-26T18:19:42 | oeisdata/seq/A382/A382374.seq | 2df6463255a6033f28f29d76fe9915c7 |
A382375 | Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of n and a(n) differ exactly by one. | [
"2",
"1",
"4",
"3",
"6",
"5",
"9",
"10",
"7",
"8",
"14",
"15",
"21",
"11",
"12",
"18",
"22",
"16",
"25",
"24",
"13",
"17",
"26",
"20",
"19",
"23",
"33",
"34",
"35",
"36",
"38",
"40",
"27",
"28",
"29",
"30",
"39",
"31",
"37",
"32",
"46",
"49",
"51",
"54",
"55",
"41",
"57",
"56",
"42",
"58",
"43",
"60",
"62",
"44",
"45",
"48",
"47",
"50",
"65",
"52",
"69",
"53",
"74",
"72",
"59",
"77",
"82"
] | [
"nonn"
] | 11 | 1 | 1 | [
"A001222",
"A382374",
"A382375",
"A382377"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-26T20:56:04 | oeisdata/seq/A382/A382375.seq | cd7928aa0262d604d32e1866efe88113 |
A382376 | Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of adjacent terms differ exactly by one. | [
"1",
"2",
"6",
"3",
"10",
"4",
"12",
"5",
"14",
"7",
"15",
"8",
"18",
"9",
"20",
"11",
"21",
"13",
"22",
"16",
"24",
"17",
"26",
"19",
"28",
"23",
"33",
"25",
"34",
"27",
"35",
"29",
"36",
"30",
"38",
"31",
"39",
"32",
"40",
"37",
"44",
"41",
"45",
"42",
"46",
"43",
"48",
"47",
"50",
"49",
"51",
"53",
"52",
"59",
"54",
"60",
"55",
"61",
"56",
"64",
"57",
"66",
"58",
"67",
"62",
"70",
"63"
] | [
"nonn"
] | 12 | 1 | 2 | [
"A001221",
"A382357",
"A382374",
"A382376",
"A382377"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-26T17:49:13 | oeisdata/seq/A382/A382376.seq | 9c4804551098d496741c73e50e65f7ba |
A382377 | Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of n and a(n) differ exactly by one. | [
"2",
"1",
"6",
"10",
"12",
"3",
"14",
"15",
"18",
"4",
"20",
"5",
"21",
"7",
"8",
"22",
"24",
"9",
"26",
"11",
"13",
"16",
"28",
"17",
"33",
"19",
"34",
"23",
"35",
"36",
"38",
"39",
"25",
"27",
"29",
"30",
"40",
"31",
"32",
"37",
"44",
"45",
"46",
"41",
"42",
"43",
"48",
"47",
"50",
"49",
"53",
"59",
"51",
"60",
"61",
"64",
"66",
"67",
"52",
"54",
"55",
"70",
"71",
"56",
"73",
"57",
"58"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A001221",
"A382375",
"A382376",
"A382377"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-26T17:49:09 | oeisdata/seq/A382/A382377.seq | 2021af161550acfd62e11b5a26cc572d |
A382378 | Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ). | [
"1",
"1",
"2",
"4",
"8",
"16",
"33",
"66",
"133",
"268",
"540",
"1088",
"2194",
"4421",
"8910",
"17957",
"36190",
"72936",
"146996",
"296252",
"597061",
"1203306",
"2425121",
"4887544",
"9850272",
"19852060",
"40009486",
"80634401",
"162509126",
"327517977",
"660073866",
"1330301036",
"2681064864",
"5403370072",
"10889855193",
"21947218962"
] | [
"nonn"
] | 8 | 0 | 3 | [
"A122841",
"A327736",
"A373216",
"A382367",
"A382372",
"A382373",
"A382378"
] | null | Seiichi Manyama, Mar 23 2025 | 2025-03-23T10:07:57 | oeisdata/seq/A382/A382378.seq | d72f88666fa96ffd016820e52c06d00d |
A382379 | Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"3",
"4",
"5",
"1",
"0",
"1",
"5",
"12",
"13",
"7",
"24",
"25",
"13",
"84",
"85",
"21",
"220",
"221",
"35",
"612",
"613",
"57",
"1624",
"1625",
"93",
"4324",
"4325",
"151",
"11400",
"11401",
"245",
"30012",
"30013",
"397",
"78804",
"78805",
"643",
"206724",
"206725",
"1041",
"541840",
"541841",
"1685",
"1419612",
"1419613",
"2727",
"3718264",
"3718265"
] | [
"nonn",
"easy",
"tabf"
] | 20 | 0 | 1 | [
"A000032",
"A382379",
"A382409",
"A382410"
] | null | Miguel-Ángel Pérez García-Ortega, Mar 24 2025 | 2025-03-31T01:59:10 | oeisdata/seq/A382/A382379.seq | 49198f7bdf5c275b6284f0024edbc014 |
A382380 | Greater of twin self numbers, i.e., larger member of the pair of self numbers differing by 2. | [
"3",
"5",
"7",
"9",
"110",
"211",
"312",
"413",
"514",
"615",
"716",
"817",
"918",
"1111",
"1212",
"1313",
"1414",
"1515",
"1616",
"1717",
"1818",
"1919",
"2112",
"2213",
"2314",
"2415",
"2516",
"2617",
"2718",
"2819",
"2920",
"3113",
"3214",
"3315",
"3416",
"3517",
"3618",
"3719",
"3820",
"3921",
"4114",
"4215",
"4316",
"4417",
"4518",
"4619",
"4720",
"4821",
"4922",
"5115",
"5216",
"5317",
"5418"
] | [
"nonn",
"base",
"changed"
] | 16 | 1 | 1 | [
"A003052",
"A374101",
"A382380"
] | null | Shyam Sunder Gupta, Mar 23 2025 | 2025-04-25T20:40:41 | oeisdata/seq/A382/A382380.seq | d4389bc35b8c50e9cce4ef5cfa90c455 |
A382381 | Lexicographically earliest sequence of distinct positive integers such that any two subsets with at least two terms have distinct variances. | [
"1",
"2",
"4",
"8",
"16",
"25",
"36",
"62",
"136",
"320",
"411",
"1208",
"1295",
"4179",
"5143",
"6380",
"31370",
"34425",
"36094",
"213044",
"218759",
"306722"
] | [
"nonn",
"hard",
"more"
] | 20 | 1 | 2 | [
"A138857",
"A260873",
"A381856",
"A382381",
"A382382",
"A382383"
] | null | Pontus von Brömssen, Mar 23 2025 | 2025-04-07T17:46:47 | oeisdata/seq/A382/A382381.seq | 6a63e4d80cd29ef6f5625a5b26998766 |
A382382 | Least k for which there exists an n-subset X of {0, ..., k} such that the variances of the subsets of X of size at least 2 are distinct. | [
"0",
"1",
"3",
"6",
"11",
"17",
"27",
"48"
] | [
"nonn",
"more"
] | 9 | 1 | 3 | [
"A003022",
"A382381",
"A382382",
"A382383"
] | null | Pontus von Brömssen, Mar 23 2025 | 2025-03-29T15:31:49 | oeisdata/seq/A382/A382382.seq | 5522d70a8b273ea224afe88a02b84a0e |
A382383 | Number of distinct variances of nonempty subsets of {1, ..., n}. | [
"0",
"1",
"2",
"4",
"7",
"13",
"23",
"40",
"68",
"124",
"208",
"368",
"559",
"918",
"1352",
"2017",
"2891",
"4122",
"5506",
"7458",
"9623",
"12620",
"16125",
"20626",
"25401",
"31513",
"38587",
"47244",
"56592",
"68021",
"80503",
"95859",
"112137",
"131986",
"153353",
"178434",
"205627",
"236266",
"269884",
"307167",
"346844",
"394924",
"445797",
"501739"
] | [
"nonn"
] | 23 | 0 | 3 | [
"A005418",
"A135342",
"A208531",
"A382381",
"A382382",
"A382383"
] | null | Pontus von Brömssen, Mar 23 2025 | 2025-04-06T06:37:33 | oeisdata/seq/A382/A382383.seq | 6f7ffa59ab1ce33b11bb41b31ed390c0 |
A382384 | Number of minimum connected dominating sets in the n-Goldberg graph. | [
"6",
"96",
"290",
"744"
] | [
"nonn",
"more"
] | 4 | 3 | 1 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-23T08:34:33 | oeisdata/seq/A382/A382384.seq | 03f1482689571be6c25f0fcb3934eb82 |
A382385 | Number of minimum dominating sets in the n X n fiveleaper graph. | [
"1",
"1",
"1",
"1",
"1",
"112",
"12",
"32"
] | [
"nonn",
"more"
] | 14 | 1 | 6 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-23T18:28:11 | oeisdata/seq/A382/A382385.seq | f0324f3bb21f37318173ea3e9f759876 |
A382386 | Number of minimum dominating sets in the n X n giraffe graph. | [
"1",
"1",
"1",
"1",
"56",
"172",
"14",
"152",
"18",
"56",
"2",
"192",
"224"
] | [
"nonn",
"more"
] | 18 | 1 | 5 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-24T09:25:50 | oeisdata/seq/A382/A382386.seq | 0614dd5b3978bb756b937521d3049a7b |
A382387 | Number of minimum dominating sets in the n X n zebra graph. | [
"1",
"1",
"1",
"1",
"448",
"28",
"552",
"25",
"1588",
"1028",
"6",
"656",
"40"
] | [
"nonn",
"more"
] | 19 | 1 | 5 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-29T07:49:35 | oeisdata/seq/A382/A382387.seq | c7f07b23a83a4fb4d6d7a85dde580d11 |
A382388 | Number of minimum dominating sets in the n X n antelope graph. | [
"1",
"1",
"1",
"1",
"1",
"81",
"1344",
"32"
] | [
"nonn",
"more"
] | 16 | 1 | 6 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-30T09:52:24 | oeisdata/seq/A382/A382388.seq | 7f00ebe7e170c2bf1cd038e9c5b7e246 |
A382389 | Numbers k such that k, prime(k) and primepi(reverse(prime(k))) are emirps (A006567). | [
"7673",
"9001",
"12491",
"17749",
"31481",
"75041",
"93887",
"95881",
"102061",
"104479",
"112621",
"113557",
"118429",
"139999",
"722713",
"743891",
"749927",
"999133",
"1001941",
"1086353",
"1115071",
"1165511",
"1233907",
"1861913",
"1861973",
"1881697",
"1927903",
"1972259"
] | [
"nonn",
"base"
] | 6 | 1 | 1 | [
"A006567",
"A382389"
] | null | Ivan N. Ianakiev, Mar 23 2025 | 2025-03-27T10:13:52 | oeisdata/seq/A382/A382389.seq | 54f2dee648fcafc20d6f090812730a8f |
A382390 | Number of minimum dominating sets in the n X n camel graph. | [
"1",
"1",
"1",
"9",
"92",
"4",
"4",
"16",
"48",
"576"
] | [
"nonn",
"more"
] | 10 | 1 | 4 | null | null | Eric W. Weisstein, Mar 23 2025 | 2025-03-23T17:01:53 | oeisdata/seq/A382/A382390.seq | 52fb1b3fc715661432a40a31970ba337 |
A382391 | Numbers k such that (23^k - 3^k)/20 is prime. | [
"3",
"7",
"31",
"47",
"109",
"151",
"223",
"463",
"739",
"6427",
"17581",
"30517"
] | [
"nonn",
"hard",
"more"
] | 5 | 1 | 1 | [
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A382391"
] | null | Robert Price, Mar 23 2025 | 2025-03-23T12:53:28 | oeisdata/seq/A382/A382391.seq | 798d7a988353dd62e2826e913408826b |
A382392 | a(n) is the least prime number whose factorial base expansion contains the digit n. | [
"2",
"2",
"5",
"19",
"97",
"601",
"4327",
"35281",
"322571",
"3265949",
"36288017",
"439084817",
"5748019201",
"80951270459",
"1220496076831",
"19615115520037",
"334764638208037",
"6046686277632071",
"115242726703104073",
"2311256907767808001",
"48658040163532800037",
"1072909785605898240031"
] | [
"nonn",
"base"
] | 7 | 0 | 1 | [
"A001563",
"A062584",
"A090703",
"A382392"
] | null | Rémy Sigrist, Mar 23 2025 | 2025-03-24T15:14:57 | oeisdata/seq/A382/A382392.seq | f4f3aa49935d772f96147e5153deb8a7 |
A382393 | Positive integers k such that 6*k - 1 is prime for k != 1 (mod 5) and (6*k - 1)/5 is prime for k == 1 (mod 5). | [
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"14",
"15",
"16",
"17",
"18",
"19",
"22",
"23",
"25",
"26",
"28",
"29",
"30",
"31",
"32",
"33",
"36",
"38",
"39",
"40",
"42",
"43",
"44",
"45",
"47",
"49",
"51",
"52",
"53",
"56",
"58",
"59",
"60",
"61",
"64",
"65",
"66",
"67",
"70",
"72",
"74",
"75",
"77",
"78",
"80",
"81",
"82",
"84",
"85",
"86",
"87",
"91",
"93",
"94",
"95",
"98",
"99",
"100"
] | [
"nonn"
] | 10 | 1 | 1 | [
"A024898",
"A024899",
"A382393"
] | null | V. Barbera, Mar 23 2025 | 2025-03-30T16:26:14 | oeisdata/seq/A382/A382393.seq | 73498a8e8d7fd3c689e8a9d312044890 |
A382394 | a(n) = Sum_{k=0..n} A128899(n,k)^3. | [
"1",
"1",
"9",
"190",
"5705",
"204876",
"8209278",
"354331692",
"16140234825",
"765868074400",
"37525317999884",
"1886768082651816",
"96906387191038334",
"5066711735118128200",
"268954195756648761900",
"14464077426547576156440",
"786729115199980286001225",
"43219452658242723841261800"
] | [
"nonn"
] | 24 | 0 | 3 | [
"A001700",
"A003161",
"A024492",
"A088218",
"A128899",
"A183069",
"A382394"
] | null | Seiichi Manyama, Mar 24 2025 | 2025-03-24T10:21:57 | oeisdata/seq/A382/A382394.seq | aba92305a487f21c90bb2f4df870f682 |
A382395 | Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different difference. | [
"1",
"1",
"1",
"3",
"2",
"6",
"14",
"2",
"10",
"26",
"60",
"110",
"4",
"22",
"68",
"156",
"320",
"584",
"8",
"24",
"80",
"206",
"504",
"1004",
"1910",
"3380",
"10",
"34",
"98",
"282",
"760",
"1618",
"3334",
"6360",
"11482",
"2",
"22",
"70",
"214",
"540",
"1250",
"2718",
"5712",
"10910",
"20418",
"2",
"12",
"30",
"90",
"230",
"562",
"1228",
"2690",
"5550",
"11260",
"21164",
"2",
"4",
"6",
"10",
"18"
] | [
"nonn"
] | 10 | 0 | 4 | [
"A143823",
"A143824",
"A325879",
"A377410",
"A382395",
"A382396",
"A382398"
] | null | Andrew Howroyd, Mar 23 2025 | 2025-03-24T15:15:13 | oeisdata/seq/A382/A382395.seq | 7e8dac18ca1659a3989411cbd6400820 |
A382396 | Number of minimum sized maximal subsets of {1..n} such that every pair of distinct elements has a different difference. | [
"1",
"1",
"1",
"3",
"1",
"6",
"14",
"18",
"14",
"10",
"4",
"110",
"172",
"216",
"226",
"214",
"184",
"152",
"116",
"82",
"50",
"26",
"10",
"3696",
"3904",
"3942",
"3768",
"3504",
"3016",
"2548",
"2060",
"1598",
"1170",
"832",
"538",
"330",
"196",
"106",
"52",
"20",
"10",
"4",
"2",
"69610",
"62594",
"55294",
"47610",
"40502",
"33538",
"27254",
"21544",
"16764",
"12676",
"9258",
"6534",
"4516",
"3042",
"1990",
"1254",
"754",
"448"
] | [
"nonn"
] | 8 | 0 | 4 | [
"A143823",
"A325879",
"A377419",
"A382395",
"A382396",
"A382397"
] | null | Andrew Howroyd, Mar 23 2025 | 2025-03-24T15:15:09 | oeisdata/seq/A382/A382396.seq | a9d3a1770ea163ddde288a7fa49684c1 |
A382397 | Minimum size of a maximal subset of {1..n} such that every pair of distinct elements has a different difference. | [
"0",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6"
] | [
"nonn",
"more"
] | 8 | 0 | 3 | [
"A143824",
"A325879",
"A377419",
"A382396",
"A382397"
] | null | Andrew Howroyd, Mar 23 2025 | 2025-03-24T15:15:04 | oeisdata/seq/A382/A382397.seq | 056b3d49694c964d004da269911beb29 |
A382398 | Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different sum. | [
"1",
"1",
"1",
"1",
"4",
"2",
"8",
"22",
"2",
"14",
"40",
"102",
"214",
"4",
"24",
"92",
"236",
"564",
"1148",
"4",
"18",
"90",
"270",
"694",
"1558",
"2",
"6",
"24",
"76",
"252",
"632",
"1554",
"3282",
"6820",
"12942",
"6",
"24",
"84",
"246",
"664",
"1562",
"3442",
"7084",
"14336",
"27202",
"50520",
"2",
"26",
"88",
"294",
"704",
"1716",
"3708",
"8028",
"16108",
"31466",
"58320",
"107136",
"4",
"20",
"54"
] | [
"nonn"
] | 6 | 0 | 5 | [
"A039836",
"A196723",
"A325878",
"A382395",
"A382398"
] | null | Andrew Howroyd, Mar 23 2025 | 2025-03-24T15:15:17 | oeisdata/seq/A382/A382398.seq | 695d768bce68940efc844fe67152c5e2 |
A382399 | Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference. | [
"1",
"2",
"3",
"7",
"9",
"16",
"19",
"43",
"49",
"100",
"91",
"177",
"193",
"352",
"323",
"691",
"673",
"1242",
"1135",
"2129",
"2041",
"3634",
"3103",
"5843",
"5473",
"9326",
"8139",
"16579",
"14001",
"24796",
"21271",
"38813",
"34369",
"60292",
"49539",
"86451",
"81361",
"131684",
"110391",
"196717",
"171761",
"286878",
"236167",
"419337",
"370569",
"618346",
"501999",
"872415",
"763777",
"1235438",
"1028451"
] | [
"nonn"
] | 12 | 0 | 2 | [
"A143823",
"A325679",
"A325681",
"A382399",
"A382400"
] | null | Andrew Howroyd, Mar 24 2025 | 2025-03-27T18:33:31 | oeisdata/seq/A382/A382399.seq | 4fd5ec0c7e4d0b9e1d0858d2537f84c8 |
A382400 | Number of subsets of Z_n such that every ordered pair of distinct elements has a different sum. | [
"1",
"2",
"4",
"8",
"15",
"26",
"48",
"78",
"133",
"202",
"316",
"474",
"755",
"1054",
"1604",
"2196",
"3305",
"4370",
"6208",
"8228",
"11631",
"15086",
"20912",
"26842",
"37581",
"46626",
"64052",
"79984",
"109635",
"133314",
"176156",
"217094",
"291409",
"343872",
"457828",
"547576",
"718375",
"852074",
"1112128",
"1308230",
"1714741"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A000125",
"A196723",
"A382399",
"A382400"
] | null | Andrew Howroyd, Mar 27 2025 | 2025-03-27T18:33:24 | oeisdata/seq/A382/A382400.seq | 259245e6bec8a53c7832ce680d876994 |
A382401 | a(n) is the number formed by removing all copies of the smallest digit of n, or 0 if no digits remain. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"2",
"2",
"0",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"3",
"3",
"3",
"0",
"4",
"5",
"6",
"7",
"8",
"9",
"4",
"4",
"4",
"4",
"0",
"5",
"6",
"7",
"8",
"9",
"5",
"5",
"5",
"5",
"5",
"0",
"6",
"7",
"8",
"9",
"6",
"6",
"6",
"6",
"6",
"6",
"0",
"7",
"8",
"9",
"7",
"7",
"7",
"7",
"7",
"7",
"7",
"0",
"8",
"9",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"0",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"9",
"0",
"1",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"11",
"0",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"12"
] | [
"nonn",
"base",
"look"
] | 22 | 1 | 12 | [
"A054054",
"A382056",
"A382371",
"A382401"
] | null | Paolo Xausa, Mar 23 2025 | 2025-03-24T05:57:32 | oeisdata/seq/A382/A382401.seq | 5df139c5127d443f18a0fc3d6093053a |
A382402 | Numbers divisible by the product of their digits (mod 10). | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"12",
"15",
"24",
"26",
"34",
"35",
"37",
"48",
"55",
"62",
"64",
"66",
"72",
"73",
"75",
"76",
"78",
"84",
"88",
"95",
"96",
"98",
"99",
"111",
"112",
"115",
"126",
"132",
"134",
"135",
"136",
"137",
"144",
"148",
"155",
"162",
"164",
"168",
"172",
"173",
"175",
"176",
"184",
"188",
"192",
"195",
"196",
"198",
"199",
"212",
"216",
"228",
"232",
"244",
"248",
"264",
"266"
] | [
"nonn",
"base"
] | 13 | 1 | 2 | [
"A007602",
"A064700",
"A371281",
"A382402"
] | null | Enrique Navarrete, Mar 23 2025 | 2025-03-31T02:14:55 | oeisdata/seq/A382/A382402.seq | 5f9aaaf9b25b66b6c7a04af91a9701c8 |
A382403 | a(n) = Sum_{k=0..n} A039599(n,k)^3. | [
"1",
"2",
"36",
"980",
"33040",
"1268568",
"53105976",
"2364239592",
"110206067400",
"5323547715200",
"264576141331216",
"13458185494436592",
"697931136204820336",
"36789784967375728400",
"1966572261077797609200",
"106400946932857148590800",
"5817987630644593688220600",
"321105713814359742307398480"
] | [
"nonn"
] | 11 | 0 | 2 | [
"A000984",
"A039599",
"A048990",
"A112029",
"A382403"
] | null | Seiichi Manyama, Mar 24 2025 | 2025-03-24T10:22:02 | oeisdata/seq/A382/A382403.seq | 2c7cf39def2ef27972e2f19383764af6 |
A382404 | a(n) = -Sum_{k=0..n} (-1)^k * A039599(n,k)^3. | [
"-1",
"0",
"18",
"480",
"11550",
"275184",
"6597360",
"159629184",
"3897563670",
"95946708000",
"2378998624860",
"59359563244800",
"1489281975509328",
"37545821365718400",
"950601539891016000",
"24159023128878865920",
"616066120184552310150",
"15757649689979967739200"
] | [
"sign"
] | 7 | 0 | 3 | [
"A039599",
"A382404"
] | null | Seiichi Manyama, Mar 24 2025 | 2025-03-24T10:22:06 | oeisdata/seq/A382/A382404.seq | e2756f980e52ee9ceb082fe89d85afaf |
A382405 | a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k) * 2^(n-k). | [
"1",
"4",
"34",
"352",
"4006",
"48184",
"600916",
"7687936",
"100240198",
"1326277144",
"17753591164",
"239915864896",
"3267780399196",
"44805617380528",
"617844108170344",
"8561667414341632",
"119151750609504838",
"1664497333624420888",
"23330380347342383404",
"327990673915214512192",
"4623496960858710060916"
] | [
"nonn"
] | 13 | 0 | 2 | [
"A001850",
"A005258",
"A069835",
"A274671",
"A382405",
"A382642"
] | null | Ilya Gutkovskiy, Apr 08 2025 | 2025-04-09T05:40:02 | oeisdata/seq/A382/A382405.seq | 3e852af8d22ee5de4f5dee0f83a8ce41 |
A382406 | Expansion of 1/(1 - x*(1 + x)^2)^3. | [
"1",
"3",
"12",
"37",
"111",
"315",
"864",
"2307",
"6027",
"15471",
"39132",
"97755",
"241606",
"591636",
"1437078",
"3465748",
"8305161",
"19788957",
"46910232",
"110686101",
"260064912",
"608684490",
"1419591546",
"3300027546",
"7648265728",
"17676484410",
"40747630332",
"93704299336",
"214999206831",
"492262973433"
] | [
"nonn",
"easy"
] | 60 | 0 | 2 | [
"A000217",
"A001628",
"A002478",
"A362126",
"A382406",
"A382614"
] | null | Seiichi Manyama, Mar 31 2025 | 2025-04-10T10:46:39 | oeisdata/seq/A382/A382406.seq | 716db09feab607b2730dea0f1cd3e81a |
A382407 | a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square. | [
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"3",
"0",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"3",
"0",
"5",
"1",
"1",
"2",
"3",
"3",
"2",
"1",
"1",
"3",
"6",
"1",
"4",
"2",
"7",
"4",
"4",
"0",
"3",
"5",
"3",
"4",
"2",
"1",
"7",
"2",
"1",
"5",
"9",
"3",
"5",
"3",
"4",
"1",
"9",
"2",
"6",
"3",
"5",
"6",
"5",
"4",
"7",
"5",
"1",
"5",
"6",
"3",
"13",
"7",
"8",
"4",
"6",
"0",
"4",
"4",
"11",
"5",
"13",
"2"
] | [
"nonn"
] | 6 | 1 | 14 | [
"A000244",
"A005030",
"A066955",
"A069905",
"A338939",
"A375512",
"A375576",
"A375580",
"A375731",
"A382407"
] | null | Felix Huber, Apr 04 2025 | 2025-04-10T21:13:21 | oeisdata/seq/A382/A382407.seq | 51edd7d6e686b758d3494c8f78190a17 |
A382408 | a(n) is the number of terms in A071174 whose radical is A144338(n). | [
"1",
"1",
"1",
"5",
"1",
"9",
"1",
"1",
"13",
"14",
"1",
"1",
"20",
"21",
"1",
"25",
"1",
"406",
"1",
"32",
"33",
"34",
"1",
"37",
"38",
"1",
"820",
"1",
"45",
"1",
"50",
"1",
"54",
"56",
"57",
"1",
"1",
"61",
"64",
"2080",
"1",
"68",
"2346",
"1",
"1",
"73",
"76",
"2926",
"1",
"81",
"1",
"84",
"85",
"86",
"1",
"90",
"92",
"93",
"94",
"1",
"1",
"5050",
"1",
"5356",
"105",
"1",
"1",
"5886",
"110"
] | [
"nonn",
"changed"
] | 11 | 1 | 4 | [
"A007947",
"A071174",
"A144338",
"A382408"
] | null | Felix Huber, Apr 04 2025 | 2025-04-26T03:33:06 | oeisdata/seq/A382/A382408.seq | ef6cf61fe55dcd538ca7d1d53228a331 |
A382409 | Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"6",
"1",
"15",
"28",
"91",
"231",
"630",
"1653",
"4371",
"11476",
"30135",
"79003",
"207046",
"542361",
"1420455",
"3719628",
"9739491",
"25500511",
"66764790",
"174798253",
"457637131",
"1198124676",
"3136755615",
"8212172403",
"21499810566",
"56287338481",
"147362333055",
"385799868028",
"1010037606571",
"2644313494551",
"6922903755510"
] | [
"nonn",
"easy"
] | 11 | 0 | 1 | [
"A000032",
"A382379",
"A382409",
"A382410"
] | null | Miguel-Ángel Pérez García-Ortega, Mar 24 2025 | 2025-03-30T18:13:07 | oeisdata/seq/A382/A382409.seq | c6b985e03ff5c7ae296a48476a8d9ff3 |
A382410 | Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"6",
"0",
"30",
"84",
"546",
"2310",
"10710",
"46284",
"201066",
"860700",
"3676470",
"15642594",
"66461766",
"282027720",
"1196023110",
"5069852964",
"21485317146",
"91036824270",
"385700191830",
"1634014069044",
"6922219243506",
"29324101445100",
"124221795865230",
"526219583239434",
"2229121859293446",
"9442763903572560"
] | [
"nonn",
"easy"
] | 9 | 0 | 1 | [
"A000032",
"A382379",
"A382409",
"A382410"
] | null | Miguel-Ángel Pérez García-Ortega, Mar 24 2025 | 2025-03-30T18:13:31 | oeisdata/seq/A382/A382410.seq | 96cb86b52c92ce54155d7d43fc700e32 |
A382411 | a(n) is the greatest possible length of a circular sequence on n symbols such that: no two adjacent symbols are the same, any group of n adjacent symbols contains at least n-1 different symbols, and all groups of n adjacent symbols within the sequence are unique. | [
"1",
"2",
"12",
"96",
"840",
"7920",
"80640",
"887040",
"10523520",
"134265600",
"1836172800",
"26824089600",
"417210393600",
"6887085004800",
"120306041856000",
"2217815728128000",
"43038178799616000",
"877125197684736000",
"18733345462960128000",
"418459145406382080000",
"9758369954796503040000",
"237164153561075220480000"
] | [
"nonn",
"easy"
] | 27 | 1 | 2 | [
"A000142",
"A152947",
"A382411"
] | null | Dean D. Ballard, Mar 24 2025 | 2025-04-08T13:20:11 | oeisdata/seq/A382/A382411.seq | 6eca51a0e0cd89010c7c6c685edb4ba1 |
A382412 | Numbers with no zeros in their base-7 representation. | [
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"11",
"12",
"13",
"15",
"16",
"17",
"18",
"19",
"20",
"22",
"23",
"24",
"25",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"36",
"37",
"38",
"39",
"40",
"41",
"43",
"44",
"45",
"46",
"47",
"48",
"57",
"58",
"59",
"60",
"61",
"62",
"64",
"65",
"66",
"67",
"68",
"69",
"71",
"72",
"73",
"74",
"75",
"76",
"78",
"79",
"80",
"81",
"82",
"83",
"85",
"86",
"87",
"88",
"89",
"90"
] | [
"nonn",
"base",
"easy"
] | 8 | 1 | 2 | [
"A007093",
"A023705",
"A023721",
"A032924",
"A043393",
"A052382",
"A126646",
"A248910",
"A249102",
"A255805",
"A255808",
"A382412",
"A382413"
] | null | Paolo Xausa, Mar 24 2025 | 2025-03-26T21:48:43 | oeisdata/seq/A382/A382412.seq | 0d045db4aaba666e931336f7cba79522 |
A382413 | Numbers with at least one zero in their base-7 representation. | [
"0",
"7",
"14",
"21",
"28",
"35",
"42",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"63",
"70",
"77",
"84",
"91",
"98",
"99",
"100",
"101",
"102",
"103",
"104",
"105",
"112",
"119",
"126",
"133",
"140",
"147",
"148",
"149",
"150",
"151",
"152",
"153",
"154",
"161",
"168",
"175",
"182",
"189",
"196",
"197",
"198",
"199",
"200",
"201",
"202",
"203",
"210",
"217",
"224",
"231",
"238"
] | [
"nonn",
"base",
"easy"
] | 8 | 1 | 2 | [
"A007093",
"A011540",
"A043393",
"A062289",
"A081605",
"A196032",
"A382412",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
] | null | Paolo Xausa, Mar 24 2025 | 2025-03-26T21:48:50 | oeisdata/seq/A382/A382413.seq | 965dbf8e9bc5a6a75a7f9de5ec3b95e0 |
A382415 | Numbers with at least one zero in their base-5 representation. | [
"0",
"5",
"10",
"15",
"20",
"25",
"26",
"27",
"28",
"29",
"30",
"35",
"40",
"45",
"50",
"51",
"52",
"53",
"54",
"55",
"60",
"65",
"70",
"75",
"76",
"77",
"78",
"79",
"80",
"85",
"90",
"95",
"100",
"101",
"102",
"103",
"104",
"105",
"110",
"115",
"120",
"125",
"126",
"127",
"128",
"129",
"130",
"131",
"132",
"133",
"134",
"135",
"136",
"137",
"138",
"139",
"140",
"141",
"142",
"143",
"144",
"145"
] | [
"nonn",
"base",
"easy"
] | 7 | 1 | 2 | [
"A007091",
"A011540",
"A023721",
"A023722",
"A062289",
"A081605",
"A196032",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
] | null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:01 | oeisdata/seq/A382/A382415.seq | a8a55e2253f3afcb7b9d717a421f7fc0 |
A382416 | Numbers with at least one zero in their base-6 representation. | [
"0",
"6",
"12",
"18",
"24",
"30",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"48",
"54",
"60",
"66",
"72",
"73",
"74",
"75",
"76",
"77",
"78",
"84",
"90",
"96",
"102",
"108",
"109",
"110",
"111",
"112",
"113",
"114",
"120",
"126",
"132",
"138",
"144",
"145",
"146",
"147",
"148",
"149",
"150",
"156",
"162",
"168",
"174",
"180",
"181",
"182",
"183",
"184",
"185",
"186",
"192",
"198"
] | [
"nonn",
"base",
"easy"
] | 6 | 1 | 2 | [
"A007092",
"A011540",
"A043369",
"A062289",
"A081605",
"A196032",
"A248910",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
] | null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:11 | oeisdata/seq/A382/A382416.seq | 44bfa9f93756b8a2ec9ba6eac2e4e758 |
A382417 | Numbers with at least one zero in their base-8 representation. | [
"0",
"8",
"16",
"24",
"32",
"40",
"48",
"56",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"72",
"80",
"88",
"96",
"104",
"112",
"120",
"128",
"129",
"130",
"131",
"132",
"133",
"134",
"135",
"136",
"144",
"152",
"160",
"168",
"176",
"184",
"192",
"193",
"194",
"195",
"196",
"197",
"198",
"199",
"200",
"208",
"216",
"224",
"232",
"240",
"248",
"256",
"257",
"258",
"259",
"260"
] | [
"nonn",
"base",
"easy"
] | 6 | 1 | 2 | [
"A007094",
"A011540",
"A043421",
"A062289",
"A081605",
"A196032",
"A255805",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
] | null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:20 | oeisdata/seq/A382/A382417.seq | 6cf1b4c19a2d340e043f697e044cb15b |
A382418 | Numbers with at least one zero in their base-9 representation. | [
"0",
"9",
"18",
"27",
"36",
"45",
"54",
"63",
"72",
"81",
"82",
"83",
"84",
"85",
"86",
"87",
"88",
"89",
"90",
"99",
"108",
"117",
"126",
"135",
"144",
"153",
"162",
"163",
"164",
"165",
"166",
"167",
"168",
"169",
"170",
"171",
"180",
"189",
"198",
"207",
"216",
"225",
"234",
"243",
"244",
"245",
"246",
"247",
"248",
"249",
"250",
"251",
"252",
"261",
"270",
"279",
"288",
"297"
] | [
"nonn",
"base",
"easy"
] | 6 | 1 | 2 | [
"A007095",
"A011540",
"A043453",
"A062289",
"A081605",
"A196032",
"A255808",
"A382413",
"A382415",
"A382416",
"A382417",
"A382418"
] | null | Paolo Xausa, Mar 25 2025 | 2025-03-26T21:49:27 | oeisdata/seq/A382/A382418.seq | b1ed4ece688a64be3b966d3e761f0e28 |
A382419 | The product of exponents in the prime factorization of the cubefree numbers. | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"2",
"4",
"1",
"1"
] | [
"nonn",
"easy"
] | 9 | 1 | 4 | [
"A002117",
"A004709",
"A005361",
"A330594",
"A368712",
"A376366",
"A382419",
"A382421",
"A382422"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:40 | oeisdata/seq/A382/A382419.seq | 309877ce3f390f854f768261bf5f554f |
A382420 | The number of non-unitary prime divisors of the noncubefree numbers. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"1"
] | [
"nonn",
"easy"
] | 7 | 1 | 11 | [
"A002117",
"A046099",
"A085548",
"A376366",
"A382420"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-25T08:55:53 | oeisdata/seq/A382/A382420.seq | 27fd7c8fd575f7b665c6e29603f7b7d8 |
A382421 | The product of exponents in the prime factorization of the noncubefree numbers. | [
"3",
"4",
"3",
"3",
"5",
"3",
"4",
"3",
"3",
"6",
"6",
"4",
"4",
"3",
"5",
"3",
"6",
"4",
"3",
"3",
"7",
"3",
"3",
"8",
"3",
"5",
"4",
"3",
"4",
"3",
"3",
"6",
"6",
"4",
"9",
"5",
"3",
"4",
"5",
"3",
"3",
"8",
"3",
"3",
"4",
"3",
"10",
"3",
"3",
"4",
"3",
"6",
"8",
"3",
"4",
"3",
"3",
"3",
"5",
"6",
"4",
"3",
"3",
"3",
"7",
"6",
"8",
"4",
"3",
"5",
"3",
"12",
"3",
"6",
"3",
"3",
"4",
"3",
"5",
"5",
"3",
"4",
"6",
"6",
"9",
"3",
"3"
] | [
"nonn",
"easy"
] | 7 | 1 | 1 | [
"A002117",
"A005361",
"A013661",
"A013664",
"A046099",
"A082695",
"A330594",
"A368039",
"A382419",
"A382421"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:45 | oeisdata/seq/A382/A382421.seq | 523426702ac727a8840def7b90112808 |
A382422 | The product of exponents in the prime factorization of the biquadratefree numbers. | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1"
] | [
"nonn",
"easy"
] | 8 | 1 | 4 | [
"A003586",
"A005361",
"A013662",
"A046100",
"A082695",
"A375766",
"A375768",
"A382422",
"A382423",
"A382424"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-25T10:11:51 | oeisdata/seq/A382/A382422.seq | 6ac227a54b36f5521ff4dbb6207d5e7e |
A382423 | The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 2. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0"
] | [
"nonn",
"easy"
] | 11 | 1 | 34 | [
"A013662",
"A046100",
"A369427",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-26T11:38:24 | oeisdata/seq/A382/A382423.seq | 8fbb93b788c080304b8ccf3bf5f72a4c |
A382424 | The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 3. | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"easy"
] | 12 | 1 | null | [
"A013662",
"A046100",
"A295883",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-26T11:38:29 | oeisdata/seq/A382/A382424.seq | cd5a0048db4f5dd1e6756393ad3ae3a8 |
A382425 | The number of non-unitary prime divisors of the biquadratefree numbers. | [
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0"
] | [
"nonn",
"easy"
] | 12 | 1 | 34 | [
"A013662",
"A046100",
"A056170",
"A376366",
"A382422",
"A382423",
"A382424",
"A382425"
] | null | Amiram Eldar, Mar 25 2025 | 2025-03-25T08:55:36 | oeisdata/seq/A382/A382425.seq | 4851237a1c6933679a90ae8523b96077 |
A382426 | MM-numbers of sets of constant multisets with distinct sums. | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"30",
"31",
"33",
"34",
"38",
"41",
"42",
"46",
"51",
"53",
"55",
"57",
"59",
"62",
"66",
"67",
"69",
"77",
"82",
"83",
"85",
"93",
"95",
"97",
"102",
"103",
"106",
"109",
"110",
"114",
"115",
"118",
"119",
"123",
"127",
"131",
"133",
"134",
"138",
"154",
"155",
"157",
"159",
"161",
"165",
"166"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000688",
"A000720",
"A000961",
"A055396",
"A056239",
"A061395",
"A112798",
"A279786",
"A302242",
"A302492",
"A302494",
"A321469",
"A326534",
"A326535",
"A355743",
"A356065",
"A381635",
"A381636",
"A381716",
"A382201",
"A382203",
"A382215",
"A382304",
"A382426"
] | null | Gus Wiseman, Apr 01 2025 | 2025-04-03T14:57:53 | oeisdata/seq/A382/A382426.seq | f65669b3f85f2f4f2a647772cbd7600d |
A382427 | Number of integer partitions of n that can be partitioned into constant blocks with distinct sums. | [
"1",
"1",
"2",
"3",
"4",
"7",
"11",
"14",
"19",
"28",
"39",
"50",
"70",
"91",
"120",
"161",
"203",
"260",
"338",
"426",
"556",
"695",
"863",
"1082",
"1360",
"1685"
] | [
"nonn",
"more",
"changed"
] | 13 | 0 | 3 | [
"A000009",
"A000041",
"A000688",
"A001055",
"A006171",
"A045778",
"A047966",
"A050361",
"A265947",
"A279784",
"A279786",
"A295935",
"A300383",
"A300385",
"A317141",
"A326535",
"A353864",
"A355743",
"A381453",
"A381455",
"A381633",
"A381635",
"A381636",
"A381716",
"A381717",
"A381718",
"A381990",
"A381991",
"A381992",
"A381993",
"A382075",
"A382079",
"A382203",
"A382301",
"A382427",
"A382876"
] | null | Gus Wiseman, Mar 26 2025 | 2025-04-27T09:09:21 | oeisdata/seq/A382/A382427.seq | 1ae121aefeb0ac98a4e6c3708b45040c |
A382428 | Number of normal multiset partitions of weight n into sets with distinct sizes. | [
"1",
"1",
"1",
"6",
"8",
"35",
"292",
"673",
"2818",
"16956",
"219772",
"636748",
"3768505",
"20309534",
"183403268",
"3227600747",
"12272598308",
"81353466578",
"561187259734",
"4416808925866",
"50303004612136",
"1238783066956740",
"5566249468690291",
"44970939483601100",
"330144217684933896",
"3131452652308459402"
] | [
"nonn"
] | 14 | 0 | 4 | [
"A000110",
"A000670",
"A001055",
"A007716",
"A019536",
"A034691",
"A035310",
"A045778",
"A050320",
"A050326",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A296119",
"A317532",
"A318360",
"A326517",
"A326518",
"A326519",
"A331638",
"A333217",
"A358830",
"A381633",
"A381718",
"A382214",
"A382216",
"A382428",
"A382429"
] | null | Gus Wiseman, Mar 29 2025 | 2025-03-31T13:38:47 | oeisdata/seq/A382/A382428.seq | 3108d26568937e60d4ebf42c2a4e2a87 |
A382429 | Number of normal multiset partitions of weight n into sets with a common sum. | [
"1",
"1",
"2",
"3",
"5",
"7",
"13",
"26",
"57",
"113",
"283",
"854",
"2401",
"6998",
"24072",
"85061",
"308956",
"1190518",
"4770078",
"19949106",
"87059592"
] | [
"nonn",
"more"
] | 17 | 0 | 3 | [
"A000110",
"A000670",
"A001055",
"A019536",
"A034691",
"A035310",
"A038041",
"A045778",
"A050320",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A279785",
"A279788",
"A296119",
"A304969",
"A317532",
"A317583",
"A318360",
"A321469",
"A326517",
"A326518",
"A326520",
"A326535",
"A331638",
"A333217",
"A381633",
"A381635",
"A381636",
"A381716",
"A381718",
"A381806",
"A381870",
"A381996",
"A382080",
"A382203",
"A382204",
"A382214",
"A382216",
"A382429"
] | null | Gus Wiseman, Mar 26 2025 | 2025-04-06T14:05:06 | oeisdata/seq/A382/A382429.seq | 0a7555c20eb6752ddb4a5a253f26c88a |
A382430 | Number of non-isomorphic finite multisets of size n that cannot be partitioned into sets with distinct sums. | [
"0",
"0",
"1",
"1",
"2",
"3",
"5",
"6",
"9",
"12",
"17",
"22",
"32"
] | [
"nonn",
"more"
] | 5 | 0 | 5 | [
"A050326",
"A116539",
"A279785",
"A292432",
"A292444",
"A293243",
"A358914",
"A381633",
"A381718",
"A381806",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382430",
"A382523"
] | null | Gus Wiseman, Apr 01 2025 | 2025-04-01T10:27:12 | oeisdata/seq/A382/A382430.seq | c2ab478d0e627ef4c0990c95947bba99 |
A382431 | Number of minimum dominating sets in the n-Goldberg graph. | [
"63",
"12",
"5",
"1395",
"504",
"204",
"27",
"5"
] | [
"nonn",
"more"
] | 7 | 3 | 1 | null | null | Eric W. Weisstein, Mar 25 2025 | 2025-03-29T07:50:41 | oeisdata/seq/A382/A382431.seq | 4169351efd751444d173a03ce9a020c8 |
A382432 | a(n) = A074829(2*n-1, n). | [
"1",
"2",
"8",
"30",
"114",
"436",
"1676",
"6468",
"25040",
"97190",
"378050",
"1473254",
"5750390",
"22476090",
"87958306",
"344593314",
"1351330642",
"5303953012",
"20834616860",
"81900891372",
"322168053848",
"1268071841744",
"4994044075204",
"19678407053280",
"77578340524444",
"305977596195556",
"1207325722552016",
"4765772559893268"
] | [
"nonn"
] | 7 | 1 | 2 | [
"A074829",
"A382432"
] | null | Michel Marcus, Mar 25 2025 | 2025-03-31T06:48:05 | oeisdata/seq/A382/A382432.seq | 0347c827d5b5a24700298b77f3a528b1 |
A382433 | a(n) = S(6,n), where S(r,n) = Sum_{k=0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r. | [
"1",
"1",
"2",
"65",
"794",
"19722",
"562692",
"15105729",
"553537490",
"18107304842",
"716747344436",
"27247858130506",
"1137502720488532",
"47573235297987700",
"2085487143991309320",
"92820152112054862785",
"4246321874111740074210",
"197525644801830489637170",
"9363425291004877645851300"
] | [
"nonn"
] | 19 | 0 | 3 | [
"A000108",
"A008315",
"A120730",
"A129123",
"A357824",
"A382433",
"A382435"
] | null | Seiichi Manyama, Mar 25 2025 | 2025-04-01T20:09:29 | oeisdata/seq/A382/A382433.seq | 6f9965406cb5395af8d45fddb0c57dc1 |
A382434 | a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^4. | [
"1",
"1",
"3",
"33",
"195",
"1763",
"15623",
"156257",
"1630947",
"17911299",
"203739015",
"2389928995",
"28749060871",
"353362388551",
"4424242664975",
"56290517376737",
"726355164976547",
"9490129871680355",
"125375330053632455",
"1672895457018337859",
"22522481793315373319",
"305695116823973096519"
] | [
"nonn"
] | 19 | 0 | 3 | [
"A080233",
"A129123",
"A131428",
"A156644",
"A382434",
"A382435"
] | null | Seiichi Manyama, Mar 25 2025 | 2025-03-31T06:30:46 | oeisdata/seq/A382/A382434.seq | 3618db99bd2eafbdf02c7ea31da326e8 |
A382435 | a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6. | [
"1",
"1",
"3",
"129",
"1587",
"39443",
"1125383",
"30211457",
"1107074979",
"36214609683",
"1433494688871",
"54495716261011",
"2275005440977063",
"95146470595975399",
"4170974287982618639",
"185640304224109725569",
"8492643748223480148419",
"395051289603660979274339",
"18726850582009755291702599"
] | [
"nonn"
] | 15 | 0 | 3 | [
"A080233",
"A131428",
"A156644",
"A382433",
"A382434",
"A382435"
] | null | Seiichi Manyama, Mar 25 2025 | 2025-03-25T12:56:36 | oeisdata/seq/A382/A382435.seq | 3a998646deadd7545a6240294617d120 |
A382436 | Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"6",
"1",
"1",
"9",
"17",
"9",
"1",
"1",
"12",
"36",
"36",
"12",
"1",
"1",
"15",
"64",
"101",
"64",
"15",
"1",
"1",
"18",
"101",
"227",
"227",
"101",
"18",
"1",
"1",
"21",
"147",
"440",
"627",
"440",
"147",
"21",
"1",
"1",
"24",
"202",
"767",
"1459",
"1459",
"767",
"202",
"24",
"1",
"1",
"27",
"266",
"1235",
"2994",
"3999",
"2994",
"1235",
"266",
"27",
"1"
] | [
"nonn",
"tabl"
] | 28 | 0 | 5 | [
"A008288",
"A056594",
"A077938",
"A103450",
"A339565",
"A382436",
"A382444"
] | null | F. Chapoton, Mar 25 2025. | 2025-03-26T04:18:07 | oeisdata/seq/A382/A382436.seq | a2823827ea6f9d2c01bde1a9d731e6ca |
A382437 | a(n) = a(n-1)^2 + 4 * a(n-1), with a(0) = 2. | [
"2",
"12",
"192",
"37632",
"1416317952",
"2005956546822746112",
"4023861667741036022825635656102100992",
"16191462721115671781777559070120513664958590125499158514329308740975788032"
] | [
"nonn"
] | 25 | 0 | 1 | [
"A002812",
"A003010",
"A382437"
] | null | V. Barbera, Mar 25 2025 | 2025-04-06T22:18:05 | oeisdata/seq/A382/A382437.seq | b07bac2dbd7bbc1bb10d885d8ba37d3a |
A382438 | Numbers k in A024619 such that all residues r (mod k) in row k of A381801 are such that rad(r) divides k, where rad = A007947. | [
"6",
"12",
"14",
"24",
"39",
"62",
"155",
"254",
"3279",
"5219",
"16382",
"19607",
"70643",
"97655",
"208919",
"262142",
"363023",
"402233",
"712979",
"1040603",
"1048574",
"1508597",
"2265383",
"2391483",
"4685519",
"5207819",
"6728903",
"21243689",
"25239899",
"56328959",
"61035155",
"67977559",
"150508643"
] | [
"nonn"
] | 32 | 1 | 1 | [
"A007947",
"A024619",
"A381750",
"A381801",
"A382438"
] | null | Michael De Vlieger, Mar 27 2025 | 2025-04-07T10:08:01 | oeisdata/seq/A382/A382438.seq | c930a75844c917a5820c34f95c20c419 |
A382439 | Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x). | [
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"5",
"5",
"1",
"1",
"7",
"12",
"7",
"1",
"1",
"9",
"24",
"24",
"9",
"1",
"1",
"11",
"40",
"60",
"40",
"11",
"1",
"1",
"13",
"60",
"124",
"124",
"60",
"13",
"1",
"1",
"15",
"84",
"224",
"308",
"224",
"84",
"15",
"1",
"1",
"17",
"112",
"368",
"656",
"656",
"368",
"112",
"17",
"1",
"1",
"19",
"144",
"564",
"1248",
"1620",
"1248",
"564",
"144",
"19",
"1"
] | [
"nonn",
"tabl"
] | 27 | 0 | 5 | [
"A008288",
"A245990",
"A382436",
"A382439"
] | null | F. Chapoton, Mar 25 2025 | 2025-03-27T10:02:54 | oeisdata/seq/A382/A382439.seq | faa6c74f319796a7e40d8833f5da6587 |
A382440 | Number of rooted full binary trees with n internal nodes, up to their multiset of subtree sizes. | [
"1",
"1",
"2",
"3",
"6",
"11",
"23",
"45",
"95",
"194",
"414",
"863",
"1850",
"3910",
"8413",
"17887",
"38517",
"82249",
"177133",
"378871",
"815265",
"1745006",
"3750385",
"8024725",
"17219142",
"36817113"
] | [
"nonn",
"more"
] | 13 | 1 | 3 | [
"A000108",
"A001190",
"A247139",
"A382440"
] | null | Ludovic Schwob, Mar 25 2025 | 2025-04-04T15:14:32 | oeisdata/seq/A382/A382440.seq | 8ad975d3d409df63577bc2c4b15a48bb |
A382441 | Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose decimal expansion appears as a contiguous subword in the concatenation of the previous terms. | [
"1",
"2",
"5",
"7",
"8",
"9",
"10",
"16",
"20",
"32",
"40",
"50",
"51",
"53",
"64",
"83",
"93",
"100",
"117",
"118",
"126",
"160",
"186",
"200",
"207",
"224",
"250",
"288",
"311",
"320",
"352",
"372",
"391",
"400",
"448",
"480",
"500",
"625",
"640",
"713",
"800",
"960",
"979",
"1000",
"1011",
"1039",
"1043",
"1097",
"1099",
"1173",
"1200",
"1250",
"1359",
"1426"
] | [
"nonn",
"base"
] | 13 | 1 | 2 | [
"A048991",
"A382441",
"A382442",
"A382445"
] | null | Rémy Sigrist, Mar 25 2025 | 2025-03-28T08:03:26 | oeisdata/seq/A382/A382441.seq | 8571b3bffeacb87dda91d2bf92bf3a3e |
A382442 | Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose binary expansion appears as a contiguous subword in the concatenation of the previous terms. | [
"1",
"2",
"4",
"7",
"8",
"16",
"18",
"27",
"32",
"42",
"54",
"64",
"84",
"126",
"128",
"133",
"172",
"238",
"256",
"276",
"379",
"381",
"444",
"512",
"524",
"582",
"621",
"765",
"948",
"1024",
"1048",
"1179",
"1241",
"1449",
"1496",
"1557",
"1861",
"1896",
"1982",
"2048",
"2132",
"2155",
"2227",
"2386",
"2667",
"2900",
"3013",
"3058",
"3236",
"3444",
"3613"
] | [
"nonn",
"base"
] | 6 | 1 | 2 | [
"A382441",
"A382442"
] | null | Rémy Sigrist, Mar 26 2025 | 2025-03-28T08:03:30 | oeisdata/seq/A382/A382442.seq | 5326f59b7d29719a5a80b00e7d3d645f |
A382443 | a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4. | [
"1",
"1",
"4",
"65",
"566",
"10912",
"164032",
"3237313",
"62253130",
"1314421886",
"28392213224",
"639799858304",
"14785604868256",
"350615631856960",
"8485316740880384",
"209179475361783233",
"5239271305444731698",
"133100429387161703962",
"3424142506153260211720",
"89090362800169426107070"
] | [
"nonn"
] | 30 | 0 | 3 | [
"A000108",
"A129123",
"A381676",
"A382433",
"A382434",
"A382443",
"A382446"
] | null | Seiichi Manyama, Mar 26 2025 | 2025-03-29T16:25:59 | oeisdata/seq/A382/A382443.seq | d033c389d572527ce9cf51c33db4c796 |
A382444 | Triangle read by rows, defined by the two-variable g.f. (1 + y*x^2 + (y^2 + y)*x^3)/(1-(1+y)*x-y*x^2). | [
"1",
"1",
"1",
"1",
"4",
"1",
"1",
"7",
"7",
"1",
"1",
"9",
"18",
"9",
"1",
"1",
"11",
"34",
"34",
"11",
"1",
"1",
"13",
"54",
"86",
"54",
"13",
"1",
"1",
"15",
"78",
"174",
"174",
"78",
"15",
"1",
"1",
"17",
"106",
"306",
"434",
"306",
"106",
"17",
"1",
"1",
"19",
"138",
"490",
"914",
"914",
"490",
"138",
"19",
"1",
"1",
"21",
"174",
"734",
"1710",
"2262",
"1710",
"734",
"174",
"21",
"1"
] | [
"nonn",
"tabl"
] | 28 | 0 | 5 | [
"A008288",
"A103450",
"A265107",
"A382436",
"A382444"
] | null | F. Chapoton, Mar 25 2025 | 2025-03-26T09:18:10 | oeisdata/seq/A382/A382444.seq | c73b290b106d15100a6d63fe331b8f25 |
A382445 | Lexicographically least increasing sequence of distinct positive integers such that for any n > 1, a(n) does not divide the concatenation of the earlier terms. | [
"1",
"2",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"44",
"45",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A007978",
"A096098",
"A382441",
"A382445"
] | null | Rémy Sigrist, Mar 25 2025 | 2025-03-28T08:03:17 | oeisdata/seq/A382/A382445.seq | 79488196e9cb4283c0fa094bc55f44c0 |
A382446 | a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6. | [
"1",
"1",
"4",
"257",
"4286",
"258952",
"11816512",
"632854273",
"43732565914",
"2637804065366",
"207379028199080",
"14568483339859880",
"1205457271871693920",
"95108827011788280160",
"8187664948710535579904",
"698818327346476962092801",
"62477582066507173352034866",
"5627626080883126186936773514"
] | [
"nonn"
] | 19 | 0 | 3 | [
"A000108",
"A129123",
"A381676",
"A382433",
"A382435",
"A382443",
"A382446"
] | null | Seiichi Manyama, Mar 26 2025 | 2025-03-30T09:52:53 | oeisdata/seq/A382/A382446.seq | 625c4e1f051b81e303f14e84fbb7f448 |
A382447 | Number of positive k <= n such that k*2^n - 1 is prime. | [
"0",
"2",
"2",
"2",
"2",
"3",
"2",
"1",
"1",
"3",
"3",
"2",
"3",
"2",
"2",
"4",
"6",
"3",
"1",
"3",
"3",
"0",
"1",
"0",
"1",
"1",
"2",
"3",
"2",
"3",
"4",
"2",
"2",
"1",
"5",
"2",
"4",
"2",
"1",
"3",
"4",
"3",
"4",
"2",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"3",
"4",
"5",
"2",
"2",
"3",
"1",
"3",
"3",
"3",
"4",
"3",
"1",
"0",
"1",
"2",
"1",
"4",
"3",
"3",
"5",
"3",
"3",
"6",
"2",
"3",
"3",
"3",
"2",
"3",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"3",
"3",
"2",
"3",
"2",
"3",
"2",
"3",
"3",
"2"
] | [
"nonn"
] | 10 | 1 | 2 | [
"A002234",
"A003261",
"A061411",
"A061414",
"A382119",
"A382447"
] | null | Juri-Stepan Gerasimov, Mar 26 2025 | 2025-04-01T21:30:49 | oeisdata/seq/A382/A382447.seq | 8c7dc6c36424ae196fac7e03ed5eb2b8 |
A382448 | Triangle read by rows, defined by the two-variable g.f. (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"6",
"1",
"1",
"8",
"15",
"8",
"1",
"1",
"10",
"29",
"29",
"10",
"1",
"1",
"12",
"47",
"73",
"47",
"12",
"1",
"1",
"14",
"69",
"149",
"149",
"69",
"14",
"1",
"1",
"16",
"95",
"265",
"371",
"265",
"95",
"16",
"1",
"1",
"18",
"125",
"429",
"785",
"785",
"429",
"125",
"18",
"1",
"1",
"20",
"159",
"649",
"1479",
"1941",
"1479",
"649",
"159",
"20",
"1"
] | [
"nonn",
"tabl"
] | 12 | 0 | 5 | [
"A008288",
"A103450",
"A105082",
"A382436",
"A382444",
"A382448"
] | null | F. Chapoton, Mar 26 2025 | 2025-03-27T10:12:29 | oeisdata/seq/A382/A382448.seq | 7fc7d1feed5a53f69287adf16f508f7a |
A382449 | Expansion of e.g.f. exp( x/(1-2*x)^(3/2) ). | [
"1",
"1",
"7",
"64",
"745",
"10576",
"177121",
"3414622",
"74389729",
"1805424040",
"48264466321",
"1408241206186",
"44508262018177",
"1514115583435924",
"55142123112150985",
"2139885098048098486",
"88128888655032851521",
"3838126991973342097072",
"176206944426651875454049"
] | [
"nonn",
"easy"
] | 32 | 0 | 3 | [
"A001879",
"A362204",
"A382449"
] | null | Seiichi Manyama, Apr 03 2025 | 2025-04-13T03:25:29 | oeisdata/seq/A382/A382449.seq | 2fdd34623ab61095f11d137f9d5e042b |
A382451 | Centered pentagonal numbers which are the products of four distinct primes. | [
"5406",
"12426",
"20026",
"23766",
"40641",
"55131",
"83266",
"115026",
"118266",
"136306",
"142206",
"145806",
"176226",
"184281",
"205206",
"209526",
"245706",
"279726",
"284766",
"315951",
"326706",
"371526",
"387106",
"407031",
"413106",
"419226",
"425391",
"498406",
"505126",
"553426",
"623751",
"638826",
"672106",
"685131"
] | [
"nonn"
] | 8 | 1 | 1 | [
"A005891",
"A046386",
"A364610",
"A382451"
] | null | Massimo Kofler, Mar 26 2025 | 2025-03-31T21:27:11 | oeisdata/seq/A382/A382451.seq | a6b0aae4914fea927e94bc6193604bd4 |
A382452 | Number of self numbers <= 10^n. | [
"5",
"13",
"102",
"983",
"9784",
"97786",
"977787",
"9777788",
"97777789",
"977777790",
"9777777791"
] | [
"nonn",
"base",
"more"
] | 14 | 1 | 1 | [
"A003052",
"A382452"
] | null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-01T23:14:31 | oeisdata/seq/A382/A382452.seq | 1dd66e19fd9b66d49904f26092dcc52d |
A382453 | Lexicographically earliest sequence of distinct terms such that no term is a substring of the sum of any two terms. | [
"1",
"3",
"21",
"23",
"25",
"39",
"41",
"43",
"45",
"47",
"49",
"221",
"223",
"241",
"243",
"2001",
"2003",
"2021",
"2023",
"2025",
"2039",
"2041",
"2043",
"2045",
"2047",
"2049",
"2221",
"2223",
"2241",
"2243",
"2601",
"2603",
"2621",
"2623",
"2639",
"2641",
"2643",
"2645",
"4001",
"4003",
"4021",
"4023",
"4025",
"4039",
"4041",
"4043",
"4045",
"4047"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A381242",
"A382453"
] | null | Dominic McCarty, Mar 26 2025 | 2025-03-26T21:47:47 | oeisdata/seq/A382/A382453.seq | c5b6282be896627ccf4eeb70e2b48361 |
A382455 | Order 3 perimeter magic squares of magic sum n, all elements distinct and 1 in the set; bracelet symmetry. | [
"3",
"9",
"23",
"45",
"75",
"109",
"178",
"220",
"324",
"403",
"545",
"623",
"872",
"945",
"1238",
"1397",
"1725",
"1878",
"2390",
"2530",
"3087",
"3317",
"3968",
"4212",
"5057",
"5256",
"6186",
"6569",
"7569",
"7893",
"9201",
"9511",
"10890",
"11359",
"12863",
"13340",
"15135",
"15543",
"17492",
"18145",
"20170",
"20739",
"23212",
"23784",
"26325",
"27100",
"29813",
"30598",
"33727"
] | [
"nonn"
] | 6 | 12 | 1 | [
"A084569",
"A380962",
"A382455"
] | null | R. J. Mathar, Mar 26 2025 | 2025-03-26T13:26:16 | oeisdata/seq/A382/A382455.seq | ef79a52171cdd3e5b4cf69039895d735 |
A382456 | Number of self-primes <= 10^n. | [
"3",
"6",
"21",
"115",
"836",
"6943",
"63113",
"585517",
"5263827",
"45808290",
"398309972"
] | [
"nonn",
"base",
"more"
] | 5 | 1 | 1 | [
"A003052",
"A006378",
"A006880",
"A382452",
"A382456"
] | null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-01T23:15:12 | oeisdata/seq/A382/A382456.seq | 125d720e6c9bcd967defa2140ecd2143 |
A382457 | Number of twin self-primes <= 10^n. | [
"2",
"2",
"2",
"2",
"12",
"87",
"534",
"3683",
"27738",
"231431",
"2061879"
] | [
"nonn",
"base",
"more"
] | 11 | 1 | 1 | [
"A003052",
"A006378",
"A006880",
"A007508",
"A380713",
"A380715",
"A382452",
"A382456",
"A382457"
] | null | Shyam Sunder Gupta, Mar 27 2025 | 2025-04-04T04:18:17 | oeisdata/seq/A382/A382457.seq | 99917ecdfbc47bf729978c14578c354d |
A382458 | Number of normal multisets of size n that can be partitioned into a set of sets in exactly one way. | [
"1",
"1",
"0",
"2",
"1",
"3",
"0",
"7",
"3",
"11",
"18",
"9"
] | [
"nonn",
"more"
] | 8 | 0 | 4 | [
"A000045",
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A296120",
"A302478",
"A302494",
"A317532",
"A318360",
"A318361",
"A326519",
"A358914",
"A381633",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382428",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
] | null | Gus Wiseman, Mar 30 2025 | 2025-03-31T21:55:36 | oeisdata/seq/A382/A382458.seq | ff5076f81032893e2118e5c54f1080fe |
A382459 | Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way. | [
"1",
"1",
"0",
"2",
"1",
"3",
"2",
"7",
"4",
"10",
"19"
] | [
"nonn",
"more"
] | 7 | 0 | 4 | [
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A296120",
"A302478",
"A302494",
"A317532",
"A318360",
"A318361",
"A321469",
"A326519",
"A358914",
"A381078",
"A381441",
"A381633",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382202",
"A382214",
"A382216",
"A382428",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
] | null | Gus Wiseman, Apr 01 2025 | 2025-04-03T20:34:46 | oeisdata/seq/A382/A382459.seq | 7d52eecd41ae6645d132743b664e5a23 |
A382460 | Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way. | [
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"6",
"5",
"10",
"10",
"13",
"15",
"22",
"20",
"32",
"32",
"43",
"49",
"65",
"64",
"92",
"96",
"121",
"140",
"173",
"192"
] | [
"nonn",
"more"
] | 7 | 0 | 5 | [
"A000009",
"A000041",
"A002846",
"A047966",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A213427",
"A265947",
"A270995",
"A279785",
"A293243",
"A293511",
"A296119",
"A296120",
"A299202",
"A302478",
"A317142",
"A318360",
"A318361",
"A358914",
"A381441",
"A381454",
"A381633",
"A381636",
"A381718",
"A381806",
"A381870",
"A381990",
"A381991",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382301",
"A382460"
] | null | Gus Wiseman, Mar 29 2025 | 2025-03-31T21:55:50 | oeisdata/seq/A382/A382460.seq | 0299474ae9b4cc7a1262b77238e94695 |
A382461 | a(n) is the smallest number whose sum of digits is 2^n. | [
"1",
"2",
"4",
"8",
"79",
"5999",
"19999999",
"299999999999999",
"49999999999999999999999999999",
"899999999999999999999999999999999999999999999999999999999",
"799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999"
] | [
"nonn",
"base",
"easy"
] | 10 | 0 | 2 | [
"A000079",
"A007953",
"A051885",
"A054750",
"A060712",
"A136308",
"A180083",
"A382461"
] | null | Stefano Spezia, Mar 27 2025 | 2025-03-30T09:53:19 | oeisdata/seq/A382/A382461.seq | e7cce4e080d23acfaee46d2bad7e23dd |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.