sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A382358
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the variation of the Josephus elimination process for n people, where in each round, the first person is skipped, the second eliminated and the third is skipped.
[ "1", "2", "1", "2", "3", "1", "2", "1", "3", "4", "2", "5", "4", "1", "3", "2", "5", "3", "1", "4", "6", "2", "5", "1", "6", "4", "7", "3", "2", "5", "8", "4", "1", "7", "3", "6", "2", "5", "8", "3", "7", "4", "1", "6", "9", "2", "5", "8", "1", "6", "10", "7", "4", "9", "3", "2", "5", "8", "11", "4", "9", "3", "10", "7", "1", "6", "2", "5", "8", "11", "3", "7", "12", "6", "1", "10", "4", "9", "2", "5", "8", "11", "1", "6", "10", "3", "9", "4", "13", "7", "12" ]
[ "nonn", "tabl" ]
13
1
2
[ "A006257", "A225381", "A321298", "A378635", "A382354", "A382355", "A382356", "A382358" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025
2025-04-05T23:40:52
oeisdata/seq/A382/A382358.seq
3f89fda4633a3d309fe0458c4d2b6e1b
A382359
Number of labeled deterministic finite automata with n states and two letters.
[ "2", "128", "17496", "4194304", "1562500000", "835884417024", "607687873272704", "576460752303423488", "691636079448571949568", "1024000000000000000000000", "1833841138186726138360895488", "3907429033741066770846918377472", "9769232732262334599652925506494464" ]
[ "nonn" ]
10
1
1
[ "A036289", "A062206", "A155957", "A382359" ]
null
Anand Jain, Mar 22 2025
2025-03-30T15:28:00
oeisdata/seq/A382/A382359.seq
a6cd77b0ccf6da74bf83b9d8bd81f335
A382360
a(n) is the unique k such that A382357(k) = 2^n.
[ "1", "2", "5", "6", "27", "28", "87", "88", "371", "372", "1303", "1304", "5717", "5718", "27099", "27100", "100637", "100638", "429041", "429042", "1676037", "1676038", "6566201", "6566202", "26703687", "26703688", "105939329", "105939330", "424972311", "424972312", "1688465121", "1688465122", "6744826613", "6744826614" ]
[ "nonn", "base" ]
6
0
2
[ "A382357", "A382360" ]
null
Rémy Sigrist, Mar 22 2025
2025-03-26T16:16:57
oeisdata/seq/A382/A382360.seq
9fa0cd538c3aef37d2123f36c780505b
A382362
Number of oriented Eulerian circuits from a fixed start vertex in the complete digraph K_n, counting distinct first arcs.
[ "1", "6", "768", "3888000", "1238347284480", "36133511823360000000", "132525036775962102988800000000", "80290170669240213088301154828288000000000", "10219925826442937385376011199621103616000000000000000000", "338787616987540767092926393308400759448386388551011812769792000000000000" ]
[ "nonn", "walk" ]
32
2
2
[ "A000272", "A124355", "A135388", "A232545", "A369820", "A382362" ]
null
Florian Ragwitz, Mar 23 2025
2025-03-25T19:51:09
oeisdata/seq/A382/A382362.seq
e8d638497a13af437b1b001a1eb3dcba
A382363
Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.
[ "1", "0", "1", "0", "1", "1", "0", "2", "2", "1", "0", "8", "7", "3", "1", "0", "64", "44", "15", "4", "1", "0", "1024", "508", "129", "26", "5", "1", "0", "32768", "10976", "1962", "284", "40", "6", "1", "0", "2097152", "450496", "54036", "5371", "530", "57", "7", "1", "0", "268435456", "35535872", "2747880", "180424", "11995", "888", "77", "8", "1", "0", "68719476736", "5435551744", "262091808", "10997576", "476165", "23409", "1379", "100", "9", "1" ]
[ "nonn", "tabl" ]
29
0
8
[ "A006125", "A382223", "A382363" ]
null
Geoffrey Critzer, Mar 23 2025
2025-03-24T06:12:39
oeisdata/seq/A382/A382363.seq
6357ba9a817abe3ce2acf135f2e9add1
A382364
a(n) is the smallest squarefree number k such that the sum of the digit counts of the prime factors of k equals the sum of n and the digit count of k
[ "6", "66", "858", "72930", "6374082", "643782282", "66309575046" ]
[ "nonn", "base", "more" ]
52
1
1
[ "A055642", "A095411", "A382364" ]
null
Jean-Marc Rebert, Mar 24 2025
2025-04-08T23:29:22
oeisdata/seq/A382/A382364.seq
95299ff35d13de19a40381d7e94c920e
A382365
Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/2).
[ "1", "2", "10", "46", "232", "1174", "6078", "31786", "167836", "892258", "4770466", "25622286", "138146540", "747253022", "4053224974", "22038282338", "120079277626", "655486778654", "3584062901182", "19625809294386", "107610733877720", "590751275348362", "3246588926918074", "17860031073624694" ]
[ "nonn" ]
8
0
2
[ "A327736", "A382187", "A382365", "A382366" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:26
oeisdata/seq/A382/A382365.seq
b99e5700667b91b0d8388a7ce150dd31
A382366
Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/3).
[ "1", "3", "24", "201", "1818", "17004", "163068", "1590798", "15718899", "156860076", "1577644998", "15969030780", "162498057048", "1660951840611", "17042090466264", "175436835017475", "1811209862304735", "18746380864328061", "194465530800628908", "2021343414865754583", "21048513676138546848" ]
[ "nonn" ]
8
0
2
[ "A327736", "A382188", "A382365", "A382366" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:22
oeisdata/seq/A382/A382366.seq
df4587af38248644632f55e65fb0a447
A382367
Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ).
[ "1", "1", "2", "5", "10", "21", "46", "97", "206", "442", "940", "2002", "4272", "9103", "19400", "41360", "88156", "187901", "400534", "853747", "1819782", "3878965", "8268160", "17623888", "37566072", "80073580", "170680002", "363811370", "775478548", "1652963605", "3523358532", "7510180375", "16008251264", "34122231512" ]
[ "nonn" ]
11
0
3
[ "A051064", "A327736", "A382367", "A382368", "A382369", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:18
oeisdata/seq/A382/A382367.seq
55adb4d6d72daeab93ea2fe495dc7bcb
A382368
Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/2).
[ "1", "2", "8", "36", "162", "750", "3536", "16858", "81100", "392914", "1914268", "9369190", "46032396", "226898158", "1121510176", "5556731592", "27589816042", "137240945530", "683808343416", "3412128301538", "17048743841882", "85286538527304", "427112389604968", "2141096012912290", "10743017708448232" ]
[ "nonn" ]
7
0
2
[ "A382367", "A382368", "A382369" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:13
oeisdata/seq/A382/A382368.seq
97e5237b9c241f7cc9f0daa6c5a24dba
A382369
Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/3).
[ "1", "3", "21", "168", "1416", "12396", "111219", "1015221", "9386643", "87650775", "824926152", "7813623234", "74403686022", "711670543635", "6833183666862", "65826593737206", "635962416394296", "6159757277793783", "59796182640515031", "581643107427461664", "5667929195670139296", "55322424966010598556" ]
[ "nonn" ]
8
0
2
[ "A382367", "A382368", "A382369" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:09
oeisdata/seq/A382/A382369.seq
cd332ce099938b75bc8dc8e782f543a9
A382370
Numbers k such that (k - 1)^(k + 1) - k is prime.
[ "3", "4", "5", "7", "10", "11", "21", "46", "59", "839", "21920" ]
[ "nonn", "more" ]
18
1
1
[ "A238378", "A240532", "A382370" ]
null
Juri-Stepan Gerasimov, Mar 23 2025
2025-04-05T16:40:45
oeisdata/seq/A382/A382370.seq
4d750f13b3d904b84e0484ec4cc660f0
A382371
Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as large as possible. If no digits remain, a(n)=0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "2", "3", "4", "5", "6", "7", "8", "9", "2", "2", "0", "3", "4", "5", "6", "7", "8", "9", "3", "3", "3", "0", "4", "5", "6", "7", "8", "9", "4", "4", "4", "4", "0", "5", "6", "7", "8", "9", "5", "5", "5", "5", "5", "0", "6", "7", "8", "9", "6", "6", "6", "6", "6", "6", "0", "7", "8", "9", "7", "7", "7", "7", "7", "7", "7", "0", "8", "9", "8", "8", "8", "8", "8", "8", "8", "8" ]
[ "nonn", "base", "look" ]
12
1
12
[ "A010785", "A382102", "A382371" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-23T23:22:39
oeisdata/seq/A382/A382371.seq
5ead58ffced734a88759289cf8fdfa00
A382372
Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ).
[ "1", "1", "2", "4", "9", "18", "37", "76", "158", "325", "670", "1381", "2850", "5876", "12117", "24986", "51530", "106262", "219131", "451885", "931876", "1921695", "3962884", "8172182", "16852538", "34752996", "71667001", "147790386", "304770689", "628492615", "1296066140", "2672724207", "5511643710", "11366012289" ]
[ "nonn" ]
13
0
3
[ "A115362", "A327736", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:08:05
oeisdata/seq/A382/A382372.seq
505344931cf62480581d920f4b13929a
A382373
Expansion of 1/( 1 - Sum_{k>=0} x^(5^k) / (1 - x^(5^k)) ).
[ "1", "1", "2", "4", "8", "17", "34", "69", "140", "284", "578", "1173", "2382", "4837", "9822", "19948", "40508", "82261", "167050", "339233", "688896", "1398964", "2840926", "5769169", "11715654", "23791402", "48314044", "98113049", "199241660", "404607125", "821650100", "1668554099", "3388392198", "6880928638", "13973346686" ]
[ "nonn" ]
9
0
3
[ "A055457", "A327736", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:08:01
oeisdata/seq/A382/A382373.seq
9b5051d25915d966c67bf31f06ed1858
A382374
Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of adjacent terms differ exactly by one.
[ "1", "2", "4", "3", "6", "5", "9", "7", "10", "8", "14", "11", "15", "12", "16", "18", "21", "13", "22", "17", "25", "19", "26", "20", "24", "27", "33", "23", "34", "28", "35", "29", "38", "30", "36", "32", "40", "42", "39", "31", "46", "37", "49", "41", "51", "43", "55", "44", "54", "45", "56", "48", "60", "50", "57", "47", "58", "52", "62", "53", "65", "59", "69", "61", "74", "63", "77" ]
[ "nonn" ]
11
1
2
[ "A001222", "A382229", "A382357", "A382374", "A382375", "A382376" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T18:19:42
oeisdata/seq/A382/A382374.seq
2df6463255a6033f28f29d76fe9915c7
A382375
Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of n and a(n) differ exactly by one.
[ "2", "1", "4", "3", "6", "5", "9", "10", "7", "8", "14", "15", "21", "11", "12", "18", "22", "16", "25", "24", "13", "17", "26", "20", "19", "23", "33", "34", "35", "36", "38", "40", "27", "28", "29", "30", "39", "31", "37", "32", "46", "49", "51", "54", "55", "41", "57", "56", "42", "58", "43", "60", "62", "44", "45", "48", "47", "50", "65", "52", "69", "53", "74", "72", "59", "77", "82" ]
[ "nonn" ]
11
1
1
[ "A001222", "A382374", "A382375", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T20:56:04
oeisdata/seq/A382/A382375.seq
cd7928aa0262d604d32e1866efe88113
A382376
Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of adjacent terms differ exactly by one.
[ "1", "2", "6", "3", "10", "4", "12", "5", "14", "7", "15", "8", "18", "9", "20", "11", "21", "13", "22", "16", "24", "17", "26", "19", "28", "23", "33", "25", "34", "27", "35", "29", "36", "30", "38", "31", "39", "32", "40", "37", "44", "41", "45", "42", "46", "43", "48", "47", "50", "49", "51", "53", "52", "59", "54", "60", "55", "61", "56", "64", "57", "66", "58", "67", "62", "70", "63" ]
[ "nonn" ]
12
1
2
[ "A001221", "A382357", "A382374", "A382376", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T17:49:13
oeisdata/seq/A382/A382376.seq
9c4804551098d496741c73e50e65f7ba
A382377
Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of n and a(n) differ exactly by one.
[ "2", "1", "6", "10", "12", "3", "14", "15", "18", "4", "20", "5", "21", "7", "8", "22", "24", "9", "26", "11", "13", "16", "28", "17", "33", "19", "34", "23", "35", "36", "38", "39", "25", "27", "29", "30", "40", "31", "32", "37", "44", "45", "46", "41", "42", "43", "48", "47", "50", "49", "53", "59", "51", "60", "61", "64", "66", "67", "52", "54", "55", "70", "71", "56", "73", "57", "58" ]
[ "nonn" ]
12
1
1
[ "A001221", "A382375", "A382376", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T17:49:09
oeisdata/seq/A382/A382377.seq
2021af161550acfd62e11b5a26cc572d
A382378
Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).
[ "1", "1", "2", "4", "8", "16", "33", "66", "133", "268", "540", "1088", "2194", "4421", "8910", "17957", "36190", "72936", "146996", "296252", "597061", "1203306", "2425121", "4887544", "9850272", "19852060", "40009486", "80634401", "162509126", "327517977", "660073866", "1330301036", "2681064864", "5403370072", "10889855193", "21947218962" ]
[ "nonn" ]
8
0
3
[ "A122841", "A327736", "A373216", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:07:57
oeisdata/seq/A382/A382378.seq
d72f88666fa96ffd016820e52c06d00d
A382379
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "3", "4", "5", "1", "0", "1", "5", "12", "13", "7", "24", "25", "13", "84", "85", "21", "220", "221", "35", "612", "613", "57", "1624", "1625", "93", "4324", "4325", "151", "11400", "11401", "245", "30012", "30013", "397", "78804", "78805", "643", "206724", "206725", "1041", "541840", "541841", "1685", "1419612", "1419613", "2727", "3718264", "3718265" ]
[ "nonn", "easy", "tabf" ]
20
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-31T01:59:10
oeisdata/seq/A382/A382379.seq
49198f7bdf5c275b6284f0024edbc014
A382380
Greater of twin self numbers, i.e., larger member of the pair of self numbers differing by 2.
[ "3", "5", "7", "9", "110", "211", "312", "413", "514", "615", "716", "817", "918", "1111", "1212", "1313", "1414", "1515", "1616", "1717", "1818", "1919", "2112", "2213", "2314", "2415", "2516", "2617", "2718", "2819", "2920", "3113", "3214", "3315", "3416", "3517", "3618", "3719", "3820", "3921", "4114", "4215", "4316", "4417", "4518", "4619", "4720", "4821", "4922", "5115", "5216", "5317", "5418" ]
[ "nonn", "base", "changed" ]
16
1
1
[ "A003052", "A374101", "A382380" ]
null
Shyam Sunder Gupta, Mar 23 2025
2025-04-25T20:40:41
oeisdata/seq/A382/A382380.seq
d4389bc35b8c50e9cce4ef5cfa90c455
A382381
Lexicographically earliest sequence of distinct positive integers such that any two subsets with at least two terms have distinct variances.
[ "1", "2", "4", "8", "16", "25", "36", "62", "136", "320", "411", "1208", "1295", "4179", "5143", "6380", "31370", "34425", "36094", "213044", "218759", "306722" ]
[ "nonn", "hard", "more" ]
20
1
2
[ "A138857", "A260873", "A381856", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-04-07T17:46:47
oeisdata/seq/A382/A382381.seq
6a63e4d80cd29ef6f5625a5b26998766
A382382
Least k for which there exists an n-subset X of {0, ..., k} such that the variances of the subsets of X of size at least 2 are distinct.
[ "0", "1", "3", "6", "11", "17", "27", "48" ]
[ "nonn", "more" ]
9
1
3
[ "A003022", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-03-29T15:31:49
oeisdata/seq/A382/A382382.seq
5522d70a8b273ea224afe88a02b84a0e
A382383
Number of distinct variances of nonempty subsets of {1, ..., n}.
[ "0", "1", "2", "4", "7", "13", "23", "40", "68", "124", "208", "368", "559", "918", "1352", "2017", "2891", "4122", "5506", "7458", "9623", "12620", "16125", "20626", "25401", "31513", "38587", "47244", "56592", "68021", "80503", "95859", "112137", "131986", "153353", "178434", "205627", "236266", "269884", "307167", "346844", "394924", "445797", "501739" ]
[ "nonn" ]
23
0
3
[ "A005418", "A135342", "A208531", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-04-06T06:37:33
oeisdata/seq/A382/A382383.seq
6f7ffa59ab1ce33b11bb41b31ed390c0
A382384
Number of minimum connected dominating sets in the n-Goldberg graph.
[ "6", "96", "290", "744" ]
[ "nonn", "more" ]
4
3
1
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-23T08:34:33
oeisdata/seq/A382/A382384.seq
03f1482689571be6c25f0fcb3934eb82
A382385
Number of minimum dominating sets in the n X n fiveleaper graph.
[ "1", "1", "1", "1", "1", "112", "12", "32" ]
[ "nonn", "more" ]
14
1
6
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-23T18:28:11
oeisdata/seq/A382/A382385.seq
f0324f3bb21f37318173ea3e9f759876
A382386
Number of minimum dominating sets in the n X n giraffe graph.
[ "1", "1", "1", "1", "56", "172", "14", "152", "18", "56", "2", "192", "224" ]
[ "nonn", "more" ]
18
1
5
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-24T09:25:50
oeisdata/seq/A382/A382386.seq
0614dd5b3978bb756b937521d3049a7b
A382387
Number of minimum dominating sets in the n X n zebra graph.
[ "1", "1", "1", "1", "448", "28", "552", "25", "1588", "1028", "6", "656", "40" ]
[ "nonn", "more" ]
19
1
5
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-29T07:49:35
oeisdata/seq/A382/A382387.seq
c7f07b23a83a4fb4d6d7a85dde580d11
A382388
Number of minimum dominating sets in the n X n antelope graph.
[ "1", "1", "1", "1", "1", "81", "1344", "32" ]
[ "nonn", "more" ]
16
1
6
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-30T09:52:24
oeisdata/seq/A382/A382388.seq
7f00ebe7e170c2bf1cd038e9c5b7e246
A382389
Numbers k such that k, prime(k) and primepi(reverse(prime(k))) are emirps (A006567).
[ "7673", "9001", "12491", "17749", "31481", "75041", "93887", "95881", "102061", "104479", "112621", "113557", "118429", "139999", "722713", "743891", "749927", "999133", "1001941", "1086353", "1115071", "1165511", "1233907", "1861913", "1861973", "1881697", "1927903", "1972259" ]
[ "nonn", "base" ]
6
1
1
[ "A006567", "A382389" ]
null
Ivan N. Ianakiev, Mar 23 2025
2025-03-27T10:13:52
oeisdata/seq/A382/A382389.seq
54f2dee648fcafc20d6f090812730a8f
A382390
Number of minimum dominating sets in the n X n camel graph.
[ "1", "1", "1", "9", "92", "4", "4", "16", "48", "576" ]
[ "nonn", "more" ]
10
1
4
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-23T17:01:53
oeisdata/seq/A382/A382390.seq
52fb1b3fc715661432a40a31970ba337
A382391
Numbers k such that (23^k - 3^k)/20 is prime.
[ "3", "7", "31", "47", "109", "151", "223", "463", "739", "6427", "17581", "30517" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A382391" ]
null
Robert Price, Mar 23 2025
2025-03-23T12:53:28
oeisdata/seq/A382/A382391.seq
798d7a988353dd62e2826e913408826b
A382392
a(n) is the least prime number whose factorial base expansion contains the digit n.
[ "2", "2", "5", "19", "97", "601", "4327", "35281", "322571", "3265949", "36288017", "439084817", "5748019201", "80951270459", "1220496076831", "19615115520037", "334764638208037", "6046686277632071", "115242726703104073", "2311256907767808001", "48658040163532800037", "1072909785605898240031" ]
[ "nonn", "base" ]
7
0
1
[ "A001563", "A062584", "A090703", "A382392" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-24T15:14:57
oeisdata/seq/A382/A382392.seq
f4f3aa49935d772f96147e5153deb8a7
A382393
Positive integers k such that 6*k - 1 is prime for k != 1 (mod 5) and (6*k - 1)/5 is prime for k == 1 (mod 5).
[ "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "14", "15", "16", "17", "18", "19", "22", "23", "25", "26", "28", "29", "30", "31", "32", "33", "36", "38", "39", "40", "42", "43", "44", "45", "47", "49", "51", "52", "53", "56", "58", "59", "60", "61", "64", "65", "66", "67", "70", "72", "74", "75", "77", "78", "80", "81", "82", "84", "85", "86", "87", "91", "93", "94", "95", "98", "99", "100" ]
[ "nonn" ]
10
1
1
[ "A024898", "A024899", "A382393" ]
null
V. Barbera, Mar 23 2025
2025-03-30T16:26:14
oeisdata/seq/A382/A382393.seq
73498a8e8d7fd3c689e8a9d312044890
A382394
a(n) = Sum_{k=0..n} A128899(n,k)^3.
[ "1", "1", "9", "190", "5705", "204876", "8209278", "354331692", "16140234825", "765868074400", "37525317999884", "1886768082651816", "96906387191038334", "5066711735118128200", "268954195756648761900", "14464077426547576156440", "786729115199980286001225", "43219452658242723841261800" ]
[ "nonn" ]
24
0
3
[ "A001700", "A003161", "A024492", "A088218", "A128899", "A183069", "A382394" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:21:57
oeisdata/seq/A382/A382394.seq
aba92305a487f21c90bb2f4df870f682
A382395
Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different difference.
[ "1", "1", "1", "3", "2", "6", "14", "2", "10", "26", "60", "110", "4", "22", "68", "156", "320", "584", "8", "24", "80", "206", "504", "1004", "1910", "3380", "10", "34", "98", "282", "760", "1618", "3334", "6360", "11482", "2", "22", "70", "214", "540", "1250", "2718", "5712", "10910", "20418", "2", "12", "30", "90", "230", "562", "1228", "2690", "5550", "11260", "21164", "2", "4", "6", "10", "18" ]
[ "nonn" ]
10
0
4
[ "A143823", "A143824", "A325879", "A377410", "A382395", "A382396", "A382398" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:13
oeisdata/seq/A382/A382395.seq
7e8dac18ca1659a3989411cbd6400820
A382396
Number of minimum sized maximal subsets of {1..n} such that every pair of distinct elements has a different difference.
[ "1", "1", "1", "3", "1", "6", "14", "18", "14", "10", "4", "110", "172", "216", "226", "214", "184", "152", "116", "82", "50", "26", "10", "3696", "3904", "3942", "3768", "3504", "3016", "2548", "2060", "1598", "1170", "832", "538", "330", "196", "106", "52", "20", "10", "4", "2", "69610", "62594", "55294", "47610", "40502", "33538", "27254", "21544", "16764", "12676", "9258", "6534", "4516", "3042", "1990", "1254", "754", "448" ]
[ "nonn" ]
8
0
4
[ "A143823", "A325879", "A377419", "A382395", "A382396", "A382397" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:09
oeisdata/seq/A382/A382396.seq
a9d3a1770ea163ddde288a7fa49684c1
A382397
Minimum size of a maximal subset of {1..n} such that every pair of distinct elements has a different difference.
[ "0", "1", "2", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6" ]
[ "nonn", "more" ]
8
0
3
[ "A143824", "A325879", "A377419", "A382396", "A382397" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:04
oeisdata/seq/A382/A382397.seq
056b3d49694c964d004da269911beb29
A382398
Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different sum.
[ "1", "1", "1", "1", "4", "2", "8", "22", "2", "14", "40", "102", "214", "4", "24", "92", "236", "564", "1148", "4", "18", "90", "270", "694", "1558", "2", "6", "24", "76", "252", "632", "1554", "3282", "6820", "12942", "6", "24", "84", "246", "664", "1562", "3442", "7084", "14336", "27202", "50520", "2", "26", "88", "294", "704", "1716", "3708", "8028", "16108", "31466", "58320", "107136", "4", "20", "54" ]
[ "nonn" ]
6
0
5
[ "A039836", "A196723", "A325878", "A382395", "A382398" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:17
oeisdata/seq/A382/A382398.seq
695d768bce68940efc844fe67152c5e2
A382399
Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference.
[ "1", "2", "3", "7", "9", "16", "19", "43", "49", "100", "91", "177", "193", "352", "323", "691", "673", "1242", "1135", "2129", "2041", "3634", "3103", "5843", "5473", "9326", "8139", "16579", "14001", "24796", "21271", "38813", "34369", "60292", "49539", "86451", "81361", "131684", "110391", "196717", "171761", "286878", "236167", "419337", "370569", "618346", "501999", "872415", "763777", "1235438", "1028451" ]
[ "nonn" ]
12
0
2
[ "A143823", "A325679", "A325681", "A382399", "A382400" ]
null
Andrew Howroyd, Mar 24 2025
2025-03-27T18:33:31
oeisdata/seq/A382/A382399.seq
4fd5ec0c7e4d0b9e1d0858d2537f84c8
A382400
Number of subsets of Z_n such that every ordered pair of distinct elements has a different sum.
[ "1", "2", "4", "8", "15", "26", "48", "78", "133", "202", "316", "474", "755", "1054", "1604", "2196", "3305", "4370", "6208", "8228", "11631", "15086", "20912", "26842", "37581", "46626", "64052", "79984", "109635", "133314", "176156", "217094", "291409", "343872", "457828", "547576", "718375", "852074", "1112128", "1308230", "1714741" ]
[ "nonn" ]
6
0
2
[ "A000125", "A196723", "A382399", "A382400" ]
null
Andrew Howroyd, Mar 27 2025
2025-03-27T18:33:24
oeisdata/seq/A382/A382400.seq
259245e6bec8a53c7832ce680d876994
A382401
a(n) is the number formed by removing all copies of the smallest digit of n, or 0 if no digits remain.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "2", "3", "4", "5", "6", "7", "8", "9", "2", "2", "0", "3", "4", "5", "6", "7", "8", "9", "3", "3", "3", "0", "4", "5", "6", "7", "8", "9", "4", "4", "4", "4", "0", "5", "6", "7", "8", "9", "5", "5", "5", "5", "5", "0", "6", "7", "8", "9", "6", "6", "6", "6", "6", "6", "0", "7", "8", "9", "7", "7", "7", "7", "7", "7", "7", "0", "8", "9", "8", "8", "8", "8", "8", "8", "8", "8", "0", "9", "9", "9", "9", "9", "9", "9", "9", "9", "9", "0", "1", "11", "12", "13", "14", "15", "16", "17", "18", "19", "11", "0", "2", "3", "4", "5", "6", "7", "8", "9", "12" ]
[ "nonn", "base", "look" ]
22
1
12
[ "A054054", "A382056", "A382371", "A382401" ]
null
Paolo Xausa, Mar 23 2025
2025-03-24T05:57:32
oeisdata/seq/A382/A382401.seq
5df139c5127d443f18a0fc3d6093053a
A382402
Numbers divisible by the product of their digits (mod 10).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "12", "15", "24", "26", "34", "35", "37", "48", "55", "62", "64", "66", "72", "73", "75", "76", "78", "84", "88", "95", "96", "98", "99", "111", "112", "115", "126", "132", "134", "135", "136", "137", "144", "148", "155", "162", "164", "168", "172", "173", "175", "176", "184", "188", "192", "195", "196", "198", "199", "212", "216", "228", "232", "244", "248", "264", "266" ]
[ "nonn", "base" ]
13
1
2
[ "A007602", "A064700", "A371281", "A382402" ]
null
Enrique Navarrete, Mar 23 2025
2025-03-31T02:14:55
oeisdata/seq/A382/A382402.seq
5f9aaaf9b25b66b6c7a04af91a9701c8
A382403
a(n) = Sum_{k=0..n} A039599(n,k)^3.
[ "1", "2", "36", "980", "33040", "1268568", "53105976", "2364239592", "110206067400", "5323547715200", "264576141331216", "13458185494436592", "697931136204820336", "36789784967375728400", "1966572261077797609200", "106400946932857148590800", "5817987630644593688220600", "321105713814359742307398480" ]
[ "nonn" ]
11
0
2
[ "A000984", "A039599", "A048990", "A112029", "A382403" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:22:02
oeisdata/seq/A382/A382403.seq
2c7cf39def2ef27972e2f19383764af6
A382404
a(n) = -Sum_{k=0..n} (-1)^k * A039599(n,k)^3.
[ "-1", "0", "18", "480", "11550", "275184", "6597360", "159629184", "3897563670", "95946708000", "2378998624860", "59359563244800", "1489281975509328", "37545821365718400", "950601539891016000", "24159023128878865920", "616066120184552310150", "15757649689979967739200" ]
[ "sign" ]
7
0
3
[ "A039599", "A382404" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:22:06
oeisdata/seq/A382/A382404.seq
e2756f980e52ee9ceb082fe89d85afaf
A382405
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k) * 2^(n-k).
[ "1", "4", "34", "352", "4006", "48184", "600916", "7687936", "100240198", "1326277144", "17753591164", "239915864896", "3267780399196", "44805617380528", "617844108170344", "8561667414341632", "119151750609504838", "1664497333624420888", "23330380347342383404", "327990673915214512192", "4623496960858710060916" ]
[ "nonn" ]
13
0
2
[ "A001850", "A005258", "A069835", "A274671", "A382405", "A382642" ]
null
Ilya Gutkovskiy, Apr 08 2025
2025-04-09T05:40:02
oeisdata/seq/A382/A382405.seq
3e852af8d22ee5de4f5dee0f83a8ce41
A382406
Expansion of 1/(1 - x*(1 + x)^2)^3.
[ "1", "3", "12", "37", "111", "315", "864", "2307", "6027", "15471", "39132", "97755", "241606", "591636", "1437078", "3465748", "8305161", "19788957", "46910232", "110686101", "260064912", "608684490", "1419591546", "3300027546", "7648265728", "17676484410", "40747630332", "93704299336", "214999206831", "492262973433" ]
[ "nonn", "easy" ]
60
0
2
[ "A000217", "A001628", "A002478", "A362126", "A382406", "A382614" ]
null
Seiichi Manyama, Mar 31 2025
2025-04-10T10:46:39
oeisdata/seq/A382/A382406.seq
716db09feab607b2730dea0f1cd3e81a
A382407
a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square.
[ "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "3", "0", "1", "1", "1", "2", "2", "2", "1", "1", "1", "1", "3", "0", "5", "1", "1", "2", "3", "3", "2", "1", "1", "3", "6", "1", "4", "2", "7", "4", "4", "0", "3", "5", "3", "4", "2", "1", "7", "2", "1", "5", "9", "3", "5", "3", "4", "1", "9", "2", "6", "3", "5", "6", "5", "4", "7", "5", "1", "5", "6", "3", "13", "7", "8", "4", "6", "0", "4", "4", "11", "5", "13", "2" ]
[ "nonn" ]
6
1
14
[ "A000244", "A005030", "A066955", "A069905", "A338939", "A375512", "A375576", "A375580", "A375731", "A382407" ]
null
Felix Huber, Apr 04 2025
2025-04-10T21:13:21
oeisdata/seq/A382/A382407.seq
51edd7d6e686b758d3494c8f78190a17
A382408
a(n) is the number of terms in A071174 whose radical is A144338(n).
[ "1", "1", "1", "5", "1", "9", "1", "1", "13", "14", "1", "1", "20", "21", "1", "25", "1", "406", "1", "32", "33", "34", "1", "37", "38", "1", "820", "1", "45", "1", "50", "1", "54", "56", "57", "1", "1", "61", "64", "2080", "1", "68", "2346", "1", "1", "73", "76", "2926", "1", "81", "1", "84", "85", "86", "1", "90", "92", "93", "94", "1", "1", "5050", "1", "5356", "105", "1", "1", "5886", "110" ]
[ "nonn", "changed" ]
11
1
4
[ "A007947", "A071174", "A144338", "A382408" ]
null
Felix Huber, Apr 04 2025
2025-04-26T03:33:06
oeisdata/seq/A382/A382408.seq
ef6cf61fe55dcd538ca7d1d53228a331
A382409
Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "6", "1", "15", "28", "91", "231", "630", "1653", "4371", "11476", "30135", "79003", "207046", "542361", "1420455", "3719628", "9739491", "25500511", "66764790", "174798253", "457637131", "1198124676", "3136755615", "8212172403", "21499810566", "56287338481", "147362333055", "385799868028", "1010037606571", "2644313494551", "6922903755510" ]
[ "nonn", "easy" ]
11
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-30T18:13:07
oeisdata/seq/A382/A382409.seq
c6b985e03ff5c7ae296a48476a8d9ff3
A382410
Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "6", "0", "30", "84", "546", "2310", "10710", "46284", "201066", "860700", "3676470", "15642594", "66461766", "282027720", "1196023110", "5069852964", "21485317146", "91036824270", "385700191830", "1634014069044", "6922219243506", "29324101445100", "124221795865230", "526219583239434", "2229121859293446", "9442763903572560" ]
[ "nonn", "easy" ]
9
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-30T18:13:31
oeisdata/seq/A382/A382410.seq
96cb86b52c92ce54155d7d43fc700e32
A382411
a(n) is the greatest possible length of a circular sequence on n symbols such that: no two adjacent symbols are the same, any group of n adjacent symbols contains at least n-1 different symbols, and all groups of n adjacent symbols within the sequence are unique.
[ "1", "2", "12", "96", "840", "7920", "80640", "887040", "10523520", "134265600", "1836172800", "26824089600", "417210393600", "6887085004800", "120306041856000", "2217815728128000", "43038178799616000", "877125197684736000", "18733345462960128000", "418459145406382080000", "9758369954796503040000", "237164153561075220480000" ]
[ "nonn", "easy" ]
27
1
2
[ "A000142", "A152947", "A382411" ]
null
Dean D. Ballard, Mar 24 2025
2025-04-08T13:20:11
oeisdata/seq/A382/A382411.seq
6eca51a0e0cd89010c7c6c685edb4ba1
A382412
Numbers with no zeros in their base-7 representation.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "15", "16", "17", "18", "19", "20", "22", "23", "24", "25", "26", "27", "29", "30", "31", "32", "33", "34", "36", "37", "38", "39", "40", "41", "43", "44", "45", "46", "47", "48", "57", "58", "59", "60", "61", "62", "64", "65", "66", "67", "68", "69", "71", "72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83", "85", "86", "87", "88", "89", "90" ]
[ "nonn", "base", "easy" ]
8
1
2
[ "A007093", "A023705", "A023721", "A032924", "A043393", "A052382", "A126646", "A248910", "A249102", "A255805", "A255808", "A382412", "A382413" ]
null
Paolo Xausa, Mar 24 2025
2025-03-26T21:48:43
oeisdata/seq/A382/A382412.seq
0d045db4aaba666e931336f7cba79522
A382413
Numbers with at least one zero in their base-7 representation.
[ "0", "7", "14", "21", "28", "35", "42", "49", "50", "51", "52", "53", "54", "55", "56", "63", "70", "77", "84", "91", "98", "99", "100", "101", "102", "103", "104", "105", "112", "119", "126", "133", "140", "147", "148", "149", "150", "151", "152", "153", "154", "161", "168", "175", "182", "189", "196", "197", "198", "199", "200", "201", "202", "203", "210", "217", "224", "231", "238" ]
[ "nonn", "base", "easy" ]
8
1
2
[ "A007093", "A011540", "A043393", "A062289", "A081605", "A196032", "A382412", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 24 2025
2025-03-26T21:48:50
oeisdata/seq/A382/A382413.seq
965dbf8e9bc5a6a75a7f9de5ec3b95e0
A382415
Numbers with at least one zero in their base-5 representation.
[ "0", "5", "10", "15", "20", "25", "26", "27", "28", "29", "30", "35", "40", "45", "50", "51", "52", "53", "54", "55", "60", "65", "70", "75", "76", "77", "78", "79", "80", "85", "90", "95", "100", "101", "102", "103", "104", "105", "110", "115", "120", "125", "126", "127", "128", "129", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "140", "141", "142", "143", "144", "145" ]
[ "nonn", "base", "easy" ]
7
1
2
[ "A007091", "A011540", "A023721", "A023722", "A062289", "A081605", "A196032", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 25 2025
2025-03-26T21:49:01
oeisdata/seq/A382/A382415.seq
a8a55e2253f3afcb7b9d717a421f7fc0
A382416
Numbers with at least one zero in their base-6 representation.
[ "0", "6", "12", "18", "24", "30", "36", "37", "38", "39", "40", "41", "42", "48", "54", "60", "66", "72", "73", "74", "75", "76", "77", "78", "84", "90", "96", "102", "108", "109", "110", "111", "112", "113", "114", "120", "126", "132", "138", "144", "145", "146", "147", "148", "149", "150", "156", "162", "168", "174", "180", "181", "182", "183", "184", "185", "186", "192", "198" ]
[ "nonn", "base", "easy" ]
6
1
2
[ "A007092", "A011540", "A043369", "A062289", "A081605", "A196032", "A248910", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 25 2025
2025-03-26T21:49:11
oeisdata/seq/A382/A382416.seq
44bfa9f93756b8a2ec9ba6eac2e4e758
A382417
Numbers with at least one zero in their base-8 representation.
[ "0", "8", "16", "24", "32", "40", "48", "56", "64", "65", "66", "67", "68", "69", "70", "71", "72", "80", "88", "96", "104", "112", "120", "128", "129", "130", "131", "132", "133", "134", "135", "136", "144", "152", "160", "168", "176", "184", "192", "193", "194", "195", "196", "197", "198", "199", "200", "208", "216", "224", "232", "240", "248", "256", "257", "258", "259", "260" ]
[ "nonn", "base", "easy" ]
6
1
2
[ "A007094", "A011540", "A043421", "A062289", "A081605", "A196032", "A255805", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 25 2025
2025-03-26T21:49:20
oeisdata/seq/A382/A382417.seq
6cf1b4c19a2d340e043f697e044cb15b
A382418
Numbers with at least one zero in their base-9 representation.
[ "0", "9", "18", "27", "36", "45", "54", "63", "72", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "99", "108", "117", "126", "135", "144", "153", "162", "163", "164", "165", "166", "167", "168", "169", "170", "171", "180", "189", "198", "207", "216", "225", "234", "243", "244", "245", "246", "247", "248", "249", "250", "251", "252", "261", "270", "279", "288", "297" ]
[ "nonn", "base", "easy" ]
6
1
2
[ "A007095", "A011540", "A043453", "A062289", "A081605", "A196032", "A255808", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 25 2025
2025-03-26T21:49:27
oeisdata/seq/A382/A382418.seq
b1ed4ece688a64be3b966d3e761f0e28
A382419
The product of exponents in the prime factorization of the cubefree numbers.
[ "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "2", "2", "4", "1", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A002117", "A004709", "A005361", "A330594", "A368712", "A376366", "A382419", "A382421", "A382422" ]
null
Amiram Eldar, Mar 25 2025
2025-03-25T10:11:40
oeisdata/seq/A382/A382419.seq
309877ce3f390f854f768261bf5f554f
A382420
The number of non-unitary prime divisors of the noncubefree numbers.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "2", "1", "1", "1" ]
[ "nonn", "easy" ]
7
1
11
[ "A002117", "A046099", "A085548", "A376366", "A382420" ]
null
Amiram Eldar, Mar 25 2025
2025-03-25T08:55:53
oeisdata/seq/A382/A382420.seq
27fd7c8fd575f7b665c6e29603f7b7d8
A382421
The product of exponents in the prime factorization of the noncubefree numbers.
[ "3", "4", "3", "3", "5", "3", "4", "3", "3", "6", "6", "4", "4", "3", "5", "3", "6", "4", "3", "3", "7", "3", "3", "8", "3", "5", "4", "3", "4", "3", "3", "6", "6", "4", "9", "5", "3", "4", "5", "3", "3", "8", "3", "3", "4", "3", "10", "3", "3", "4", "3", "6", "8", "3", "4", "3", "3", "3", "5", "6", "4", "3", "3", "3", "7", "6", "8", "4", "3", "5", "3", "12", "3", "6", "3", "3", "4", "3", "5", "5", "3", "4", "6", "6", "9", "3", "3" ]
[ "nonn", "easy" ]
7
1
1
[ "A002117", "A005361", "A013661", "A013664", "A046099", "A082695", "A330594", "A368039", "A382419", "A382421" ]
null
Amiram Eldar, Mar 25 2025
2025-03-25T10:11:45
oeisdata/seq/A382/A382421.seq
523426702ac727a8840def7b90112808
A382422
The product of exponents in the prime factorization of the biquadratefree numbers.
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1" ]
[ "nonn", "easy" ]
8
1
4
[ "A003586", "A005361", "A013662", "A046100", "A082695", "A375766", "A375768", "A382422", "A382423", "A382424" ]
null
Amiram Eldar, Mar 25 2025
2025-03-25T10:11:51
oeisdata/seq/A382/A382422.seq
6ac227a54b36f5521ff4dbb6207d5e7e
A382423
The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 2.
[ "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "1", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0" ]
[ "nonn", "easy" ]
11
1
34
[ "A013662", "A046100", "A369427", "A376366", "A382422", "A382423", "A382424", "A382425" ]
null
Amiram Eldar, Mar 25 2025
2025-03-26T11:38:24
oeisdata/seq/A382/A382423.seq
8fbb93b788c080304b8ccf3bf5f72a4c
A382424
The number of exponents in the prime factorization of n-th biquadratefree number that are equal to 3.
[ "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn", "easy" ]
12
1
null
[ "A013662", "A046100", "A295883", "A376366", "A382422", "A382423", "A382424", "A382425" ]
null
Amiram Eldar, Mar 25 2025
2025-03-26T11:38:29
oeisdata/seq/A382/A382424.seq
cd5a0048db4f5dd1e6756393ad3ae3a8
A382425
The number of non-unitary prime divisors of the biquadratefree numbers.
[ "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "1", "0", "1", "1", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "1", "0", "0", "0", "2", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0" ]
[ "nonn", "easy" ]
12
1
34
[ "A013662", "A046100", "A056170", "A376366", "A382422", "A382423", "A382424", "A382425" ]
null
Amiram Eldar, Mar 25 2025
2025-03-25T08:55:36
oeisdata/seq/A382/A382425.seq
4851237a1c6933679a90ae8523b96077
A382426
MM-numbers of sets of constant multisets with distinct sums.
[ "1", "2", "3", "5", "6", "7", "10", "11", "14", "15", "17", "19", "21", "22", "23", "30", "31", "33", "34", "38", "41", "42", "46", "51", "53", "55", "57", "59", "62", "66", "67", "69", "77", "82", "83", "85", "93", "95", "97", "102", "103", "106", "109", "110", "114", "115", "118", "119", "123", "127", "131", "133", "134", "138", "154", "155", "157", "159", "161", "165", "166" ]
[ "nonn" ]
8
1
2
[ "A000688", "A000720", "A000961", "A055396", "A056239", "A061395", "A112798", "A279786", "A302242", "A302492", "A302494", "A321469", "A326534", "A326535", "A355743", "A356065", "A381635", "A381636", "A381716", "A382201", "A382203", "A382215", "A382304", "A382426" ]
null
Gus Wiseman, Apr 01 2025
2025-04-03T14:57:53
oeisdata/seq/A382/A382426.seq
f65669b3f85f2f4f2a647772cbd7600d
A382427
Number of integer partitions of n that can be partitioned into constant blocks with distinct sums.
[ "1", "1", "2", "3", "4", "7", "11", "14", "19", "28", "39", "50", "70", "91", "120", "161", "203", "260", "338", "426", "556", "695", "863", "1082", "1360", "1685" ]
[ "nonn", "more", "changed" ]
13
0
3
[ "A000009", "A000041", "A000688", "A001055", "A006171", "A045778", "A047966", "A050361", "A265947", "A279784", "A279786", "A295935", "A300383", "A300385", "A317141", "A326535", "A353864", "A355743", "A381453", "A381455", "A381633", "A381635", "A381636", "A381716", "A381717", "A381718", "A381990", "A381991", "A381992", "A381993", "A382075", "A382079", "A382203", "A382301", "A382427", "A382876" ]
null
Gus Wiseman, Mar 26 2025
2025-04-27T09:09:21
oeisdata/seq/A382/A382427.seq
1ae121aefeb0ac98a4e6c3708b45040c
A382428
Number of normal multiset partitions of weight n into sets with distinct sizes.
[ "1", "1", "1", "6", "8", "35", "292", "673", "2818", "16956", "219772", "636748", "3768505", "20309534", "183403268", "3227600747", "12272598308", "81353466578", "561187259734", "4416808925866", "50303004612136", "1238783066956740", "5566249468690291", "44970939483601100", "330144217684933896", "3131452652308459402" ]
[ "nonn" ]
14
0
4
[ "A000110", "A000670", "A001055", "A007716", "A019536", "A034691", "A035310", "A045778", "A050320", "A050326", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A296119", "A317532", "A318360", "A326517", "A326518", "A326519", "A331638", "A333217", "A358830", "A381633", "A381718", "A382214", "A382216", "A382428", "A382429" ]
null
Gus Wiseman, Mar 29 2025
2025-03-31T13:38:47
oeisdata/seq/A382/A382428.seq
3108d26568937e60d4ebf42c2a4e2a87
A382429
Number of normal multiset partitions of weight n into sets with a common sum.
[ "1", "1", "2", "3", "5", "7", "13", "26", "57", "113", "283", "854", "2401", "6998", "24072", "85061", "308956", "1190518", "4770078", "19949106", "87059592" ]
[ "nonn", "more" ]
17
0
3
[ "A000110", "A000670", "A001055", "A019536", "A034691", "A035310", "A038041", "A045778", "A050320", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A279788", "A296119", "A304969", "A317532", "A317583", "A318360", "A321469", "A326517", "A326518", "A326520", "A326535", "A331638", "A333217", "A381633", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381996", "A382080", "A382203", "A382204", "A382214", "A382216", "A382429" ]
null
Gus Wiseman, Mar 26 2025
2025-04-06T14:05:06
oeisdata/seq/A382/A382429.seq
0a7555c20eb6752ddb4a5a253f26c88a
A382430
Number of non-isomorphic finite multisets of size n that cannot be partitioned into sets with distinct sums.
[ "0", "0", "1", "1", "2", "3", "5", "6", "9", "12", "17", "22", "32" ]
[ "nonn", "more" ]
5
0
5
[ "A050326", "A116539", "A279785", "A292432", "A292444", "A293243", "A358914", "A381633", "A381718", "A381806", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382430", "A382523" ]
null
Gus Wiseman, Apr 01 2025
2025-04-01T10:27:12
oeisdata/seq/A382/A382430.seq
c2ab478d0e627ef4c0990c95947bba99
A382431
Number of minimum dominating sets in the n-Goldberg graph.
[ "63", "12", "5", "1395", "504", "204", "27", "5" ]
[ "nonn", "more" ]
7
3
1
null
null
Eric W. Weisstein, Mar 25 2025
2025-03-29T07:50:41
oeisdata/seq/A382/A382431.seq
4169351efd751444d173a03ce9a020c8
A382432
a(n) = A074829(2*n-1, n).
[ "1", "2", "8", "30", "114", "436", "1676", "6468", "25040", "97190", "378050", "1473254", "5750390", "22476090", "87958306", "344593314", "1351330642", "5303953012", "20834616860", "81900891372", "322168053848", "1268071841744", "4994044075204", "19678407053280", "77578340524444", "305977596195556", "1207325722552016", "4765772559893268" ]
[ "nonn" ]
7
1
2
[ "A074829", "A382432" ]
null
Michel Marcus, Mar 25 2025
2025-03-31T06:48:05
oeisdata/seq/A382/A382432.seq
0347c827d5b5a24700298b77f3a528b1
A382433
a(n) = S(6,n), where S(r,n) = Sum_{k=0..floor(n/2)} ( binomial(n,k) - binomial(n,k-1) )^r.
[ "1", "1", "2", "65", "794", "19722", "562692", "15105729", "553537490", "18107304842", "716747344436", "27247858130506", "1137502720488532", "47573235297987700", "2085487143991309320", "92820152112054862785", "4246321874111740074210", "197525644801830489637170", "9363425291004877645851300" ]
[ "nonn" ]
19
0
3
[ "A000108", "A008315", "A120730", "A129123", "A357824", "A382433", "A382435" ]
null
Seiichi Manyama, Mar 25 2025
2025-04-01T20:09:29
oeisdata/seq/A382/A382433.seq
6f9965406cb5395af8d45fddb0c57dc1
A382434
a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^4.
[ "1", "1", "3", "33", "195", "1763", "15623", "156257", "1630947", "17911299", "203739015", "2389928995", "28749060871", "353362388551", "4424242664975", "56290517376737", "726355164976547", "9490129871680355", "125375330053632455", "1672895457018337859", "22522481793315373319", "305695116823973096519" ]
[ "nonn" ]
19
0
3
[ "A080233", "A129123", "A131428", "A156644", "A382434", "A382435" ]
null
Seiichi Manyama, Mar 25 2025
2025-03-31T06:30:46
oeisdata/seq/A382/A382434.seq
3618db99bd2eafbdf02c7ea31da326e8
A382435
a(n) = Sum_{k=0..n} ( binomial(n,k) - binomial(n,k-1) )^6.
[ "1", "1", "3", "129", "1587", "39443", "1125383", "30211457", "1107074979", "36214609683", "1433494688871", "54495716261011", "2275005440977063", "95146470595975399", "4170974287982618639", "185640304224109725569", "8492643748223480148419", "395051289603660979274339", "18726850582009755291702599" ]
[ "nonn" ]
15
0
3
[ "A080233", "A131428", "A156644", "A382433", "A382434", "A382435" ]
null
Seiichi Manyama, Mar 25 2025
2025-03-25T12:56:36
oeisdata/seq/A382/A382435.seq
3a998646deadd7545a6240294617d120
A382436
Triangle read by rows, defined by the two-variable g.f. 1/(1 - (y + 1)*x - y*x^2 - (y^2 + y)*x^3).
[ "1", "1", "1", "1", "3", "1", "1", "6", "6", "1", "1", "9", "17", "9", "1", "1", "12", "36", "36", "12", "1", "1", "15", "64", "101", "64", "15", "1", "1", "18", "101", "227", "227", "101", "18", "1", "1", "21", "147", "440", "627", "440", "147", "21", "1", "1", "24", "202", "767", "1459", "1459", "767", "202", "24", "1", "1", "27", "266", "1235", "2994", "3999", "2994", "1235", "266", "27", "1" ]
[ "nonn", "tabl" ]
28
0
5
[ "A008288", "A056594", "A077938", "A103450", "A339565", "A382436", "A382444" ]
null
F. Chapoton, Mar 25 2025.
2025-03-26T04:18:07
oeisdata/seq/A382/A382436.seq
a2823827ea6f9d2c01bde1a9d731e6ca
A382437
a(n) = a(n-1)^2 + 4 * a(n-1), with a(0) = 2.
[ "2", "12", "192", "37632", "1416317952", "2005956546822746112", "4023861667741036022825635656102100992", "16191462721115671781777559070120513664958590125499158514329308740975788032" ]
[ "nonn" ]
25
0
1
[ "A002812", "A003010", "A382437" ]
null
V. Barbera, Mar 25 2025
2025-04-06T22:18:05
oeisdata/seq/A382/A382437.seq
b07bac2dbd7bbc1bb10d885d8ba37d3a
A382438
Numbers k in A024619 such that all residues r (mod k) in row k of A381801 are such that rad(r) divides k, where rad = A007947.
[ "6", "12", "14", "24", "39", "62", "155", "254", "3279", "5219", "16382", "19607", "70643", "97655", "208919", "262142", "363023", "402233", "712979", "1040603", "1048574", "1508597", "2265383", "2391483", "4685519", "5207819", "6728903", "21243689", "25239899", "56328959", "61035155", "67977559", "150508643" ]
[ "nonn" ]
32
1
1
[ "A007947", "A024619", "A381750", "A381801", "A382438" ]
null
Michael De Vlieger, Mar 27 2025
2025-04-07T10:08:01
oeisdata/seq/A382/A382438.seq
c930a75844c917a5820c34f95c20c419
A382439
Triangle read by rows: defined by the two-variable g.f. (x^3*y^2 + x^3*y - x^2*y + 1) / (1 - x^2*y - x*y - x).
[ "1", "1", "1", "1", "2", "1", "1", "5", "5", "1", "1", "7", "12", "7", "1", "1", "9", "24", "24", "9", "1", "1", "11", "40", "60", "40", "11", "1", "1", "13", "60", "124", "124", "60", "13", "1", "1", "15", "84", "224", "308", "224", "84", "15", "1", "1", "17", "112", "368", "656", "656", "368", "112", "17", "1", "1", "19", "144", "564", "1248", "1620", "1248", "564", "144", "19", "1" ]
[ "nonn", "tabl" ]
27
0
5
[ "A008288", "A245990", "A382436", "A382439" ]
null
F. Chapoton, Mar 25 2025
2025-03-27T10:02:54
oeisdata/seq/A382/A382439.seq
faa6c74f319796a7e40d8833f5da6587
A382440
Number of rooted full binary trees with n internal nodes, up to their multiset of subtree sizes.
[ "1", "1", "2", "3", "6", "11", "23", "45", "95", "194", "414", "863", "1850", "3910", "8413", "17887", "38517", "82249", "177133", "378871", "815265", "1745006", "3750385", "8024725", "17219142", "36817113" ]
[ "nonn", "more" ]
13
1
3
[ "A000108", "A001190", "A247139", "A382440" ]
null
Ludovic Schwob, Mar 25 2025
2025-04-04T15:14:32
oeisdata/seq/A382/A382440.seq
8ad975d3d409df63577bc2c4b15a48bb
A382441
Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose decimal expansion appears as a contiguous subword in the concatenation of the previous terms.
[ "1", "2", "5", "7", "8", "9", "10", "16", "20", "32", "40", "50", "51", "53", "64", "83", "93", "100", "117", "118", "126", "160", "186", "200", "207", "224", "250", "288", "311", "320", "352", "372", "391", "400", "448", "480", "500", "625", "640", "713", "800", "960", "979", "1000", "1011", "1039", "1043", "1097", "1099", "1173", "1200", "1250", "1359", "1426" ]
[ "nonn", "base" ]
13
1
2
[ "A048991", "A382441", "A382442", "A382445" ]
null
Rémy Sigrist, Mar 25 2025
2025-03-28T08:03:26
oeisdata/seq/A382/A382441.seq
8571b3bffeacb87dda91d2bf92bf3a3e
A382442
Lexicographically earliest sequence of positive integers such that for any n > 1, a(n) does not divide any of the positive numbers whose binary expansion appears as a contiguous subword in the concatenation of the previous terms.
[ "1", "2", "4", "7", "8", "16", "18", "27", "32", "42", "54", "64", "84", "126", "128", "133", "172", "238", "256", "276", "379", "381", "444", "512", "524", "582", "621", "765", "948", "1024", "1048", "1179", "1241", "1449", "1496", "1557", "1861", "1896", "1982", "2048", "2132", "2155", "2227", "2386", "2667", "2900", "3013", "3058", "3236", "3444", "3613" ]
[ "nonn", "base" ]
6
1
2
[ "A382441", "A382442" ]
null
Rémy Sigrist, Mar 26 2025
2025-03-28T08:03:30
oeisdata/seq/A382/A382442.seq
5326f59b7d29719a5a80b00e7d3d645f
A382443
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^4.
[ "1", "1", "4", "65", "566", "10912", "164032", "3237313", "62253130", "1314421886", "28392213224", "639799858304", "14785604868256", "350615631856960", "8485316740880384", "209179475361783233", "5239271305444731698", "133100429387161703962", "3424142506153260211720", "89090362800169426107070" ]
[ "nonn" ]
30
0
3
[ "A000108", "A129123", "A381676", "A382433", "A382434", "A382443", "A382446" ]
null
Seiichi Manyama, Mar 26 2025
2025-03-29T16:25:59
oeisdata/seq/A382/A382443.seq
d033c389d572527ce9cf51c33db4c796
A382444
Triangle read by rows, defined by the two-variable g.f. (1 + y*x^2 + (y^2 + y)*x^3)/(1-(1+y)*x-y*x^2).
[ "1", "1", "1", "1", "4", "1", "1", "7", "7", "1", "1", "9", "18", "9", "1", "1", "11", "34", "34", "11", "1", "1", "13", "54", "86", "54", "13", "1", "1", "15", "78", "174", "174", "78", "15", "1", "1", "17", "106", "306", "434", "306", "106", "17", "1", "1", "19", "138", "490", "914", "914", "490", "138", "19", "1", "1", "21", "174", "734", "1710", "2262", "1710", "734", "174", "21", "1" ]
[ "nonn", "tabl" ]
28
0
5
[ "A008288", "A103450", "A265107", "A382436", "A382444" ]
null
F. Chapoton, Mar 25 2025
2025-03-26T09:18:10
oeisdata/seq/A382/A382444.seq
c73b290b106d15100a6d63fe331b8f25
A382445
Lexicographically least increasing sequence of distinct positive integers such that for any n > 1, a(n) does not divide the concatenation of the earlier terms.
[ "1", "2", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70" ]
[ "nonn", "base" ]
8
1
2
[ "A007978", "A096098", "A382441", "A382445" ]
null
Rémy Sigrist, Mar 25 2025
2025-03-28T08:03:17
oeisdata/seq/A382/A382445.seq
79488196e9cb4283c0fa094bc55f44c0
A382446
a(n) = Sum_{k=0..n} binomial(n,k) * ( binomial(n,k) - binomial(n,k-1) )^6.
[ "1", "1", "4", "257", "4286", "258952", "11816512", "632854273", "43732565914", "2637804065366", "207379028199080", "14568483339859880", "1205457271871693920", "95108827011788280160", "8187664948710535579904", "698818327346476962092801", "62477582066507173352034866", "5627626080883126186936773514" ]
[ "nonn" ]
19
0
3
[ "A000108", "A129123", "A381676", "A382433", "A382435", "A382443", "A382446" ]
null
Seiichi Manyama, Mar 26 2025
2025-03-30T09:52:53
oeisdata/seq/A382/A382446.seq
625c4e1f051b81e303f14e84fbb7f448
A382447
Number of positive k <= n such that k*2^n - 1 is prime.
[ "0", "2", "2", "2", "2", "3", "2", "1", "1", "3", "3", "2", "3", "2", "2", "4", "6", "3", "1", "3", "3", "0", "1", "0", "1", "1", "2", "3", "2", "3", "4", "2", "2", "1", "5", "2", "4", "2", "1", "3", "4", "3", "4", "2", "2", "3", "2", "3", "2", "3", "3", "3", "4", "5", "2", "2", "3", "1", "3", "3", "3", "4", "3", "1", "0", "1", "2", "1", "4", "3", "3", "5", "3", "3", "6", "2", "3", "3", "3", "2", "3", "1", "1", "1", "3", "1", "2", "2", "2", "2", "3", "3", "2", "3", "2", "3", "2", "3", "3", "2" ]
[ "nonn" ]
10
1
2
[ "A002234", "A003261", "A061411", "A061414", "A382119", "A382447" ]
null
Juri-Stepan Gerasimov, Mar 26 2025
2025-04-01T21:30:49
oeisdata/seq/A382/A382447.seq
8c7dc6c36424ae196fac7e03ed5eb2b8
A382448
Triangle read by rows, defined by the two-variable g.f. (x^3*y^2 + x^3*y + 1)/(1 - x^2*y - x*y - x).
[ "1", "1", "1", "1", "3", "1", "1", "6", "6", "1", "1", "8", "15", "8", "1", "1", "10", "29", "29", "10", "1", "1", "12", "47", "73", "47", "12", "1", "1", "14", "69", "149", "149", "69", "14", "1", "1", "16", "95", "265", "371", "265", "95", "16", "1", "1", "18", "125", "429", "785", "785", "429", "125", "18", "1", "1", "20", "159", "649", "1479", "1941", "1479", "649", "159", "20", "1" ]
[ "nonn", "tabl" ]
12
0
5
[ "A008288", "A103450", "A105082", "A382436", "A382444", "A382448" ]
null
F. Chapoton, Mar 26 2025
2025-03-27T10:12:29
oeisdata/seq/A382/A382448.seq
7fc7d1feed5a53f69287adf16f508f7a
A382449
Expansion of e.g.f. exp( x/(1-2*x)^(3/2) ).
[ "1", "1", "7", "64", "745", "10576", "177121", "3414622", "74389729", "1805424040", "48264466321", "1408241206186", "44508262018177", "1514115583435924", "55142123112150985", "2139885098048098486", "88128888655032851521", "3838126991973342097072", "176206944426651875454049" ]
[ "nonn", "easy" ]
32
0
3
[ "A001879", "A362204", "A382449" ]
null
Seiichi Manyama, Apr 03 2025
2025-04-13T03:25:29
oeisdata/seq/A382/A382449.seq
2fdd34623ab61095f11d137f9d5e042b
A382451
Centered pentagonal numbers which are the products of four distinct primes.
[ "5406", "12426", "20026", "23766", "40641", "55131", "83266", "115026", "118266", "136306", "142206", "145806", "176226", "184281", "205206", "209526", "245706", "279726", "284766", "315951", "326706", "371526", "387106", "407031", "413106", "419226", "425391", "498406", "505126", "553426", "623751", "638826", "672106", "685131" ]
[ "nonn" ]
8
1
1
[ "A005891", "A046386", "A364610", "A382451" ]
null
Massimo Kofler, Mar 26 2025
2025-03-31T21:27:11
oeisdata/seq/A382/A382451.seq
a6b0aae4914fea927e94bc6193604bd4
A382452
Number of self numbers <= 10^n.
[ "5", "13", "102", "983", "9784", "97786", "977787", "9777788", "97777789", "977777790", "9777777791" ]
[ "nonn", "base", "more" ]
14
1
1
[ "A003052", "A382452" ]
null
Shyam Sunder Gupta, Mar 27 2025
2025-04-01T23:14:31
oeisdata/seq/A382/A382452.seq
1dd66e19fd9b66d49904f26092dcc52d
A382453
Lexicographically earliest sequence of distinct terms such that no term is a substring of the sum of any two terms.
[ "1", "3", "21", "23", "25", "39", "41", "43", "45", "47", "49", "221", "223", "241", "243", "2001", "2003", "2021", "2023", "2025", "2039", "2041", "2043", "2045", "2047", "2049", "2221", "2223", "2241", "2243", "2601", "2603", "2621", "2623", "2639", "2641", "2643", "2645", "4001", "4003", "4021", "4023", "4025", "4039", "4041", "4043", "4045", "4047" ]
[ "nonn", "base" ]
8
1
2
[ "A381242", "A382453" ]
null
Dominic McCarty, Mar 26 2025
2025-03-26T21:47:47
oeisdata/seq/A382/A382453.seq
c5b6282be896627ccf4eeb70e2b48361
A382455
Order 3 perimeter magic squares of magic sum n, all elements distinct and 1 in the set; bracelet symmetry.
[ "3", "9", "23", "45", "75", "109", "178", "220", "324", "403", "545", "623", "872", "945", "1238", "1397", "1725", "1878", "2390", "2530", "3087", "3317", "3968", "4212", "5057", "5256", "6186", "6569", "7569", "7893", "9201", "9511", "10890", "11359", "12863", "13340", "15135", "15543", "17492", "18145", "20170", "20739", "23212", "23784", "26325", "27100", "29813", "30598", "33727" ]
[ "nonn" ]
6
12
1
[ "A084569", "A380962", "A382455" ]
null
R. J. Mathar, Mar 26 2025
2025-03-26T13:26:16
oeisdata/seq/A382/A382455.seq
ef79a52171cdd3e5b4cf69039895d735
A382456
Number of self-primes <= 10^n.
[ "3", "6", "21", "115", "836", "6943", "63113", "585517", "5263827", "45808290", "398309972" ]
[ "nonn", "base", "more" ]
5
1
1
[ "A003052", "A006378", "A006880", "A382452", "A382456" ]
null
Shyam Sunder Gupta, Mar 27 2025
2025-04-01T23:15:12
oeisdata/seq/A382/A382456.seq
125d720e6c9bcd967defa2140ecd2143
A382457
Number of twin self-primes <= 10^n.
[ "2", "2", "2", "2", "12", "87", "534", "3683", "27738", "231431", "2061879" ]
[ "nonn", "base", "more" ]
11
1
1
[ "A003052", "A006378", "A006880", "A007508", "A380713", "A380715", "A382452", "A382456", "A382457" ]
null
Shyam Sunder Gupta, Mar 27 2025
2025-04-04T04:18:17
oeisdata/seq/A382/A382457.seq
99917ecdfbc47bf729978c14578c354d
A382458
Number of normal multisets of size n that can be partitioned into a set of sets in exactly one way.
[ "1", "1", "0", "2", "1", "3", "0", "7", "3", "11", "18", "9" ]
[ "nonn", "more" ]
8
0
4
[ "A000045", "A000110", "A000670", "A007716", "A034691", "A035310", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A292432", "A292444", "A293243", "A293511", "A296119", "A296120", "A302478", "A302494", "A317532", "A318360", "A318361", "A326519", "A358914", "A381633", "A381718", "A381806", "A381870", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382428", "A382430", "A382458", "A382459", "A382460", "A382523" ]
null
Gus Wiseman, Mar 30 2025
2025-03-31T21:55:36
oeisdata/seq/A382/A382458.seq
ff5076f81032893e2118e5c54f1080fe
A382459
Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums in exactly one way.
[ "1", "1", "0", "2", "1", "3", "2", "7", "4", "10", "19" ]
[ "nonn", "more" ]
7
0
4
[ "A000110", "A000670", "A007716", "A034691", "A035310", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A292432", "A292444", "A293243", "A293511", "A296119", "A296120", "A302478", "A302494", "A317532", "A318360", "A318361", "A321469", "A326519", "A358914", "A381078", "A381441", "A381633", "A381718", "A381806", "A381870", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382202", "A382214", "A382216", "A382428", "A382430", "A382458", "A382459", "A382460", "A382523" ]
null
Gus Wiseman, Apr 01 2025
2025-04-03T20:34:46
oeisdata/seq/A382/A382459.seq
7d52eecd41ae6645d132743b664e5a23
A382460
Number of integer partitions of n that can be partitioned into sets with distinct sums in exactly one way.
[ "1", "1", "1", "1", "2", "3", "3", "4", "6", "5", "10", "10", "13", "15", "22", "20", "32", "32", "43", "49", "65", "64", "92", "96", "121", "140", "173", "192" ]
[ "nonn", "more" ]
7
0
5
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A293243", "A293511", "A296119", "A296120", "A299202", "A302478", "A317142", "A318360", "A318361", "A358914", "A381441", "A381454", "A381633", "A381636", "A381718", "A381806", "A381870", "A381990", "A381991", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382301", "A382460" ]
null
Gus Wiseman, Mar 29 2025
2025-03-31T21:55:50
oeisdata/seq/A382/A382460.seq
0299474ae9b4cc7a1262b77238e94695
A382461
a(n) is the smallest number whose sum of digits is 2^n.
[ "1", "2", "4", "8", "79", "5999", "19999999", "299999999999999", "49999999999999999999999999999", "899999999999999999999999999999999999999999999999999999999", "799999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999" ]
[ "nonn", "base", "easy" ]
10
0
2
[ "A000079", "A007953", "A051885", "A054750", "A060712", "A136308", "A180083", "A382461" ]
null
Stefano Spezia, Mar 27 2025
2025-03-30T09:53:19
oeisdata/seq/A382/A382461.seq
e7cce4e080d23acfaee46d2bad7e23dd