sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A382315
G.f. satisfies A(x) = x + Sum_{n>=1} A(x^n)^2.
[ "1", "1", "2", "6", "16", "51", "158", "524", "1762", "6089", "21326", "75879", "272794", "990673", "3626536", "13371544", "49606460", "185046037", "693621174", "2611275523", "9869097706", "37431498607", "142426706634", "543524937780", "2079768883112", "7977836453011", "30672352831760", "118175566117561", "456206491221514", "1764370233131135" ]
[ "nonn" ]
13
1
3
[ "A382315", "A382321" ]
null
Paul D. Hanna, Apr 17 2025
2025-04-26T04:26:15
oeisdata/seq/A382/A382315.seq
3e9e92abed9bcffd84bc01bdc60c43eb
A382316
G.f. satisfies A(x) = A(x^2) + A(x^2)^2*A(x^3)/A(x^6), with A(0) = 0 and A'(0) = 1.
[ "1", "1", "2", "2", "5", "4", "9", "7", "20", "14", "31", "24", "60", "40", "90", "66", "167", "108", "241", "176", "414", "263", "586", "418", "987", "615", "1352", "966", "2185", "1350", "2965", "2079", "4710", "2886", "6262", "4392", "9681", "5906", "12780", "8843", "19492", "11826", "25325", "17512", "37876", "22920", "48956", "33474", "72418", "43680", "92482", "63163", "134737", "81120", "171400" ]
[ "nonn" ]
11
1
3
null
null
Paul D. Hanna, May 08 2025
2025-05-10T09:15:29
oeisdata/seq/A382/A382316.seq
8426f4e7687aa5058f466790ef275000
A382317
G.f. satisfies A(x) = A(x^3)/(A(x^2) - A(x^3)), with A(0) = 0, A'(0) = 1.
[ "1", "1", "0", "0", "1", "2", "1", "-1", "-2", "0", "1", "-2", "-6", "-6", "0", "4", "1", "-4", "1", "16", "26", "19", "8", "14", "33", "35", "2", "-38", "-47", "-30", "-45", "-111", "-170", "-146", "-58", "-6", "-23", "0", "180", "451", "610", "582", "547", "670", "792", "546", "-154", "-934", "-1444", "-1892", "-2778", "-4029", "-4789", "-4328", "-2960", "-1511", "124", "3203", "8437", "14508", "19170", "21741", "23410" ]
[ "sign" ]
7
1
6
[ "A378256", "A382317" ]
null
Paul D. Hanna, May 15 2025
2025-05-18T07:57:34
oeisdata/seq/A382/A382317.seq
6c7acbe4c832f0b709e3072b56ea4bb1
A382318
G.f. satisfies A(x) = x + ( Sum_{n>=1} A(x^n) )^3.
[ "1", "0", "1", "3", "9", "25", "72", "213", "635", "1950", "6036", "19021", "60429", "194172", "628384", "2049225", "6722658", "22178631", "73523028", "244805574", "818317630", "2745167418", "9238878207", "31185404902", "105550046640", "358134472293", "1217955671785", "4150882760334", "14174481594375", "48492262770919", "166181651660136", "570415046251962" ]
[ "nonn" ]
12
1
4
[ "A008683", "A382318", "A382319", "A382320" ]
null
Paul D. Hanna, Apr 10 2025
2025-04-15T06:36:52
oeisdata/seq/A382/A382318.seq
a11020d318a3cff8a4a71bd594d80f14
A382319
G.f. satisfies A(x) = x/(1-x) + Sum_{n>=1} A(x^n)^3.
[ "1", "1", "2", "4", "10", "27", "73", "217", "637", "1960", "6037", "19051", "60430", "194245", "628395", "2049442", "6722659", "22179293", "73523029", "244807537", "818317704", "2745173455", "9238878208", "31185424166", "105550046650", "358134532723", "1217955672422", "4150882954582", "14174481594376", "48492263401289", "166181651660137", "570415048301404" ]
[ "nonn" ]
7
1
3
[ "A382318", "A382319", "A382321" ]
null
Paul D. Hanna, Apr 10 2025
2025-04-11T01:28:06
oeisdata/seq/A382/A382319.seq
103b0f46adaef37434d76ecbf0aa8559
A382320
G.f. satisfies A(x) = x + ( Sum_{n>=1} A(x^n) )^2.
[ "1", "1", "4", "14", "52", "195", "774", "3140", "13118", "55861", "241988", "1062411", "4718380", "21156811", "95652842", "435553638", "1995707806", "9194770161", "42570402238", "197957907525", "924157498638", "4329762257151", "20351029400480", "95938011359954", "453492517932696", "2148971058064469", "10206782449568402", "48581518322215785" ]
[ "nonn" ]
6
1
3
[ "A008683", "A382320", "A382321" ]
null
Paul D. Hanna, Apr 09 2025
2025-04-09T22:55:43
oeisdata/seq/A382/A382320.seq
4a7ac3816da19b4f248b34c586db4889
A382321
G.f. satisfies A(x) = x/(1-x) + Sum_{n>=1} A(x^n)^2.
[ "1", "2", "5", "16", "53", "201", "775", "3156", "13123", "55915", "241989", "1062626", "4718381", "21157587", "95652899", "435556794", "1995707807", "9194783480", "42570402239", "197957963454", "924157499417", "4329762499141", "20351029400481", "95938012425720", "453492517932749", "2148971062782851", "10206782449581525", "48581518343373386" ]
[ "nonn" ]
18
1
2
[ "A382320", "A382321" ]
null
Paul D. Hanna, Apr 09 2025
2025-04-15T06:43:06
oeisdata/seq/A382/A382321.seq
d27f9fbf373851dccc886c9fef63bd53
A382322
G.f. A(x) satisfies -2 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
[ "1", "2", "8", "50", "308", "2044", "14072", "100172", "730328", "5428498", "40978780", "313322910", "2421454020", "18884988540", "148443853936", "1174814738082", "9353539487160", "74865615299260", "602057472027484", "4862177553583604", "39416710563473400", "320650120976612168", "2616673301770051376", "21414973020645504142" ]
[ "nonn" ]
13
0
2
[ "A356783", "A380557", "A382322", "A382323" ]
null
Paul D. Hanna, Mar 21 2025
2025-03-22T18:50:12
oeisdata/seq/A382/A382322.seq
ee6e0b2bf15d79d87e8cf453a9563425
A382323
G.f. A(x) satisfies -3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
[ "1", "3", "18", "150", "1323", "12486", "123069", "1253595", "13089576", "139367370", "1507353966", "16515098985", "182913374493", "2044565139303", "23035036108755", "261312501113193", "2982280058702499", "34217698991867058", "394470188685557271", "4566935001939261414", "53076293916648500439", "618991948535588040078" ]
[ "nonn" ]
13
0
2
[ "A356783", "A380557", "A382322", "A382323" ]
null
Paul D. Hanna, Mar 21 2025
2025-03-22T18:50:20
oeisdata/seq/A382/A382323.seq
d23835df86a31ddd71484e9907c23e57
A382324
a(n) = least integer h >= 1 such that n is a sum of the form Sum_{k>=0} floor(h/m^k) for some integer m >= 2.
[ "1", "2", "2", "3", "4", "5", "4", "5", "7", "6", "7", "10", "9", "10", "8", "9", "12", "10", "11", "17", "15", "12", "13", "19", "14", "15", "19", "20", "23", "21", "16", "17", "26", "18", "19", "26", "29", "20", "21", "27", "22", "23", "33", "30", "31", "24", "25", "33", "26", "27", "42", "40", "28", "29", "38", "30", "31", "40", "41", "47", "42", "43", "32", "33", "50", "34", "35", "47" ]
[ "nonn" ]
6
1
2
[ "A382278", "A382324" ]
null
Clark Kimberling, Apr 01 2025
2025-04-07T17:52:50
oeisdata/seq/A382/A382324.seq
5ca0e1e995b3758d8f5657430e20ff68
A382325
Numbers with a record ratio of proper factorizations to nontrivial divisors.
[ "4", "16", "32", "64", "128", "192", "256", "384", "512", "576", "768", "864", "1024", "1152", "1536", "1728", "2304", "3456", "4608", "5184", "5760", "6912", "8640", "9216", "10368", "11520", "13824", "17280", "20736", "23040", "25920", "27648", "34560", "41472", "51840", "62208", "69120", "82944", "103680", "138240", "165888", "172800" ]
[ "nonn" ]
14
1
1
[ "A002182", "A025487", "A028422", "A033833", "A070824", "A382325", "A382326", "A382327" ]
null
Charles L. Hohn, Mar 21 2025
2025-04-02T20:36:56
oeisdata/seq/A382/A382325.seq
68296716afad019fcab113d928bbb6ad
A382326
Numbers with a record ratio of nontrivial divisors to prime factors (counted with multiplicity).
[ "4", "6", "12", "24", "30", "60", "120", "180", "210", "360", "420", "840", "1260", "2310", "2520", "4620", "7560", "9240", "13860", "27720", "55440", "60060", "83160", "110880", "120120", "138600", "166320", "180180", "277200", "360360", "720720", "1081080", "1441440", "1801800", "2162160", "3063060", "3603600", "5405400", "6126120" ]
[ "nonn" ]
14
1
1
[ "A001222", "A002182", "A025487", "A070824", "A382325", "A382326", "A382327" ]
null
Charles L. Hohn, Mar 21 2025
2025-04-02T20:37:06
oeisdata/seq/A382/A382326.seq
e637d6c40ba0202cb88a1feee23aacb3
A382327
Numbers with a record ratio of proper factorizations to prime factors (counted with multiplicity).
[ "4", "8", "12", "24", "36", "48", "60", "72", "120", "144", "180", "240", "288", "360", "480", "576", "720", "1080", "1440", "2160", "2520", "2880", "3600", "4320", "5040", "7200", "7560", "8640", "10080", "14400", "15120", "20160", "25200", "30240", "40320", "50400", "60480", "80640", "90720", "100800", "120960", "151200", "181440", "201600" ]
[ "nonn" ]
16
1
1
[ "A001222", "A025487", "A028422", "A033833", "A382325", "A382326", "A382327" ]
null
Charles L. Hohn, Mar 21 2025
2025-04-02T20:36:51
oeisdata/seq/A382/A382327.seq
2f08d00136343d2a20635e1446a268e4
A382328
Maximum possible product of differences of every pair in a set of nonnegative integers with sum n.
[ "1", "1", "2", "3", "6", "12", "20", "48", "120", "240", "540", "1440", "4320", "11520", "30240", "64512", "207360", "725760", "2419200", "7257600", "17418240", "39191040", "174182400", "696729600", "2786918400", "9405849600", "25082265600", "65840947200", "182891520000", "1003290624000", "4514807808000", "21069103104000" ]
[ "nonn" ]
18
0
3
[ "A002620", "A382328" ]
null
Zhao Hui Du, Mar 21 2025
2025-04-05T18:32:58
oeisdata/seq/A382/A382328.seq
acb577c5ff562900c50b76e174d5d492
A382329
Least positive integer that gives a square of an integer when multiplied by the n-th harmonic number.
[ "1", "6", "66", "12", "8220", "20", "420", "213080", "17965080", "153720", "2320468920", "14109480", "412970037480", "422245703880", "430902992520", "6076390320", "516336630329520", "161488607280", "21362271268818480", "866533600973040", "97555876321904", "186715152624", "52866073370045936" ]
[ "nonn" ]
38
1
2
[ "A001008", "A002805", "A007913", "A382329" ]
null
Ali Sada, Mar 21 2025
2025-05-11T11:45:41
oeisdata/seq/A382/A382329.seq
4a4e50e8b0e7d2dc01c0f315d1bbadbd
A382330
a(n) is the number of positive integers k for which Sum_{i=1..j} (p_i+e_i) = n, where p_1^e_1*...*p_j^e_j is the prime factorization of k.
[ "0", "0", "1", "2", "2", "3", "4", "6", "8", "11", "15", "21", "27", "36", "47", "61", "79", "104", "133", "170", "215", "272", "343", "433", "542", "678", "845", "1050", "1300", "1608", "1981", "2437", "2988", "3655", "4460", "5433", "6603", "8014", "9705", "11731", "14155", "17055", "20509", "24624", "29512", "35313", "42184", "50315", "59916", "71248", "84598" ]
[ "nonn" ]
11
1
4
[ "A008474", "A219180", "A377505", "A377537", "A382330" ]
null
Felix Huber, Mar 23 2025
2025-03-29T18:38:18
oeisdata/seq/A382/A382330.seq
6d92da4718e8e4c8efdc2e1cffac6d27
A382331
If n = Product (p_j^k_j) then a(n) = -Sum ((-1)^k_j * p_j).
[ "0", "2", "3", "-2", "5", "5", "7", "2", "-3", "7", "11", "1", "13", "9", "8", "-2", "17", "-1", "19", "3", "10", "13", "23", "5", "-5", "15", "3", "5", "29", "10", "31", "2", "14", "19", "12", "-5", "37", "21", "16", "7", "41", "12", "43", "9", "2", "25", "47", "1", "-7", "-3", "20", "11", "53", "5", "16", "9", "22", "31", "59", "6", "61", "33", "4", "-2", "18", "16", "67", "15", "26", "14", "71", "-1", "73", "39", "-2" ]
[ "sign", "easy" ]
13
1
2
[ "A001414", "A008472", "A316523", "A332422", "A332423", "A332424", "A340901", "A366749", "A382331" ]
null
Ilya Gutkovskiy, Mar 22 2025
2025-03-29T18:55:10
oeisdata/seq/A382/A382331.seq
493ddb1a7980954dc50b1869fedd219e
A382332
Expansion of 1/(1 - 4*x/(1-x)^2)^(7/2).
[ "1", "14", "154", "1470", "12866", "106078", "837018", "6385262", "47420674", "344553902", "2458367898", "17272647966", "119770278978", "821068784382", "5572735854234", "37490757508302", "250247764120578", "1658681038111566", "10924592141535898", "71541334475749502", "466060971286552642" ]
[ "nonn" ]
28
0
2
[ "A020918", "A110170", "A377198", "A377200", "A382274", "A382332" ]
null
Seiichi Manyama, Mar 30 2025
2025-05-12T13:59:52
oeisdata/seq/A382/A382332.seq
9dc407c667e972e79c38ae85ad7ed758
A382333
Expansion of ( 1 + 4 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k)) )^(1/2).
[ "1", "2", "2", "-2", "8", "-10", "6", "26", "-108", "258", "-342", "-194", "2700", "-8994", "17830", "-12878", "-61910", "322110", "-860106", "1284546", "571880", "-10749654", "38883554", "-82867578", "68869212", "286234558", "-1619591538", "4559780610", "-7250287740", "-2206074398", "59250601986", "-225063455922" ]
[ "sign", "easy" ]
8
0
2
[ "A001511", "A223142", "A382333", "A382334", "A382335" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-22T08:41:26
oeisdata/seq/A382/A382333.seq
c5579440f2d09b308113ced682d9253e
A382334
Expansion of ( 1 + 9 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k)) )^(1/3).
[ "1", "3", "-3", "12", "-45", "210", "-1038", "5331", "-28068", "150645", "-820713", "4526157", "-25217451", "141722985", "-802455807", "4573197111", "-26211368118", "150988107936", "-873651133218", "5075417681184", "-29591720994384", "173094835970280", "-1015510421231184", "5973910500301608", "-35229684687254898" ]
[ "sign", "easy" ]
9
0
2
[ "A001511", "A223143", "A382333", "A382334", "A382336" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-22T08:41:30
oeisdata/seq/A382/A382334.seq
2f1815e86f33e5d7b6ddf9b8e606d4a8
A382335
Expansion of ( 1 + 4 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/2).
[ "1", "2", "4", "-2", "10", "-2", "-20", "82", "-108", "-114", "1052", "-2702", "2054", "11394", "-52636", "99534", "32938", "-831698", "2649676", "-3119694", "-8779530", "54334130", "-125649628", "31877726", "849214460", "-3274210670", "5129552132", "7097067566", "-65583106070", "180299051838", "-133300439300" ]
[ "sign", "easy" ]
8
0
2
[ "A129527", "A223142", "A382333", "A382335", "A382336" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-22T08:41:49
oeisdata/seq/A382/A382335.seq
092966a733fa54eec82119b5d1a398dc
A382336
Expansion of ( 1 + 9 * Sum_{k>=0} x^(2^k)/(1 - x^(2^k))^2 )^(1/3).
[ "1", "3", "0", "0", "21", "-111", "504", "-2004", "7092", "-21150", "43614", "24288", "-949878", "7022118", "-38308320", "175670820", "-691787607", "2250673143", "-4994247456", "-2841846468", "120496073523", "-931900270923", "5282041372722", "-25033533979260", "101401747872534", "-337523450786736", "757180705527738" ]
[ "sign", "easy" ]
9
0
2
[ "A129527", "A223143", "A382334", "A382335", "A382336" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-22T08:41:44
oeisdata/seq/A382/A382336.seq
f4a529989eae9ca417f4db7585c707f2
A382337
Palindromes in base 10 in which the difference between the sums of the digits in the even and odd positions is zero.
[ "0", "11", "22", "33", "44", "55", "66", "77", "88", "99", "121", "242", "363", "484", "1001", "1111", "1221", "1331", "1441", "1551", "1661", "1771", "1881", "1991", "2002", "2112", "2222", "2332", "2442", "2552", "2662", "2772", "2882", "2992", "3003", "3113", "3223", "3333", "3443", "3553", "3663", "3773", "3883", "3993", "4004", "4114", "4224", "4334", "4444", "4554", "4664", "4774", "4884", "4994" ]
[ "nonn", "easy", "base" ]
28
1
2
[ "A002113", "A135499", "A382337" ]
null
Alexander Yutkin, Mar 22 2025
2025-03-30T15:23:01
oeisdata/seq/A382/A382337.seq
d2f32f5ef49a1e508bb053604ef7caef
A382338
Positive integers k such that there are at least 3 positive integer solutions (x,y) to the equation x^3 + y^2 = k^2.
[ "105", "120", "210", "260", "405", "440", "504", "510", "561", "665", "840", "897", "960", "1155", "1173", "1485", "1610", "1680", "1947", "2001", "2052", "2080", "2145", "2233", "2415", "2457", "2465", "2628", "2835", "2850", "3045", "3135", "3240", "3300", "3315", "3395", "3520", "4004", "4032", "4080", "4095", "4290", "4488", "4600", "4760", "4950", "5145", "5265", "5320", "5580", "5670", "5795" ]
[ "nonn" ]
21
1
1
null
null
Robert Israel, Mar 23 2025
2025-04-06T14:54:14
oeisdata/seq/A382/A382338.seq
6866d222e1c7cbd97772cef1e9c8dffe
A382339
Triangle read by rows: T(n,k) is the number of partitions of a 2-colored set of n objects into exactly k parts with 0 <= k <= n.
[ "1", "0", "2", "0", "3", "3", "0", "4", "6", "4", "0", "5", "14", "9", "5", "0", "6", "22", "24", "12", "6", "0", "7", "37", "49", "34", "15", "7", "0", "8", "52", "92", "76", "44", "18", "8", "0", "9", "76", "157", "162", "103", "54", "21", "9", "0", "10", "100", "260", "302", "232", "130", "64", "24", "10", "0", "11", "135", "400", "554", "468", "302", "157", "74", "27", "11" ]
[ "nonn", "tabl" ]
20
0
3
[ "A005380", "A008284", "A381891", "A382339" ]
null
Peter Dolland, Mar 22 2025
2025-04-17T07:03:42
oeisdata/seq/A382/A382339.seq
9880f5aa383a35bccfd4df7a7610febd
A382340
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into exactly k parts with 0 <= k <= n.
[ "1", "0", "3", "0", "6", "6", "0", "10", "18", "10", "0", "15", "51", "36", "15", "0", "21", "105", "123", "60", "21", "0", "28", "208", "326", "226", "90", "28", "0", "36", "360", "771", "678", "360", "126", "36", "0", "45", "606", "1641", "1836", "1161", "525", "168", "45", "0", "55", "946", "3271", "4431", "3403", "1775", "721", "216", "55", "0", "66", "1446", "6096", "10026", "8982", "5472", "2520", "948", "270", "66" ]
[ "nonn", "tabl" ]
10
0
3
[ "A008284", "A217093", "A382045", "A382339", "A382340" ]
null
Peter Dolland, Mar 22 2025
2025-04-17T07:04:31
oeisdata/seq/A382/A382340.seq
dc02c28489de1f8e78d840d4d8e98d43
A382341
Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into exactly k parts with 0 <= k <= n.
[ "1", "0", "4", "0", "10", "10", "0", "20", "40", "20", "0", "35", "135", "100", "35", "0", "56", "340", "420", "200", "56", "0", "84", "784", "1370", "950", "350", "84", "0", "120", "1596", "3900", "3580", "1800", "560", "120", "0", "165", "3070", "9905", "11835", "7425", "3045", "840", "165", "0", "220", "5500", "23180", "34780", "27020", "13360", "4760", "1200", "220" ]
[ "nonn", "tabl" ]
12
0
3
[ "A008284", "A255050", "A382241", "A382339", "A382340", "A382341" ]
null
Peter Dolland, Mar 22 2025
2025-04-17T07:04:54
oeisdata/seq/A382/A382341.seq
8fdce2c44038eff4bf65f821d6e48884
A382342
Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of two kinds.
[ "1", "0", "2", "0", "2", "3", "0", "2", "4", "4", "0", "2", "7", "6", "5", "0", "2", "8", "12", "8", "6", "0", "2", "11", "18", "17", "10", "7", "0", "2", "12", "26", "28", "22", "12", "8", "0", "2", "15", "34", "46", "38", "27", "14", "9", "0", "2", "16", "46", "64", "66", "48", "32", "16", "10", "0", "2", "19", "56", "94", "100", "86", "58", "37", "18", "11", "0", "2", "20", "70", "124", "152", "136", "106", "68", "42", "20", "12" ]
[ "nonn", "tabl" ]
22
0
3
[ "A000712", "A008284", "A022597", "A381895", "A382342", "A382345" ]
null
Peter Dolland, Mar 27 2025
2025-04-19T03:53:53
oeisdata/seq/A382/A382342.seq
4bd41f68bc02bbf36276e05fa51dc175
A382343
Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 3 kinds.
[ "1", "0", "3", "0", "3", "6", "0", "3", "9", "10", "0", "3", "15", "18", "15", "0", "3", "18", "36", "30", "21", "0", "3", "24", "55", "66", "45", "28", "0", "3", "27", "81", "114", "105", "63", "36", "0", "3", "33", "108", "189", "195", "153", "84", "45", "0", "3", "36", "145", "276", "348", "298", "210", "108", "55", "0", "3", "42", "180", "405", "552", "558", "423", "276", "135", "66" ]
[ "nonn", "tabl" ]
12
0
3
[ "A000217", "A000716", "A008284", "A022598", "A382025", "A382342", "A382343" ]
null
Peter Dolland, Mar 27 2025
2025-03-28T08:00:03
oeisdata/seq/A382/A382343.seq
1e3cd3f1d98b2f54c1ed504f984bd0ab
A382344
Triangle read by rows: T(n, k) is the number of partitions of n into k parts where 0 <= k <= n, and each part is one of 4 kinds.
[ "1", "0", "4", "0", "4", "10", "0", "4", "16", "20", "0", "4", "26", "40", "35", "0", "4", "32", "80", "80", "56", "0", "4", "42", "124", "180", "140", "84", "0", "4", "48", "184", "320", "340", "224", "120", "0", "4", "58", "248", "535", "660", "574", "336", "165", "0", "4", "64", "332", "800", "1200", "1184", "896", "480", "220", "0", "4", "74", "416", "1176", "1956", "2284", "1932", "1320", "660", "286" ]
[ "nonn", "tabl" ]
8
0
3
[ "A000292", "A008284", "A022599", "A023003", "A382041", "A382342", "A382343", "A382344" ]
null
Peter Dolland, Mar 28 2025
2025-03-29T04:21:10
oeisdata/seq/A382/A382344.seq
0b3ac3a1755af58d758b94eb93491e21
A382345
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where n unlabeled objects are distributed into k containers of two kinds. Containers may be left empty.
[ "1", "2", "0", "3", "2", "0", "4", "4", "2", "0", "5", "6", "7", "2", "0", "6", "8", "12", "8", "2", "0", "7", "10", "17", "18", "11", "2", "0", "8", "12", "22", "28", "26", "12", "2", "0", "9", "14", "27", "38", "46", "34", "15", "2", "0", "10", "16", "32", "48", "66", "64", "46", "16", "2", "0", "11", "18", "37", "58", "86", "100", "94", "56", "19", "2", "0", "12", "20", "42", "68", "106", "136", "152", "124", "70", "20", "2", "0" ]
[ "nonn", "tabl" ]
33
0
2
[ "A000712", "A073252", "A381895", "A382342", "A382345" ]
null
Peter Dolland, Mar 29 2025
2025-04-07T09:26:11
oeisdata/seq/A382/A382345.seq
fbd4bcda01bb4db634dd08f9fc06f07c
A382346
Number of antichains in the Bruhat order on B_n.
[ "3", "12", "2247" ]
[ "nonn", "hard", "more", "bref" ]
11
1
1
[ "A005900", "A378072", "A382346" ]
null
Dmitry I. Ignatov, May 18 2025
2025-05-29T15:46:01
oeisdata/seq/A382/A382346.seq
c3031cdb571e13cbd9ea255ccd9a4993
A382347
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = [x^n] Product_{j=0..n} (1 + (k*n+j)*x).
[ "1", "1", "1", "1", "3", "2", "1", "5", "26", "6", "1", "7", "74", "342", "24", "1", "9", "146", "1650", "5944", "120", "1", "11", "242", "4578", "48504", "127860", "720", "1", "13", "362", "9774", "189144", "1763100", "3272688", "5040", "1", "15", "506", "17886", "520024", "9660840", "76223664", "97053936", "40320", "1", "17", "674", "29562", "1164024", "34201080", "586813968", "3817038960", "3270729600", "362880" ]
[ "nonn", "tabl" ]
20
0
5
[ "A000142", "A165675", "A380707", "A382347", "A382349", "A383678", "A384024" ]
null
Seiichi Manyama, May 18 2025
2025-05-18T09:58:24
oeisdata/seq/A382/A382347.seq
dcd41275b56ed6a77d6180d3167bf2ba
A382348
Number of connected bipartite graphs with n edges.
[ "1", "1", "2", "4", "7", "17", "36", "94", "237", "658", "1845", "5527", "16809", "53357", "173298", "580331", "1988935", "6991328", "25124511", "92325353", "346401296", "1326493369" ]
[ "nonn", "nice", "more" ]
67
1
3
[ "A002905", "A005142", "A382348" ]
null
Sergey Pupyrev, May 29 2025
2025-06-09T01:01:37
oeisdata/seq/A382/A382348.seq
776903951784d7054718a24b62441de5
A382349
a(n) = [x^n] Product_{k=0..n} (1 + (3*n+k)*x).
[ "1", "7", "146", "4578", "189144", "9660840", "586813968", "41283943344", "3299858098560", "295294500123840", "29242449106502400", "3174506423754019200", "374845813851886709760", "47828682507084551654400", "6557612642418946942310400", "961431335221085133398784000", "150095351600371197275428454400" ]
[ "nonn" ]
19
0
2
[ "A165675", "A382347", "A382349" ]
null
Seiichi Manyama, May 18 2025
2025-05-23T03:08:00
oeisdata/seq/A382/A382349.seq
55ed2bc20ea50a93c138afc1e4661225
A382351
Numbers with an integer harmonic mean of the indices of distinct prime factors.
[ "2", "3", "4", "5", "7", "8", "9", "11", "13", "16", "17", "19", "23", "25", "27", "29", "31", "32", "37", "39", "41", "43", "47", "49", "53", "59", "61", "64", "65", "67", "71", "73", "79", "81", "83", "89", "97", "101", "103", "107", "109", "113", "117", "121", "125", "127", "128", "130", "131", "137", "139", "149", "151", "157", "163", "167", "169", "173", "179", "181", "191", "193", "195", "197", "199", "211" ]
[ "nonn" ]
6
1
1
[ "A067340", "A078174", "A326621", "A382351" ]
null
Ilya Gutkovskiy, Mar 22 2025
2025-03-29T18:55:21
oeisdata/seq/A382/A382351.seq
76b1d97ab34f7468ac5ff05652371b70
A382352
Numbers k such that the sum of the reciprocals of the indices of distinct prime factors of k is an integer.
[ "1", "2", "4", "8", "16", "32", "64", "128", "195", "256", "390", "512", "585", "780", "975", "1024", "1170", "1560", "1755", "1950", "2048", "2340", "2535", "2925", "3120", "3510", "3900", "4096", "4680", "4875", "5070", "5265", "5850", "6240", "7020", "7605", "7800", "8192", "8775", "9360", "9750", "10101", "10140", "10530", "11700", "12480", "12675", "14040", "14625" ]
[ "nonn" ]
9
1
2
[ "A072873", "A316856", "A382352" ]
null
Ilya Gutkovskiy, Mar 22 2025
2025-03-29T18:56:54
oeisdata/seq/A382/A382352.seq
1bbecb7696df201a3567ef3d650b7fa1
A382353
Numbers k > 0 such that A006218(k) / A018804(k) is an integer.
[ "1", "2", "3", "4", "8", "10", "15", "43", "63", "6934", "316563", "2428132", "56264126" ]
[ "nonn", "more" ]
13
1
2
[ "A006218", "A018804", "A382353" ]
null
Ctibor O. Zizka, Mar 22 2025
2025-03-23T08:39:47
oeisdata/seq/A382/A382353.seq
02cee63178aec626b44889048650b8e2
A382354
Triangle T(n,k) read by rows, where row n is a permutation of the numbers 1 through n, such that if a deck of n cards is prepared in this order, and under-down-under dealing is used, then the resulting cards will be dealt in increasing order.
[ "1", "2", "1", "3", "1", "2", "2", "1", "3", "4", "4", "1", "5", "3", "2", "4", "1", "3", "5", "2", "6", "3", "1", "7", "5", "2", "4", "6", "5", "1", "7", "4", "2", "8", "6", "3", "7", "1", "4", "6", "2", "8", "5", "3", "9", "4", "1", "10", "8", "2", "5", "7", "3", "9", "6", "10", "1", "7", "5", "2", "11", "9", "3", "6", "8", "4", "9", "1", "5", "11", "2", "8", "6", "3", "12", "10", "4", "7", "5", "1", "8", "10", "2", "6", "12", "3", "9", "7", "4", "13", "11" ]
[ "nonn", "tabl" ]
10
1
2
[ "A006257", "A225381", "A321298", "A378635", "A382354", "A382355", "A382356", "A382358" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025
2025-04-13T23:20:36
oeisdata/seq/A382/A382354.seq
14356108451fa34f0d50c5d086ab40f7
A382355
A version of the Josephus problem: a(n) is the surviving integer under the skip-eliminate-skip version of the elimination process.
[ "1", "1", "1", "4", "3", "6", "3", "6", "9", "3", "6", "9", "12", "1", "4", "7", "10", "13", "16", "19", "1", "4", "7", "10", "13", "16", "19", "22", "25", "28", "31", "3", "6", "9", "12", "15", "18", "21", "24", "27", "30", "33", "36", "39", "42", "45", "1", "4", "7", "10", "13", "16", "19", "22", "25", "28", "31", "34", "37", "40", "43", "46", "49", "52", "55", "58", "61", "64", "67", "70", "3", "6" ]
[ "nonn" ]
10
1
4
[ "A006257", "A225381", "A321298", "A378635", "A382354", "A382355", "A382356", "A382358" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025
2025-04-05T23:25:37
oeisdata/seq/A382/A382355.seq
f17ed0a983a808644186fef5ab480ac2
A382356
Elimination order of the first person in a variation of the Josephus problem, where there are n people total. During each round the first person is skipped, the second is eliminated and the third person is skipped. Then the process repeats.
[ "1", "2", "3", "2", "4", "4", "3", "5", "7", "4", "10", "9", "5", "14", "9", "6", "10", "15", "7", "18", "21", "8", "19", "14", "9", "15", "24", "10", "21", "28", "11", "23", "19", "12", "20", "26", "13", "31", "28", "14", "36", "24", "15", "25", "43", "16", "47", "39", "17", "44", "29", "18", "30", "44", "19", "40", "50", "20", "42", "34", "21", "35", "45", "22", "57", "47", "23", "55", "39", "24" ]
[ "nonn" ]
9
1
2
[ "A006257", "A225381", "A321298", "A378635", "A382354", "A382355", "A382356", "A382358" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025
2025-04-05T23:41:53
oeisdata/seq/A382/A382356.seq
361a803cf3cb131606ed0459a16ac6e2
A382357
Lexicographically earliest sequence of distinct positive integers such that the 2-adic valuations of adjacent terms differ exactly by one.
[ "1", "2", "3", "6", "4", "8", "12", "10", "5", "14", "7", "18", "9", "22", "11", "26", "13", "30", "15", "34", "17", "38", "19", "42", "20", "24", "16", "32", "48", "40", "28", "46", "21", "50", "23", "54", "25", "58", "27", "62", "29", "66", "31", "70", "33", "74", "35", "78", "36", "56", "44", "72", "52", "82", "37", "86", "39", "90", "41", "94", "43", "98", "45", "102", "47", "106", "49" ]
[ "nonn", "base" ]
11
1
2
[ "A003602", "A007814", "A073675", "A266089", "A382357", "A382360" ]
null
Rémy Sigrist, Mar 22 2025
2025-03-26T16:17:03
oeisdata/seq/A382/A382357.seq
a8a224cb8301445092c030ae3a7e39fd
A382358
Triangle read by rows: T(n,k) is the number of the k-th eliminated person in the variation of the Josephus elimination process for n people, where in each round, the first person is skipped, the second eliminated and the third is skipped.
[ "1", "2", "1", "2", "3", "1", "2", "1", "3", "4", "2", "5", "4", "1", "3", "2", "5", "3", "1", "4", "6", "2", "5", "1", "6", "4", "7", "3", "2", "5", "8", "4", "1", "7", "3", "6", "2", "5", "8", "3", "7", "4", "1", "6", "9", "2", "5", "8", "1", "6", "10", "7", "4", "9", "3", "2", "5", "8", "11", "4", "9", "3", "10", "7", "1", "6", "2", "5", "8", "11", "3", "7", "12", "6", "1", "10", "4", "9", "2", "5", "8", "11", "1", "6", "10", "3", "9", "4", "13", "7", "12" ]
[ "nonn", "tabl" ]
13
1
2
[ "A006257", "A225381", "A321298", "A378635", "A382354", "A382355", "A382356", "A382358" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, Mar 22 2025
2025-04-05T23:40:52
oeisdata/seq/A382/A382358.seq
3f89fda4633a3d309fe0458c4d2b6e1b
A382359
Number of labeled deterministic finite automata with n states and two letters.
[ "2", "128", "17496", "4194304", "1562500000", "835884417024", "607687873272704", "576460752303423488", "691636079448571949568", "1024000000000000000000000", "1833841138186726138360895488", "3907429033741066770846918377472", "9769232732262334599652925506494464" ]
[ "nonn" ]
10
1
1
[ "A036289", "A062206", "A155957", "A382359" ]
null
Anand Jain, Mar 22 2025
2025-03-30T15:28:00
oeisdata/seq/A382/A382359.seq
a6cd77b0ccf6da74bf83b9d8bd81f335
A382360
a(n) is the unique k such that A382357(k) = 2^n.
[ "1", "2", "5", "6", "27", "28", "87", "88", "371", "372", "1303", "1304", "5717", "5718", "27099", "27100", "100637", "100638", "429041", "429042", "1676037", "1676038", "6566201", "6566202", "26703687", "26703688", "105939329", "105939330", "424972311", "424972312", "1688465121", "1688465122", "6744826613", "6744826614" ]
[ "nonn", "base" ]
6
0
2
[ "A382357", "A382360" ]
null
Rémy Sigrist, Mar 22 2025
2025-03-26T16:16:57
oeisdata/seq/A382/A382360.seq
9fa0cd538c3aef37d2123f36c780505b
A382361
Number of nonnesting permutations of the multiset {1,1,2,2,...,n,n} that avoid 123.
[ "1", "4", "17", "82", "406", "2070", "10729", "56394", "299646", "1606816", "8683562" ]
[ "nonn", "more" ]
43
1
2
[ "A177555", "A382361", "A383770" ]
null
Amya Luo, May 26 2025
2025-06-17T01:18:18
oeisdata/seq/A382/A382361.seq
42587fb0df47d8aa7c461eaf9bc62d45
A382362
Number of oriented Eulerian circuits from a fixed start vertex in the complete digraph K_n, counting distinct first arcs.
[ "1", "6", "768", "3888000", "1238347284480", "36133511823360000000", "132525036775962102988800000000", "80290170669240213088301154828288000000000", "10219925826442937385376011199621103616000000000000000000", "338787616987540767092926393308400759448386388551011812769792000000000000" ]
[ "nonn", "walk" ]
32
2
2
[ "A000272", "A124355", "A135388", "A232545", "A369820", "A382362" ]
null
Florian Ragwitz, Mar 23 2025
2025-03-25T19:51:09
oeisdata/seq/A382/A382362.seq
e8d638497a13af437b1b001a1eb3dcba
A382363
Rectangular array read by antidiagonals, T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] such that for all u,v in [n], u->v implies u<=v and c(u)<=c(v), n>=0, k>=0.
[ "1", "0", "1", "0", "1", "1", "0", "2", "2", "1", "0", "8", "7", "3", "1", "0", "64", "44", "15", "4", "1", "0", "1024", "508", "129", "26", "5", "1", "0", "32768", "10976", "1962", "284", "40", "6", "1", "0", "2097152", "450496", "54036", "5371", "530", "57", "7", "1", "0", "268435456", "35535872", "2747880", "180424", "11995", "888", "77", "8", "1", "0", "68719476736", "5435551744", "262091808", "10997576", "476165", "23409", "1379", "100", "9", "1" ]
[ "nonn", "tabl" ]
29
0
8
[ "A006125", "A382223", "A382363" ]
null
Geoffrey Critzer, Mar 23 2025
2025-03-24T06:12:39
oeisdata/seq/A382/A382363.seq
6357ba9a817abe3ce2acf135f2e9add1
A382364
a(n) is the smallest squarefree number k such that the sum of the digit counts of the prime factors of k equals the sum of n and the digit count of k
[ "6", "66", "858", "72930", "6374082", "643782282", "66309575046" ]
[ "nonn", "base", "more" ]
52
1
1
[ "A055642", "A095411", "A382364" ]
null
Jean-Marc Rebert, Mar 24 2025
2025-04-08T23:29:22
oeisdata/seq/A382/A382364.seq
95299ff35d13de19a40381d7e94c920e
A382365
Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/2).
[ "1", "2", "10", "46", "232", "1174", "6078", "31786", "167836", "892258", "4770466", "25622286", "138146540", "747253022", "4053224974", "22038282338", "120079277626", "655486778654", "3584062901182", "19625809294386", "107610733877720", "590751275348362", "3246588926918074", "17860031073624694" ]
[ "nonn" ]
8
0
2
[ "A327736", "A382187", "A382365", "A382366" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:26
oeisdata/seq/A382/A382365.seq
b99e5700667b91b0d8388a7ce150dd31
A382366
Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(2^k) / (1 - x^(2^k)) )^(1/3).
[ "1", "3", "24", "201", "1818", "17004", "163068", "1590798", "15718899", "156860076", "1577644998", "15969030780", "162498057048", "1660951840611", "17042090466264", "175436835017475", "1811209862304735", "18746380864328061", "194465530800628908", "2021343414865754583", "21048513676138546848" ]
[ "nonn" ]
8
0
2
[ "A327736", "A382188", "A382365", "A382366" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:22
oeisdata/seq/A382/A382366.seq
df4587af38248644632f55e65fb0a447
A382367
Expansion of 1/( 1 - Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) ).
[ "1", "1", "2", "5", "10", "21", "46", "97", "206", "442", "940", "2002", "4272", "9103", "19400", "41360", "88156", "187901", "400534", "853747", "1819782", "3878965", "8268160", "17623888", "37566072", "80073580", "170680002", "363811370", "775478548", "1652963605", "3523358532", "7510180375", "16008251264", "34122231512" ]
[ "nonn" ]
11
0
3
[ "A051064", "A327736", "A382367", "A382368", "A382369", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:18
oeisdata/seq/A382/A382367.seq
55adb4d6d72daeab93ea2fe495dc7bcb
A382368
Expansion of 1/( 1 - 4 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/2).
[ "1", "2", "8", "36", "162", "750", "3536", "16858", "81100", "392914", "1914268", "9369190", "46032396", "226898158", "1121510176", "5556731592", "27589816042", "137240945530", "683808343416", "3412128301538", "17048743841882", "85286538527304", "427112389604968", "2141096012912290", "10743017708448232" ]
[ "nonn" ]
7
0
2
[ "A382367", "A382368", "A382369" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:13
oeisdata/seq/A382/A382368.seq
97e5237b9c241f7cc9f0daa6c5a24dba
A382369
Expansion of 1/( 1 - 9 * Sum_{k>=0} x^(3^k) / (1 - x^(3^k)) )^(1/3).
[ "1", "3", "21", "168", "1416", "12396", "111219", "1015221", "9386643", "87650775", "824926152", "7813623234", "74403686022", "711670543635", "6833183666862", "65826593737206", "635962416394296", "6159757277793783", "59796182640515031", "581643107427461664", "5667929195670139296", "55322424966010598556" ]
[ "nonn" ]
8
0
2
[ "A382367", "A382368", "A382369" ]
null
Seiichi Manyama, Mar 22 2025
2025-03-23T10:08:09
oeisdata/seq/A382/A382369.seq
cd332ce099938b75bc8dc8e782f543a9
A382370
Numbers k such that (k - 1)^(k + 1) - k is prime.
[ "3", "4", "5", "7", "10", "11", "21", "46", "59", "839", "21920" ]
[ "nonn", "more" ]
18
1
1
[ "A238378", "A240532", "A382370" ]
null
Juri-Stepan Gerasimov, Mar 23 2025
2025-04-05T16:40:45
oeisdata/seq/A382/A382370.seq
4d750f13b3d904b84e0484ec4cc660f0
A382371
Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as large as possible. If no digits remain, a(n)=0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "2", "3", "4", "5", "6", "7", "8", "9", "2", "2", "0", "3", "4", "5", "6", "7", "8", "9", "3", "3", "3", "0", "4", "5", "6", "7", "8", "9", "4", "4", "4", "4", "0", "5", "6", "7", "8", "9", "5", "5", "5", "5", "5", "0", "6", "7", "8", "9", "6", "6", "6", "6", "6", "6", "0", "7", "8", "9", "7", "7", "7", "7", "7", "7", "7", "0", "8", "9", "8", "8", "8", "8", "8", "8", "8", "8" ]
[ "nonn", "base", "look" ]
12
1
12
[ "A010785", "A382102", "A382371" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-23T23:22:39
oeisdata/seq/A382/A382371.seq
5ead58ffced734a88759289cf8fdfa00
A382372
Expansion of 1/( 1 - Sum_{k>=0} x^(4^k) / (1 - x^(4^k)) ).
[ "1", "1", "2", "4", "9", "18", "37", "76", "158", "325", "670", "1381", "2850", "5876", "12117", "24986", "51530", "106262", "219131", "451885", "931876", "1921695", "3962884", "8172182", "16852538", "34752996", "71667001", "147790386", "304770689", "628492615", "1296066140", "2672724207", "5511643710", "11366012289" ]
[ "nonn" ]
13
0
3
[ "A115362", "A327736", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:08:05
oeisdata/seq/A382/A382372.seq
505344931cf62480581d920f4b13929a
A382373
Expansion of 1/( 1 - Sum_{k>=0} x^(5^k) / (1 - x^(5^k)) ).
[ "1", "1", "2", "4", "8", "17", "34", "69", "140", "284", "578", "1173", "2382", "4837", "9822", "19948", "40508", "82261", "167050", "339233", "688896", "1398964", "2840926", "5769169", "11715654", "23791402", "48314044", "98113049", "199241660", "404607125", "821650100", "1668554099", "3388392198", "6880928638", "13973346686" ]
[ "nonn" ]
9
0
3
[ "A055457", "A327736", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:08:01
oeisdata/seq/A382/A382373.seq
9b5051d25915d966c67bf31f06ed1858
A382374
Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of adjacent terms differ exactly by one.
[ "1", "2", "4", "3", "6", "5", "9", "7", "10", "8", "14", "11", "15", "12", "16", "18", "21", "13", "22", "17", "25", "19", "26", "20", "24", "27", "33", "23", "34", "28", "35", "29", "38", "30", "36", "32", "40", "42", "39", "31", "46", "37", "49", "41", "51", "43", "55", "44", "54", "45", "56", "48", "60", "50", "57", "47", "58", "52", "62", "53", "65", "59", "69", "61", "74", "63", "77" ]
[ "nonn" ]
11
1
2
[ "A001222", "A382229", "A382357", "A382374", "A382375", "A382376" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T18:19:42
oeisdata/seq/A382/A382374.seq
2df6463255a6033f28f29d76fe9915c7
A382375
Lexicographically earliest sequence of distinct positive integers such that the number of prime factors counted with multiplicity of n and a(n) differ exactly by one.
[ "2", "1", "4", "3", "6", "5", "9", "10", "7", "8", "14", "15", "21", "11", "12", "18", "22", "16", "25", "24", "13", "17", "26", "20", "19", "23", "33", "34", "35", "36", "38", "40", "27", "28", "29", "30", "39", "31", "37", "32", "46", "49", "51", "54", "55", "41", "57", "56", "42", "58", "43", "60", "62", "44", "45", "48", "47", "50", "65", "52", "69", "53", "74", "72", "59", "77", "82" ]
[ "nonn" ]
11
1
1
[ "A001222", "A382374", "A382375", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T20:56:04
oeisdata/seq/A382/A382375.seq
cd7928aa0262d604d32e1866efe88113
A382376
Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of adjacent terms differ exactly by one.
[ "1", "2", "6", "3", "10", "4", "12", "5", "14", "7", "15", "8", "18", "9", "20", "11", "21", "13", "22", "16", "24", "17", "26", "19", "28", "23", "33", "25", "34", "27", "35", "29", "36", "30", "38", "31", "39", "32", "40", "37", "44", "41", "45", "42", "46", "43", "48", "47", "50", "49", "51", "53", "52", "59", "54", "60", "55", "61", "56", "64", "57", "66", "58", "67", "62", "70", "63" ]
[ "nonn" ]
12
1
2
[ "A001221", "A382357", "A382374", "A382376", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T17:49:13
oeisdata/seq/A382/A382376.seq
9c4804551098d496741c73e50e65f7ba
A382377
Lexicographically earliest sequence of distinct positive integers such that the number of distinct prime factors of n and a(n) differ exactly by one.
[ "2", "1", "6", "10", "12", "3", "14", "15", "18", "4", "20", "5", "21", "7", "8", "22", "24", "9", "26", "11", "13", "16", "28", "17", "33", "19", "34", "23", "35", "36", "38", "39", "25", "27", "29", "30", "40", "31", "32", "37", "44", "45", "46", "41", "42", "43", "48", "47", "50", "49", "53", "59", "51", "60", "61", "64", "66", "67", "52", "54", "55", "70", "71", "56", "73", "57", "58" ]
[ "nonn" ]
12
1
1
[ "A001221", "A382375", "A382376", "A382377" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-26T17:49:09
oeisdata/seq/A382/A382377.seq
2021af161550acfd62e11b5a26cc572d
A382378
Expansion of 1/( 1 - Sum_{k>=0} x^(6^k) / (1 - x^(6^k)) ).
[ "1", "1", "2", "4", "8", "16", "33", "66", "133", "268", "540", "1088", "2194", "4421", "8910", "17957", "36190", "72936", "146996", "296252", "597061", "1203306", "2425121", "4887544", "9850272", "19852060", "40009486", "80634401", "162509126", "327517977", "660073866", "1330301036", "2681064864", "5403370072", "10889855193", "21947218962" ]
[ "nonn" ]
8
0
3
[ "A122841", "A327736", "A373216", "A382367", "A382372", "A382373", "A382378" ]
null
Seiichi Manyama, Mar 23 2025
2025-03-23T10:07:57
oeisdata/seq/A382/A382378.seq
d72f88666fa96ffd016820e52c06d00d
A382379
Table read by rows: row n is the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "3", "4", "5", "1", "0", "1", "5", "12", "13", "7", "24", "25", "13", "84", "85", "21", "220", "221", "35", "612", "613", "57", "1624", "1625", "93", "4324", "4325", "151", "11400", "11401", "245", "30012", "30013", "397", "78804", "78805", "643", "206724", "206725", "1041", "541840", "541841", "1685", "1419612", "1419613", "2727", "3718264", "3718265" ]
[ "nonn", "easy", "tabf" ]
20
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-31T01:59:10
oeisdata/seq/A382/A382379.seq
49198f7bdf5c275b6284f0024edbc014
A382380
Greater of twin self numbers, i.e., larger member of the pair of self numbers differing by 2.
[ "3", "5", "7", "9", "110", "211", "312", "413", "514", "615", "716", "817", "918", "1111", "1212", "1313", "1414", "1515", "1616", "1717", "1818", "1919", "2112", "2213", "2314", "2415", "2516", "2617", "2718", "2819", "2920", "3113", "3214", "3315", "3416", "3517", "3618", "3719", "3820", "3921", "4114", "4215", "4316", "4417", "4518", "4619", "4720", "4821", "4922", "5115", "5216", "5317", "5418" ]
[ "nonn", "base" ]
16
1
1
[ "A003052", "A374101", "A382380" ]
null
Shyam Sunder Gupta, Mar 23 2025
2025-04-25T20:40:41
oeisdata/seq/A382/A382380.seq
cfb0909bcd15e09031360523e6438477
A382381
Lexicographically earliest sequence of distinct positive integers such that any two subsets with at least two terms have distinct variances.
[ "1", "2", "4", "8", "16", "25", "36", "62", "136", "320", "411", "1208", "1295", "4179", "5143", "6380", "31370", "34425", "36094", "213044", "218759", "306722" ]
[ "nonn", "hard", "more" ]
20
1
2
[ "A138857", "A260873", "A381856", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-04-07T17:46:47
oeisdata/seq/A382/A382381.seq
6a63e4d80cd29ef6f5625a5b26998766
A382382
Least k for which there exists an n-subset X of {0, ..., k} such that the variances of the subsets of X of size at least 2 are distinct.
[ "0", "1", "3", "6", "11", "17", "27", "48" ]
[ "nonn", "more" ]
9
1
3
[ "A003022", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-03-29T15:31:49
oeisdata/seq/A382/A382382.seq
5522d70a8b273ea224afe88a02b84a0e
A382383
Number of distinct variances of nonempty subsets of {1, ..., n}.
[ "0", "1", "2", "4", "7", "13", "23", "40", "68", "124", "208", "368", "559", "918", "1352", "2017", "2891", "4122", "5506", "7458", "9623", "12620", "16125", "20626", "25401", "31513", "38587", "47244", "56592", "68021", "80503", "95859", "112137", "131986", "153353", "178434", "205627", "236266", "269884", "307167", "346844", "394924", "445797", "501739" ]
[ "nonn" ]
23
0
3
[ "A005418", "A135342", "A208531", "A382381", "A382382", "A382383" ]
null
Pontus von Brömssen, Mar 23 2025
2025-04-06T06:37:33
oeisdata/seq/A382/A382383.seq
6f7ffa59ab1ce33b11bb41b31ed390c0
A382384
Number of minimum connected dominating sets in the n-Goldberg graph.
[ "6", "96", "290", "744", "1974", "5376", "15642", "45480", "124014", "343008", "944658", "2596776", "7116390", "19409664", "52694730", "142812648", "385840030", "1039911520", "2796034626", "7501233256", "20084164374", "53677896192", "143214557050", "381504047912", "1014784646094", "2695617288672", "7151420301682" ]
[ "nonn", "easy" ]
17
3
1
[ "A004767", "A382384", "A382431" ]
null
Eric W. Weisstein, Mar 23 2025
2025-06-04T09:52:19
oeisdata/seq/A382/A382384.seq
8122ab297d7bb66e01b6ff742652070b
A382385
Number of minimum dominating sets in the n X n fiveleaper graph.
[ "1", "1", "1", "1", "1", "112", "12", "32", "4809", "48", "860", "9840", "2" ]
[ "nonn", "more" ]
20
1
6
null
null
Eric W. Weisstein, Mar 23 2025
2025-06-01T09:58:09
oeisdata/seq/A382/A382385.seq
f7be5adb8df683349c277ac1a7667edb
A382386
Number of minimum dominating sets in the n X n giraffe graph.
[ "1", "1", "1", "1", "56", "172", "14", "152", "18", "56", "2", "192", "224", "4340", "2016", "352", "8" ]
[ "nonn", "more" ]
29
1
5
null
null
Eric W. Weisstein, Mar 23 2025
2025-06-25T14:44:12
oeisdata/seq/A382/A382386.seq
362e14f227c1f0a4336b40d34bc08724
A382387
Number of minimum dominating sets in the n X n zebra graph.
[ "1", "1", "1", "1", "448", "28", "552", "25", "1588", "1028", "6", "656", "40" ]
[ "nonn", "more" ]
23
1
5
null
null
Eric W. Weisstein, Mar 23 2025
2025-06-21T16:16:50
oeisdata/seq/A382/A382387.seq
fa0bff2baaae99bc46b5214bbef2299f
A382388
Number of minimum dominating sets in the n X n antelope graph.
[ "1", "1", "1", "1", "1", "81", "1344", "32" ]
[ "nonn", "more" ]
16
1
6
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-30T09:52:24
oeisdata/seq/A382/A382388.seq
7f00ebe7e170c2bf1cd038e9c5b7e246
A382389
Numbers k such that k, prime(k) and primepi(reverse(prime(k))) are emirps (A006567).
[ "7673", "9001", "12491", "17749", "31481", "75041", "93887", "95881", "102061", "104479", "112621", "113557", "118429", "139999", "722713", "743891", "749927", "999133", "1001941", "1086353", "1115071", "1165511", "1233907", "1861913", "1861973", "1881697", "1927903", "1972259" ]
[ "nonn", "base" ]
6
1
1
[ "A006567", "A382389" ]
null
Ivan N. Ianakiev, Mar 23 2025
2025-03-27T10:13:52
oeisdata/seq/A382/A382389.seq
54f2dee648fcafc20d6f090812730a8f
A382390
Number of minimum dominating sets in the n X n camel graph.
[ "1", "1", "1", "9", "92", "4", "4", "16", "48", "576" ]
[ "nonn", "more" ]
10
1
4
null
null
Eric W. Weisstein, Mar 23 2025
2025-03-23T17:01:53
oeisdata/seq/A382/A382390.seq
52fb1b3fc715661432a40a31970ba337
A382391
Numbers k such that (23^k - 3^k)/20 is prime.
[ "3", "7", "31", "47", "109", "151", "223", "463", "739", "6427", "17581", "30517" ]
[ "nonn", "hard", "more" ]
5
1
1
[ "A062587", "A062589", "A127996", "A127997", "A128344", "A204940", "A217320", "A225807", "A229542", "A375161", "A375236", "A377031", "A382391" ]
null
Robert Price, Mar 23 2025
2025-03-23T12:53:28
oeisdata/seq/A382/A382391.seq
798d7a988353dd62e2826e913408826b
A382392
a(n) is the least prime number whose factorial base expansion contains the digit n.
[ "2", "2", "5", "19", "97", "601", "4327", "35281", "322571", "3265949", "36288017", "439084817", "5748019201", "80951270459", "1220496076831", "19615115520037", "334764638208037", "6046686277632071", "115242726703104073", "2311256907767808001", "48658040163532800037", "1072909785605898240031" ]
[ "nonn", "base" ]
7
0
1
[ "A001563", "A062584", "A090703", "A382392" ]
null
Rémy Sigrist, Mar 23 2025
2025-03-24T15:14:57
oeisdata/seq/A382/A382392.seq
f4f3aa49935d772f96147e5153deb8a7
A382393
Positive integers k such that 6*k - 1 is prime for k != 1 (mod 5) and (6*k - 1)/5 is prime for k == 1 (mod 5).
[ "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "14", "15", "16", "17", "18", "19", "22", "23", "25", "26", "28", "29", "30", "31", "32", "33", "36", "38", "39", "40", "42", "43", "44", "45", "47", "49", "51", "52", "53", "56", "58", "59", "60", "61", "64", "65", "66", "67", "70", "72", "74", "75", "77", "78", "80", "81", "82", "84", "85", "86", "87", "91", "93", "94", "95", "98", "99", "100" ]
[ "nonn" ]
10
1
1
[ "A024898", "A024899", "A382393" ]
null
V. Barbera, Mar 23 2025
2025-03-30T16:26:14
oeisdata/seq/A382/A382393.seq
73498a8e8d7fd3c689e8a9d312044890
A382394
a(n) = Sum_{k=0..n} A128899(n,k)^3.
[ "1", "1", "9", "190", "5705", "204876", "8209278", "354331692", "16140234825", "765868074400", "37525317999884", "1886768082651816", "96906387191038334", "5066711735118128200", "268954195756648761900", "14464077426547576156440", "786729115199980286001225", "43219452658242723841261800" ]
[ "nonn" ]
24
0
3
[ "A001700", "A003161", "A024492", "A088218", "A128899", "A183069", "A382394" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:21:57
oeisdata/seq/A382/A382394.seq
aba92305a487f21c90bb2f4df870f682
A382395
Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different difference.
[ "1", "1", "1", "3", "2", "6", "14", "2", "10", "26", "60", "110", "4", "22", "68", "156", "320", "584", "8", "24", "80", "206", "504", "1004", "1910", "3380", "10", "34", "98", "282", "760", "1618", "3334", "6360", "11482", "2", "22", "70", "214", "540", "1250", "2718", "5712", "10910", "20418", "2", "12", "30", "90", "230", "562", "1228", "2690", "5550", "11260", "21164", "2", "4", "6", "10", "18" ]
[ "nonn" ]
10
0
4
[ "A143823", "A143824", "A325879", "A377410", "A382395", "A382396", "A382398" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:13
oeisdata/seq/A382/A382395.seq
7e8dac18ca1659a3989411cbd6400820
A382396
Number of minimum sized maximal subsets of {1..n} such that every pair of distinct elements has a different difference.
[ "1", "1", "1", "3", "1", "6", "14", "18", "14", "10", "4", "110", "172", "216", "226", "214", "184", "152", "116", "82", "50", "26", "10", "3696", "3904", "3942", "3768", "3504", "3016", "2548", "2060", "1598", "1170", "832", "538", "330", "196", "106", "52", "20", "10", "4", "2", "69610", "62594", "55294", "47610", "40502", "33538", "27254", "21544", "16764", "12676", "9258", "6534", "4516", "3042", "1990", "1254", "754", "448" ]
[ "nonn" ]
8
0
4
[ "A143823", "A325879", "A377419", "A382395", "A382396", "A382397" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:09
oeisdata/seq/A382/A382396.seq
a9d3a1770ea163ddde288a7fa49684c1
A382397
Minimum size of a maximal subset of {1..n} such that every pair of distinct elements has a different difference.
[ "0", "1", "2", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6", "6" ]
[ "nonn", "more" ]
8
0
3
[ "A143824", "A325879", "A377419", "A382396", "A382397" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:04
oeisdata/seq/A382/A382397.seq
056b3d49694c964d004da269911beb29
A382398
Number of maximum sized subsets of {1..n} such that every pair of distinct elements has a different sum.
[ "1", "1", "1", "1", "4", "2", "8", "22", "2", "14", "40", "102", "214", "4", "24", "92", "236", "564", "1148", "4", "18", "90", "270", "694", "1558", "2", "6", "24", "76", "252", "632", "1554", "3282", "6820", "12942", "6", "24", "84", "246", "664", "1562", "3442", "7084", "14336", "27202", "50520", "2", "26", "88", "294", "704", "1716", "3708", "8028", "16108", "31466", "58320", "107136", "4", "20", "54" ]
[ "nonn" ]
6
0
5
[ "A039836", "A196723", "A325878", "A382395", "A382398" ]
null
Andrew Howroyd, Mar 23 2025
2025-03-24T15:15:17
oeisdata/seq/A382/A382398.seq
695d768bce68940efc844fe67152c5e2
A382399
Number of subsets of Z_n such that every ordered pair of distinct elements has a different difference.
[ "1", "2", "3", "7", "9", "16", "19", "43", "49", "100", "91", "177", "193", "352", "323", "691", "673", "1242", "1135", "2129", "2041", "3634", "3103", "5843", "5473", "9326", "8139", "16579", "14001", "24796", "21271", "38813", "34369", "60292", "49539", "86451", "81361", "131684", "110391", "196717", "171761", "286878", "236167", "419337", "370569", "618346", "501999", "872415", "763777", "1235438", "1028451" ]
[ "nonn" ]
12
0
2
[ "A143823", "A325679", "A325681", "A382399", "A382400" ]
null
Andrew Howroyd, Mar 24 2025
2025-03-27T18:33:31
oeisdata/seq/A382/A382399.seq
4fd5ec0c7e4d0b9e1d0858d2537f84c8
A382400
Number of subsets of Z_n such that every ordered pair of distinct elements has a different sum.
[ "1", "2", "4", "8", "15", "26", "48", "78", "133", "202", "316", "474", "755", "1054", "1604", "2196", "3305", "4370", "6208", "8228", "11631", "15086", "20912", "26842", "37581", "46626", "64052", "79984", "109635", "133314", "176156", "217094", "291409", "343872", "457828", "547576", "718375", "852074", "1112128", "1308230", "1714741" ]
[ "nonn" ]
6
0
2
[ "A000125", "A196723", "A382399", "A382400" ]
null
Andrew Howroyd, Mar 27 2025
2025-03-27T18:33:24
oeisdata/seq/A382/A382400.seq
259245e6bec8a53c7832ce680d876994
A382401
a(n) is the number formed by removing all copies of the smallest digit of n, or 0 if no digits remain.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "2", "3", "4", "5", "6", "7", "8", "9", "2", "2", "0", "3", "4", "5", "6", "7", "8", "9", "3", "3", "3", "0", "4", "5", "6", "7", "8", "9", "4", "4", "4", "4", "0", "5", "6", "7", "8", "9", "5", "5", "5", "5", "5", "0", "6", "7", "8", "9", "6", "6", "6", "6", "6", "6", "0", "7", "8", "9", "7", "7", "7", "7", "7", "7", "7", "0", "8", "9", "8", "8", "8", "8", "8", "8", "8", "8", "0", "9", "9", "9", "9", "9", "9", "9", "9", "9", "9", "0", "1", "11", "12", "13", "14", "15", "16", "17", "18", "19", "11", "0", "2", "3", "4", "5", "6", "7", "8", "9", "12" ]
[ "nonn", "base", "look" ]
22
1
12
[ "A054054", "A382056", "A382371", "A382401" ]
null
Paolo Xausa, Mar 23 2025
2025-03-24T05:57:32
oeisdata/seq/A382/A382401.seq
5df139c5127d443f18a0fc3d6093053a
A382402
Numbers divisible by the product of their digits (mod 10).
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "12", "15", "24", "26", "34", "35", "37", "48", "55", "62", "64", "66", "72", "73", "75", "76", "78", "84", "88", "95", "96", "98", "99", "111", "112", "115", "126", "132", "134", "135", "136", "137", "144", "148", "155", "162", "164", "168", "172", "173", "175", "176", "184", "188", "192", "195", "196", "198", "199", "212", "216", "228", "232", "244", "248", "264", "266" ]
[ "nonn", "base" ]
19
1
2
[ "A007602", "A064700", "A371281", "A382402" ]
null
Enrique Navarrete, Mar 23 2025
2025-06-02T08:29:19
oeisdata/seq/A382/A382402.seq
d882f97c33d3d662fa2127e88b985c3f
A382403
a(n) = Sum_{k=0..n} A039599(n,k)^3.
[ "1", "2", "36", "980", "33040", "1268568", "53105976", "2364239592", "110206067400", "5323547715200", "264576141331216", "13458185494436592", "697931136204820336", "36789784967375728400", "1966572261077797609200", "106400946932857148590800", "5817987630644593688220600", "321105713814359742307398480" ]
[ "nonn" ]
11
0
2
[ "A000984", "A039599", "A048990", "A112029", "A382403" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:22:02
oeisdata/seq/A382/A382403.seq
2c7cf39def2ef27972e2f19383764af6
A382404
a(n) = -Sum_{k=0..n} (-1)^k * A039599(n,k)^3.
[ "-1", "0", "18", "480", "11550", "275184", "6597360", "159629184", "3897563670", "95946708000", "2378998624860", "59359563244800", "1489281975509328", "37545821365718400", "950601539891016000", "24159023128878865920", "616066120184552310150", "15757649689979967739200" ]
[ "sign" ]
7
0
3
[ "A039599", "A382404" ]
null
Seiichi Manyama, Mar 24 2025
2025-03-24T10:22:06
oeisdata/seq/A382/A382404.seq
e2756f980e52ee9ceb082fe89d85afaf
A382405
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,k) * 2^(n-k).
[ "1", "4", "34", "352", "4006", "48184", "600916", "7687936", "100240198", "1326277144", "17753591164", "239915864896", "3267780399196", "44805617380528", "617844108170344", "8561667414341632", "119151750609504838", "1664497333624420888", "23330380347342383404", "327990673915214512192", "4623496960858710060916" ]
[ "nonn", "easy" ]
24
0
2
[ "A001850", "A005258", "A069835", "A274671", "A382405", "A382642", "A382848" ]
null
Ilya Gutkovskiy, Apr 08 2025
2025-06-22T00:16:14
oeisdata/seq/A382/A382405.seq
cb3b69adebeb0cd30194c16d9339127d
A382406
Expansion of 1/(1 - x*(1 + x)^2)^3.
[ "1", "3", "12", "37", "111", "315", "864", "2307", "6027", "15471", "39132", "97755", "241606", "591636", "1437078", "3465748", "8305161", "19788957", "46910232", "110686101", "260064912", "608684490", "1419591546", "3300027546", "7648265728", "17676484410", "40747630332", "93704299336", "214999206831", "492262973433" ]
[ "nonn", "easy" ]
60
0
2
[ "A000217", "A001628", "A002478", "A362126", "A382406", "A382614" ]
null
Seiichi Manyama, Mar 31 2025
2025-04-10T10:46:39
oeisdata/seq/A382/A382406.seq
716db09feab607b2730dea0f1cd3e81a
A382407
a(n) is the number of partitions n = x + y + z of positive integers such that x*y + y*z + x*z is a perfect square.
[ "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "3", "0", "1", "1", "1", "2", "2", "2", "1", "1", "1", "1", "3", "0", "5", "1", "1", "2", "3", "3", "2", "1", "1", "3", "6", "1", "4", "2", "7", "4", "4", "0", "3", "5", "3", "4", "2", "1", "7", "2", "1", "5", "9", "3", "5", "3", "4", "1", "9", "2", "6", "3", "5", "6", "5", "4", "7", "5", "1", "5", "6", "3", "13", "7", "8", "4", "6", "0", "4", "4", "11", "5", "13", "2" ]
[ "nonn" ]
6
1
14
[ "A000244", "A005030", "A066955", "A069905", "A338939", "A375512", "A375576", "A375580", "A375731", "A382407" ]
null
Felix Huber, Apr 04 2025
2025-04-10T21:13:21
oeisdata/seq/A382/A382407.seq
51edd7d6e686b758d3494c8f78190a17
A382408
a(n) is the number of terms in A071174 whose radical is A144338(n).
[ "1", "1", "1", "5", "1", "9", "1", "1", "13", "14", "1", "1", "20", "21", "1", "25", "1", "406", "1", "32", "33", "34", "1", "37", "38", "1", "820", "1", "45", "1", "50", "1", "54", "56", "57", "1", "1", "61", "64", "2080", "1", "68", "2346", "1", "1", "73", "76", "2926", "1", "81", "1", "84", "85", "86", "1", "90", "92", "93", "94", "1", "1", "5050", "1", "5356", "105", "1", "1", "5886", "110" ]
[ "nonn" ]
11
1
4
[ "A007947", "A071174", "A144338", "A382408" ]
null
Felix Huber, Apr 04 2025
2025-04-26T03:33:06
oeisdata/seq/A382/A382408.seq
f5dc5e16f516211558c9785e3467c6d8
A382409
Semiperimeter of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "6", "1", "15", "28", "91", "231", "630", "1653", "4371", "11476", "30135", "79003", "207046", "542361", "1420455", "3719628", "9739491", "25500511", "66764790", "174798253", "457637131", "1198124676", "3136755615", "8212172403", "21499810566", "56287338481", "147362333055", "385799868028", "1010037606571", "2644313494551", "6922903755510" ]
[ "nonn", "easy" ]
11
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-30T18:13:07
oeisdata/seq/A382/A382409.seq
c6b985e03ff5c7ae296a48476a8d9ff3
A382410
Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 is A000032(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "6", "0", "30", "84", "546", "2310", "10710", "46284", "201066", "860700", "3676470", "15642594", "66461766", "282027720", "1196023110", "5069852964", "21485317146", "91036824270", "385700191830", "1634014069044", "6922219243506", "29324101445100", "124221795865230", "526219583239434", "2229121859293446", "9442763903572560" ]
[ "nonn", "easy" ]
9
0
1
[ "A000032", "A382379", "A382409", "A382410" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 24 2025
2025-03-30T18:13:31
oeisdata/seq/A382/A382410.seq
96cb86b52c92ce54155d7d43fc700e32
A382411
a(n) is the greatest possible length of a circular sequence on n symbols such that: no two adjacent symbols are the same, any group of n adjacent symbols contains at least n-1 different symbols, and all groups of n adjacent symbols within the sequence are unique.
[ "1", "2", "12", "96", "840", "7920", "80640", "887040", "10523520", "134265600", "1836172800", "26824089600", "417210393600", "6887085004800", "120306041856000", "2217815728128000", "43038178799616000", "877125197684736000", "18733345462960128000", "418459145406382080000", "9758369954796503040000", "237164153561075220480000" ]
[ "nonn", "easy" ]
27
1
2
[ "A000142", "A152947", "A382411" ]
null
Dean D. Ballard, Mar 24 2025
2025-04-08T13:20:11
oeisdata/seq/A382/A382411.seq
6eca51a0e0cd89010c7c6c685edb4ba1
A382412
Numbers with no zeros in their base-7 representation.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "15", "16", "17", "18", "19", "20", "22", "23", "24", "25", "26", "27", "29", "30", "31", "32", "33", "34", "36", "37", "38", "39", "40", "41", "43", "44", "45", "46", "47", "48", "57", "58", "59", "60", "61", "62", "64", "65", "66", "67", "68", "69", "71", "72", "73", "74", "75", "76", "78", "79", "80", "81", "82", "83", "85", "86", "87", "88", "89", "90" ]
[ "nonn", "base", "easy" ]
8
1
2
[ "A007093", "A023705", "A023721", "A032924", "A043393", "A052382", "A126646", "A248910", "A249102", "A255805", "A255808", "A382412", "A382413" ]
null
Paolo Xausa, Mar 24 2025
2025-03-26T21:48:43
oeisdata/seq/A382/A382412.seq
0d045db4aaba666e931336f7cba79522
A382413
Numbers with at least one zero in their base-7 representation.
[ "0", "7", "14", "21", "28", "35", "42", "49", "50", "51", "52", "53", "54", "55", "56", "63", "70", "77", "84", "91", "98", "99", "100", "101", "102", "103", "104", "105", "112", "119", "126", "133", "140", "147", "148", "149", "150", "151", "152", "153", "154", "161", "168", "175", "182", "189", "196", "197", "198", "199", "200", "201", "202", "203", "210", "217", "224", "231", "238" ]
[ "nonn", "base", "easy" ]
8
1
2
[ "A007093", "A011540", "A043393", "A062289", "A081605", "A196032", "A382412", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 24 2025
2025-03-26T21:48:50
oeisdata/seq/A382/A382413.seq
965dbf8e9bc5a6a75a7f9de5ec3b95e0
A382414
Primes p such that gcd(ord_p(2), ord_p(5)) = 1.
[ "31", "601", "2593", "599479", "204700049", "466344409", "668731841", "11638603429" ]
[ "nonn", "hard", "more" ]
56
1
1
[ "A014664", "A211241", "A344202", "A382414", "A383411" ]
null
Li GAN, Apr 26 2025
2025-05-03T14:22:49
oeisdata/seq/A382/A382414.seq
ed6f88057d2e336d721d528fbec3ea16
A382415
Numbers with at least one zero in their base-5 representation.
[ "0", "5", "10", "15", "20", "25", "26", "27", "28", "29", "30", "35", "40", "45", "50", "51", "52", "53", "54", "55", "60", "65", "70", "75", "76", "77", "78", "79", "80", "85", "90", "95", "100", "101", "102", "103", "104", "105", "110", "115", "120", "125", "126", "127", "128", "129", "130", "131", "132", "133", "134", "135", "136", "137", "138", "139", "140", "141", "142", "143", "144", "145" ]
[ "nonn", "base", "easy" ]
7
1
2
[ "A007091", "A011540", "A023721", "A023722", "A062289", "A081605", "A196032", "A382413", "A382415", "A382416", "A382417", "A382418" ]
null
Paolo Xausa, Mar 25 2025
2025-03-26T21:49:01
oeisdata/seq/A382/A382415.seq
a8a55e2253f3afcb7b9d717a421f7fc0