sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382215 | MM-numbers of multiset partitions into constant blocks with a common sum. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"16",
"17",
"19",
"23",
"25",
"27",
"31",
"32",
"35",
"41",
"49",
"53",
"59",
"64",
"67",
"81",
"83",
"97",
"103",
"109",
"121",
"125",
"127",
"128",
"131",
"157",
"175",
"179",
"191",
"209",
"211",
"227",
"241",
"243",
"245",
"256",
"277",
"283",
"289",
"311",
"331",
"343",
"353",
"361",
"367",
"391",
"401",
"419",
"431",
"461"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A000688",
"A000720",
"A000961",
"A001055",
"A001221",
"A001222",
"A050361",
"A055396",
"A056239",
"A061395",
"A112798",
"A118914",
"A124010",
"A279789",
"A302242",
"A302492",
"A302496",
"A302601",
"A321455",
"A326534",
"A368100",
"A381633",
"A381635",
"A381636",
"A381715",
"A381716",
"A381871",
"A381995",
"A382080",
"A382201",
"A382204",
"A382215",
"A382304",
"A382426"
]
| null | Gus Wiseman, Mar 21 2025 | 2025-04-03T03:36:21 | oeisdata/seq/A382/A382215.seq | e782f4f1d10221e849f08e1203553d9b |
A382216 | Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums. | [
"1",
"1",
"1",
"3",
"5",
"11",
"23",
"48",
"101",
"208",
"434"
]
| [
"nonn",
"more"
]
| 10 | 0 | 4 | [
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A296119",
"A296120",
"A317532",
"A318360",
"A318361",
"A326518",
"A326519",
"A358914",
"A381633",
"A381718",
"A381806",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382429",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
]
| null | Gus Wiseman, Mar 29 2025 | 2025-03-31T21:55:23 | oeisdata/seq/A382/A382216.seq | 42185d610813508feb728c19c75e549c |
A382217 | a(n) is the least k > 0 such that the factorial base expansion of n starts with that of k. | [
"1",
"1",
"1",
"4",
"5",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"4",
"5",
"5",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"16",
"16",
"17",
"17",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"18",
"18",
"19",
"19",
"76",
"77",
"20"
]
| [
"nonn",
"base"
]
| 9 | 1 | 4 | [
"A000030",
"A265334",
"A382184",
"A382217",
"A382218"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:29:17 | oeisdata/seq/A382/A382217.seq | f3e6bc67492b1fcc6af1c871c9373203 |
A382218 | Fixed points of A382217. | [
"1",
"4",
"5",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"76",
"77",
"82",
"83",
"88",
"89",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"97",
"98",
"99",
"100",
"101",
"102",
"103",
"104",
"105",
"106",
"107",
"108",
"109",
"110",
"111",
"112",
"113",
"114",
"115",
"116",
"117",
"118",
"119",
"304",
"305",
"306",
"307",
"308"
]
| [
"nonn",
"base"
]
| 7 | 1 | 2 | [
"A111537",
"A382217",
"A382218"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:29:12 | oeisdata/seq/A382/A382218.seq | b84df084f5b8cd4fd15b05ca9ce1f386 |
A382219 | Product of the largest and smallest exponents in the prime factorization of n. | [
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"9",
"4",
"1",
"1",
"2",
"1",
"1",
"1",
"16",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"4",
"1",
"9",
"2",
"1",
"1",
"1",
"25",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"4",
"4",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"36",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"4",
"16",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2"
]
| [
"nonn"
]
| 12 | 1 | 4 | [
"A005361",
"A033150",
"A051903",
"A051904",
"A052485",
"A062977",
"A066048",
"A304233",
"A333352",
"A382219"
]
| null | Ilya Gutkovskiy, Mar 19 2025 | 2025-03-28T08:00:20 | oeisdata/seq/A382/A382219.seq | aad67a8de93078b99a1587f3f8153378 |
A382220 | Numbers k such that every primitive root mod k is prime. | [
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"14",
"18",
"22",
"54"
]
| [
"nonn",
"more"
]
| 17 | 1 | 1 | [
"A033948",
"A046147",
"A382220",
"A382224"
]
| null | Miles Englezou, Mar 18 2025 | 2025-03-21T10:12:21 | oeisdata/seq/A382/A382220.seq | d8c409eebe213530b7c2556f5e72a27d |
A382221 | Products of primitive roots when n is 2, 4, p^k, or 2p^k (with p an odd prime), for all other n the value is defined to be 1. | [
"1",
"1",
"2",
"3",
"6",
"5",
"15",
"1",
"10",
"21",
"672",
"1",
"924",
"15",
"1",
"1",
"11642400",
"55",
"163800",
"1",
"1",
"29393",
"109681110000",
"1",
"64411776",
"21945",
"708400",
"1",
"5590307923200",
"1",
"970377408",
"1",
"1",
"644812245",
"1",
"1",
"134088514560000",
"11756745",
"1",
"1",
"138960660963091968000",
"1"
]
| [
"nonn"
]
| 42 | 1 | 3 | [
"A033948",
"A121380",
"A123475",
"A180634",
"A382221"
]
| null | Darío Clavijo, Mar 27 2025 | 2025-04-18T20:52:09 | oeisdata/seq/A382/A382221.seq | e73c48679718274d664e1326eeace727 |
A382222 | Smallest k such that A073734(k) = n, where A073734 is the GCD of consecutive terms of the EKG sequence A064413. | [
"2",
"3",
"5",
"8",
"10",
"968",
"14",
"17",
"149",
"579",
"20",
"11068",
"28",
"2126",
"2406",
"3070",
"33",
"58836",
"37",
"2935",
"7468",
"20029",
"43",
"50835",
"321",
"1065",
"2220",
"60390",
"57",
"403831",
"61",
"20143",
"29156",
"13453",
"32294",
"18829",
"67",
"2117",
"56683",
"65867",
"74",
"10242",
"81",
"82455",
"80410",
"24112",
"89",
"868283",
"41341",
"36370"
]
| [
"nonn"
]
| 13 | 1 | 1 | [
"A064413",
"A064740",
"A064955",
"A073734",
"A073735",
"A382222",
"A382271"
]
| null | Scott R. Shannon, Mar 19 2025 | 2025-03-23T08:40:50 | oeisdata/seq/A382/A382222.seq | bf4abcfa46c2da27be08a2d1f54cfc3e |
A382223 | Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u<v and c(u)<c(v), n>=0, k>=0. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"5",
"3",
"1",
"0",
"1",
"16",
"12",
"4",
"1",
"0",
"1",
"67",
"66",
"22",
"5",
"1",
"0",
"1",
"374",
"513",
"172",
"35",
"6",
"1",
"0",
"1",
"2825",
"5769",
"1969",
"355",
"51",
"7",
"1",
"0",
"1",
"29212",
"95706",
"33856",
"5380",
"636",
"70",
"8",
"1",
"0",
"1",
"417199",
"2379348",
"893188",
"125090",
"12006",
"1036",
"92",
"9",
"1"
]
| [
"nonn",
"tabl"
]
| 65 | 0 | 9 | [
"A005329",
"A006116",
"A289539",
"A382223",
"A382363"
]
| null | Geoffrey Critzer, Mar 23 2025 | 2025-03-25T12:57:57 | oeisdata/seq/A382/A382223.seq | aa388eb2fec2c76eb09ce8476794c458 |
A382224 | Numbers k such that every element with maximal order mod k is prime. | [
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"28",
"30",
"36",
"42",
"54",
"60",
"78"
]
| [
"nonn",
"more"
]
| 28 | 1 | 1 | [
"A002322",
"A382220",
"A382224"
]
| null | Miles Englezou, Mar 19 2025 | 2025-03-23T17:05:14 | oeisdata/seq/A382/A382224.seq | a5ca3d8b32d54eb421e206118697ad20 |
A382225 | Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"7",
"1",
"1",
"10",
"25",
"13",
"1",
"1",
"15",
"65",
"73",
"21",
"1",
"1",
"21",
"140",
"273",
"171",
"31",
"1",
"1",
"28",
"266",
"798",
"871",
"346",
"43",
"1",
"1",
"36",
"462",
"1974",
"3321",
"2306",
"631",
"57",
"1",
"1",
"45",
"750",
"4326",
"10377",
"11126",
"5335",
"1065",
"73",
"1",
"1",
"55",
"1155",
"8646",
"28017",
"42878",
"31795",
"11145",
"1693",
"91",
"1"
]
| [
"nonn",
"tabl"
]
| 37 | 0 | 5 | [
"A000012",
"A000217",
"A001296",
"A002061",
"A007318",
"A024718",
"A107963",
"A184173",
"A382225"
]
| null | Vladimir Kruchinin, Mar 19 2025 | 2025-03-22T17:39:39 | oeisdata/seq/A382/A382225.seq | 4beb18dd0b7144b7ab700d7b440747da |
A382226 | Smallest prime in a sequence of n consecutive primes which add to a perfect cube. | [
"3",
"439",
"4812191",
"41051",
"1753",
"75869",
"24359",
"1674289",
"17509",
"6221",
"771653",
"29863",
"6899",
"35353",
"1073239",
"4001",
"18959",
"1613741",
"1033",
"12077759",
"172433",
"1548149",
"364079",
"199",
"4580399",
"373",
"3847",
"411396253",
"41863",
"1371031",
"11491",
"135911",
"45707",
"308149",
"364909",
"176537",
"2089",
"32569961",
"13619",
"625861"
]
| [
"nonn"
]
| 16 | 2 | 1 | [
"A132955",
"A382226",
"A382227",
"A382228"
]
| null | David Dewan, Mar 19 2025 | 2025-03-25T10:16:30 | oeisdata/seq/A382/A382226.seq | 30b37bc0e884c0879fdcc38a3381dd0d |
A382227 | The smallest perfect cube which is a sum of n consecutive primes. | [
"8",
"1331",
"19248832",
"205379",
"10648",
"531441",
"195112",
"15069223",
"175616",
"68921",
"9261000",
"389017",
"97336",
"531441",
"17173512",
"68921",
"343000",
"30664297",
"21952",
"253636137",
"3796416",
"35611289",
"8741816",
"6859",
"119095488",
"12167",
"110592",
"11930499125",
"1259712",
"42508549",
"373248",
"4492125",
"1560896",
"10793861"
]
| [
"nonn"
]
| 16 | 2 | 1 | [
"A132956",
"A382226",
"A382227",
"A382228"
]
| null | David Dewan, Mar 19 2025 | 2025-03-25T10:14:39 | oeisdata/seq/A382/A382227.seq | d4c7b26c2f94cba17cd77aabf4d994d4 |
A382228 | Smallest k such that k^3 is the sum of n consecutive primes. | [
"2",
"11",
"268",
"59",
"22",
"81",
"58",
"247",
"56",
"41",
"210",
"73",
"46",
"81",
"258",
"41",
"70",
"313",
"28",
"633",
"156",
"329",
"206",
"19",
"492",
"23",
"48",
"2285",
"108",
"349",
"72",
"165",
"116",
"221",
"236",
"187",
"44",
"1083",
"82",
"295",
"34",
"347",
"54",
"35",
"548",
"23",
"32",
"2357",
"1170",
"37",
"632",
"813",
"1590",
"277",
"1972",
"177"
]
| [
"nonn"
]
| 20 | 2 | 1 | [
"A000578",
"A132957",
"A382226",
"A382227",
"A382228"
]
| null | David Dewan, Mar 19 2025 | 2025-03-25T10:23:02 | oeisdata/seq/A382/A382228.seq | f1a1fe9ee23bc11fba62203d6b8ca376 |
A382229 | a(0) = 1; thereafter a(n) is the next larger number that compared to the previous term differs by +-1 in the number of prime factors counted with multiplicity. | [
"1",
"2",
"4",
"5",
"6",
"7",
"9",
"11",
"14",
"17",
"21",
"23",
"25",
"27",
"33",
"37",
"38",
"41",
"46",
"47",
"49",
"50",
"51",
"52",
"54",
"63",
"65",
"66",
"69",
"70",
"74",
"75",
"77",
"78",
"81",
"92",
"93",
"97",
"106",
"107",
"111",
"113",
"115",
"116",
"118",
"124",
"126",
"130",
"132",
"138",
"140",
"147",
"150",
"153",
"155",
"157",
"158",
"163",
"166",
"167",
"169",
"170",
"177",
"179",
"183",
"186"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A001222",
"A071192",
"A382229"
]
| null | Gordon Hamilton, Mar 19 2025 | 2025-03-23T14:01:45 | oeisdata/seq/A382/A382229.seq | 936a3f0018e52abfcd5c0dfc35f0211e |
A382230 | a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k). | [
"1",
"3",
"9",
"46",
"171",
"591",
"2033",
"6714",
"21606",
"68308",
"212370",
"651234",
"1974113",
"5924277",
"17623671",
"52025858",
"152539077",
"444530073",
"1288396257",
"3715833732",
"10668907932",
"30507914696",
"86912853588",
"246755125332",
"698353551105",
"1970673504951",
"5545952371509",
"15568330002486"
]
| [
"nonn",
"easy"
]
| 32 | 0 | 2 | [
"A034839",
"A108479",
"A377145",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
]
| null | Seiichi Manyama, Mar 28 2025 | 2025-04-22T11:05:40 | oeisdata/seq/A382/A382230.seq | 29bb867b3a46118ac7761d076a9245fb |
A382231 | Octagonal numbers that are the product of three distinct primes. | [
"645",
"1045",
"1281",
"2465",
"2821",
"3201",
"3605",
"7701",
"8965",
"12545",
"15841",
"17633",
"18565",
"20501",
"23585",
"24661",
"25761",
"26885",
"30401",
"34133",
"36741",
"45141",
"51221",
"52801",
"57685",
"59361",
"62785",
"66305",
"68101",
"71765",
"73633",
"89441",
"95765",
"100101",
"116033",
"120801",
"123221",
"125665",
"138245"
]
| [
"nonn"
]
| 16 | 1 | 1 | [
"A000567",
"A007304",
"A259677",
"A382231"
]
| null | Massimo Kofler, Mar 19 2025 | 2025-03-31T21:26:48 | oeisdata/seq/A382/A382231.seq | ab078a0a66d2d88933cf0b6b61cf6fd0 |
A382232 | Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial. | [
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"9",
"26",
"26",
"9",
"1",
"1",
"23",
"165",
"387",
"387",
"165",
"23",
"1",
"1",
"53",
"860",
"4292",
"9194",
"9194",
"4292",
"860",
"53",
"1",
"1",
"115",
"3967",
"38885",
"160778",
"314654",
"314654",
"160778",
"38885",
"3967",
"115",
"1",
"1",
"241",
"17022",
"307454",
"2291375",
"8041695",
"14743812",
"14743812",
"8041695",
"2291375",
"307454",
"17022",
"241",
"1"
]
| [
"nonn",
"tabf"
]
| 22 | 0 | 6 | [
"A048617",
"A125300",
"A165889",
"A173018",
"A382232"
]
| null | Seiichi Manyama, Mar 19 2025 | 2025-04-25T20:40:30 | oeisdata/seq/A382/A382232.seq | 6f560efb357a1a690b737e96e70e5751 |
A382233 | Dimensions of the homogeneous component of degree n of the free unital Jordan algebra on 3 generators. | [
"1",
"3",
"6",
"18",
"45",
"135",
"378",
"1134",
"3324",
"9981",
"29733",
"89280",
"267273"
]
| [
"nonn",
"hard",
"more"
]
| 28 | 0 | 2 | [
"A001776",
"A032120",
"A382233"
]
| null | Vladimir Dotsenko, Mar 29 2025 | 2025-04-02T23:20:18 | oeisdata/seq/A382/A382233.seq | b63f8716742216b822bc4c354b0057f8 |
A382234 | Decimal expansion of the multiple prime zeta value primezetamult(2, 2). | [
"0",
"6",
"3",
"7",
"6",
"7",
"2",
"9",
"4",
"5",
"8",
"4",
"7",
"7",
"6",
"5",
"4",
"3",
"2",
"8",
"0",
"1",
"3",
"1",
"6",
"2",
"9",
"4",
"8",
"0",
"7",
"1",
"9",
"3",
"8",
"3",
"6",
"1",
"2",
"8",
"7",
"8",
"2",
"1",
"6",
"2",
"9",
"0",
"0",
"3",
"7",
"0",
"7",
"3",
"6",
"5",
"9",
"2",
"1",
"0",
"9",
"6",
"7",
"9",
"4",
"8",
"6",
"7",
"7",
"2",
"3",
"2",
"3",
"2",
"2",
"1",
"9",
"6",
"1",
"4",
"7",
"3",
"5",
"9",
"3",
"0",
"1",
"9",
"3",
"7",
"5",
"6",
"3",
"2",
"1",
"6",
"8",
"4",
"8",
"7",
"1",
"5",
"2",
"0",
"9",
"2"
]
| [
"cons",
"nonn"
]
| 19 | 0 | 2 | [
"A197110",
"A382234",
"A382235",
"A382236"
]
| null | Artur Jasinski, Mar 20 2025 | 2025-04-01T07:29:45 | oeisdata/seq/A382/A382234.seq | 2515ba5c61eebad4f470691523b85e56 |
A382235 | Decimal expansion of the multiple prime zeta value primezetamult(3, 3). | [
"0",
"0",
"6",
"7",
"3",
"5",
"9",
"4",
"6",
"6",
"2",
"2",
"1",
"3",
"5",
"4",
"4",
"6",
"7",
"2",
"4",
"5",
"6",
"2",
"2",
"8",
"2",
"5",
"8",
"6",
"7",
"7",
"6",
"8",
"0",
"1",
"4",
"1",
"9",
"3",
"4",
"6",
"2",
"3",
"6",
"6",
"0",
"5",
"8",
"0",
"4",
"2",
"1",
"2",
"1",
"1",
"2",
"4",
"6",
"4",
"2",
"8",
"8",
"9",
"3",
"9",
"6",
"2",
"5",
"8",
"1",
"3",
"4",
"5",
"0",
"2",
"1",
"3",
"6",
"9",
"2",
"5",
"9",
"5",
"9",
"1",
"7",
"1",
"9",
"4",
"2",
"8",
"8",
"1",
"9",
"4",
"7",
"5",
"0",
"2",
"4",
"0",
"0",
"8",
"1",
"0",
"1"
]
| [
"nonn",
"cons"
]
| 9 | 0 | 3 | [
"A258987",
"A382234",
"A382235",
"A382236"
]
| null | Artur Jasinski, Mar 31 2025 | 2025-04-01T07:33:43 | oeisdata/seq/A382/A382235.seq | 79da0757e6dbe74d0a3dedabb17a2bdb |
A382236 | Decimal expansion of the multiple prime zeta value primezetamult(2, 2, 2). | [
"0",
"0",
"3",
"6",
"9",
"6",
"2",
"4",
"4",
"1",
"6",
"3",
"4",
"5",
"2",
"8",
"3",
"5",
"3",
"7",
"8",
"3",
"9",
"5",
"5",
"3",
"4",
"6",
"3",
"2",
"3",
"9",
"4",
"6",
"6",
"8",
"1",
"1",
"5",
"5",
"9",
"1",
"5",
"3",
"9",
"7",
"1",
"3",
"0",
"3",
"0",
"4",
"2",
"7",
"2",
"4",
"9",
"7",
"4",
"7",
"2",
"6",
"2",
"2",
"4",
"6",
"7",
"6",
"2",
"4",
"6",
"4",
"9",
"3",
"4",
"6",
"9",
"2",
"3",
"7",
"4",
"9",
"5",
"7",
"0",
"1",
"6",
"9",
"6",
"4",
"3",
"7",
"1",
"1",
"3",
"9",
"1",
"7",
"2",
"9",
"2",
"8",
"5",
"2",
"4",
"3",
"0"
]
| [
"nonn",
"cons"
]
| 7 | 1 | 3 | [
"A381653",
"A382234",
"A382235",
"A382236"
]
| null | Artur Jasinski, Apr 01 2025 | 2025-04-06T21:47:14 | oeisdata/seq/A382/A382236.seq | 441f62476c0484a17d1b289c168dfa77 |
A382237 | Numbers that are not divisible by the sum of any subset of their digits. | [
"23",
"29",
"34",
"37",
"38",
"43",
"46",
"47",
"49",
"53",
"56",
"57",
"58",
"59",
"67",
"68",
"69",
"73",
"74",
"76",
"78",
"79",
"83",
"86",
"87",
"89",
"94",
"97",
"98",
"203",
"223",
"227",
"229",
"233",
"239",
"249",
"253",
"257",
"263",
"267",
"269",
"277",
"283",
"293",
"299",
"307",
"323",
"329",
"334",
"337",
"338",
"346",
"347",
"349",
"353",
"356",
"358",
"359",
"367",
"373",
"376",
"377",
"379",
"380",
"383",
"386",
"388",
"389",
"394",
"397",
"398",
"403"
]
| [
"nonn",
"base"
]
| 27 | 1 | 1 | [
"A005349",
"A038772",
"A065877",
"A082943",
"A228017",
"A382237",
"A382239"
]
| null | Sergio Pimentel, Mar 19 2025 | 2025-04-02T10:25:49 | oeisdata/seq/A382/A382237.seq | 51bcd81b7cdf2de9b3df2c3b3d5b51d7 |
A382238 | a(n) is the smallest prime that begins a sequence of 2n + 1 consecutive primes where all even-indexed terms are balanced primes. | [
"3",
"7817",
"40039",
"296242861",
"9387217537",
"2136447593347"
]
| [
"nonn",
"more"
]
| 17 | 1 | 1 | [
"A006562",
"A382238"
]
| null | Jean-Marc Rebert, Mar 19 2025 | 2025-03-30T22:00:30 | oeisdata/seq/A382/A382238.seq | 0e2c8f314906870a7f8a178386a10a99 |
A382239 | Numbers not divisible by any of their digits nor by the sum of their digits. Digit 0 is allowed (and does not divide anything). | [
"23",
"29",
"34",
"37",
"38",
"43",
"46",
"47",
"49",
"53",
"56",
"57",
"58",
"59",
"67",
"68",
"69",
"73",
"74",
"76",
"78",
"79",
"83",
"86",
"87",
"89",
"94",
"97",
"98",
"203",
"223",
"227",
"229",
"233",
"239",
"249",
"253",
"257",
"259",
"263",
"267",
"269",
"277",
"283",
"289",
"293",
"299",
"307",
"323",
"329",
"334",
"337",
"338",
"343",
"346",
"347",
"349",
"353",
"356",
"358",
"359",
"367",
"373",
"374",
"376"
]
| [
"nonn",
"base"
]
| 24 | 1 | 1 | [
"A038772",
"A052383",
"A082943",
"A382237",
"A382239"
]
| null | Robert Israel, Mar 19 2025 | 2025-04-01T17:53:01 | oeisdata/seq/A382/A382239.seq | 60ef5707785cb9f9e70de41631acea98 |
A382240 | a(n) = Sum_{k=0..n} 3^((n+k-1)*(n-k)/2) * n! / (n-k)!. | [
"1",
"2",
"11",
"168",
"7233",
"889014",
"314965899",
"323989244676",
"972969439627809",
"8566667168429128842",
"221877626825222187484203",
"16949442370817602102051560384",
"3827091229259231090623800852526113",
"2558686452439976557585601153755243553406",
"5072634396431144733070212976874036427346208619"
]
| [
"nonn"
]
| 6 | 0 | 2 | [
"A379614",
"A382240"
]
| null | Vaclav Kotesovec, Mar 19 2025 | 2025-03-20T10:16:47 | oeisdata/seq/A382/A382240.seq | e6c8cb999e49b211477a7345e26ca3af |
A382241 | Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into at most k parts with 0 <= k <= n. | [
"1",
"0",
"4",
"0",
"10",
"20",
"0",
"20",
"60",
"80",
"0",
"35",
"170",
"270",
"305",
"0",
"56",
"396",
"816",
"1016",
"1072",
"0",
"84",
"868",
"2238",
"3188",
"3538",
"3622",
"0",
"120",
"1716",
"5616",
"9196",
"10996",
"11556",
"11676",
"0",
"165",
"3235",
"13140",
"24975",
"32400",
"35445",
"36285",
"36450",
"0",
"220",
"5720",
"28900",
"63680",
"90700",
"104060",
"108820",
"110020",
"110240"
]
| [
"nonn",
"tabl"
]
| 14 | 0 | 3 | [
"A000292",
"A026820",
"A255050",
"A381891",
"A382045",
"A382241"
]
| null | Peter Dolland, Mar 19 2025 | 2025-03-26T15:27:50 | oeisdata/seq/A382/A382241.seq | 45dd85edc7cb49605f62868568ca2178 |
A382242 | Decimal expansion of Gamma(1/4)^2/(8*sqrt(2*Pi)). | [
"6",
"5",
"5",
"5",
"1",
"4",
"3",
"8",
"8",
"5",
"7",
"3",
"0",
"2",
"9",
"9",
"5",
"2",
"6",
"1",
"6",
"2",
"0",
"9",
"8",
"9",
"7",
"4",
"7",
"2",
"7",
"7",
"9",
"8",
"5",
"3",
"4",
"2",
"0",
"6",
"8",
"8",
"7",
"3",
"7",
"8",
"5",
"7",
"9",
"0",
"5",
"7",
"9",
"0",
"7",
"0",
"4",
"2",
"0",
"5",
"4",
"2",
"5",
"9",
"5",
"0",
"1",
"9",
"7",
"6",
"4",
"6",
"7",
"6",
"7",
"6",
"0",
"3",
"5",
"6",
"2",
"5",
"5",
"7",
"5",
"7",
"3",
"8",
"8",
"3",
"2",
"4",
"0",
"3",
"5",
"7",
"2",
"7",
"3",
"3",
"6",
"1",
"5",
"3",
"3",
"9",
"3",
"8",
"1",
"6",
"7",
"9",
"4",
"5",
"8"
]
| [
"nonn",
"cons"
]
| 14 | 0 | 1 | [
"A005408",
"A005843",
"A034937",
"A068466",
"A231863",
"A382242"
]
| null | R. J. Mathar, Mar 19 2025 | 2025-03-20T09:42:54 | oeisdata/seq/A382/A382242.seq | 12613af8ea29312537d6f3bd636e290a |
A382243 | Decimal expansion of the infinite product of ((k+1/2)/(k+1))^Jacobi(-1,k), k>=0. | [
"3",
"6",
"3",
"5",
"7",
"7",
"5",
"5",
"1",
"7",
"2",
"6",
"9",
"5",
"8",
"1",
"3",
"2",
"2",
"0",
"6",
"7",
"3",
"9",
"6",
"5",
"6",
"6",
"2",
"7",
"4",
"2",
"4",
"7",
"8",
"8",
"7",
"5",
"4",
"7",
"5",
"8",
"7",
"8",
"9",
"9",
"8",
"4",
"9",
"5",
"3",
"2",
"0",
"0",
"7",
"4",
"0",
"3",
"8",
"0",
"2",
"7",
"6",
"4",
"9",
"6",
"7",
"0",
"4",
"2",
"5",
"3",
"8",
"9",
"2",
"6",
"3",
"4",
"4",
"7",
"4",
"8",
"0",
"9",
"0",
"7",
"1",
"9",
"2",
"9",
"4",
"2",
"1",
"5",
"2",
"0",
"7",
"7",
"5",
"9",
"6",
"5",
"8",
"7",
"6",
"4",
"1",
"9",
"8",
"2",
"6",
"0",
"1",
"1",
"1"
]
| [
"nonn",
"cons"
]
| 18 | 0 | 1 | [
"A034947",
"A382243"
]
| null | R. J. Mathar, Mar 19 2025 | 2025-03-20T10:40:52 | oeisdata/seq/A382/A382243.seq | 60fc402f8d895b799bec373f30a8fbcc |
A382244 | Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, n*a(n) is a triangular number (A000217). | [
"0",
"1",
"3",
"2",
"7",
"9",
"6",
"4",
"15",
"5",
"12",
"21",
"10",
"25",
"27",
"8",
"31",
"33",
"35",
"37",
"39",
"11",
"24",
"45",
"22",
"13",
"30",
"14",
"42",
"57",
"26",
"16",
"63",
"17",
"67",
"18",
"56",
"19",
"75",
"20",
"52",
"81",
"28",
"85",
"87",
"23",
"51",
"93",
"95",
"97",
"99",
"46",
"40",
"105",
"60",
"90",
"36",
"29",
"66",
"117",
"54",
"121",
"69",
"32",
"127",
"84",
"58"
]
| [
"nonn"
]
| 9 | 0 | 3 | [
"A000217",
"A061782",
"A382244"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:28:48 | oeisdata/seq/A382/A382244.seq | fd77b544b84cc6f31c428fece421b0f7 |
A382245 | Lexicographically earliest sequence of distinct nonnegative integers such that the product of two consecutive terms is always a triangular number (A000217). | [
"0",
"1",
"3",
"2",
"5",
"9",
"4",
"7",
"13",
"6",
"11",
"21",
"10",
"12",
"23",
"45",
"14",
"15",
"8",
"17",
"33",
"16",
"31",
"61",
"30",
"26",
"51",
"25",
"49",
"24",
"22",
"43",
"85",
"42",
"28",
"55",
"18",
"35",
"44",
"87",
"19",
"37",
"73",
"36",
"56",
"111",
"98",
"195",
"62",
"69",
"34",
"39",
"20",
"41",
"81",
"40",
"52",
"103",
"205",
"66",
"58",
"115",
"57",
"29",
"59",
"117"
]
| [
"nonn"
]
| 11 | 0 | 3 | [
"A000217",
"A026741",
"A077220",
"A213005",
"A382244",
"A382245"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-21T02:31:20 | oeisdata/seq/A382/A382245.seq | c3511327b2effd97c64313aaf70d3602 |
A382246 | Smallest number k such that k^n - 6 is prime. | [
"8",
"3",
"2",
"5",
"5",
"5",
"19",
"85",
"7",
"5",
"19",
"275",
"23",
"43",
"53",
"455",
"65",
"23",
"23",
"175",
"7",
"65",
"47",
"295",
"7",
"143",
"49",
"115",
"23",
"355",
"185",
"305",
"7",
"55",
"319",
"85",
"113",
"25",
"329",
"505",
"25",
"187",
"205",
"25",
"295",
"437",
"17",
"2285",
"7",
"583",
"35",
"1375",
"5",
"7",
"35",
"895",
"235",
"277",
"197",
"695",
"203",
"145",
"43",
"35",
"437",
"215"
]
| [
"nonn"
]
| 23 | 1 | 1 | [
"A028879",
"A239414",
"A380905",
"A382246"
]
| null | Jakub Buczak, Mar 19 2025 | 2025-03-29T18:50:05 | oeisdata/seq/A382/A382246.seq | 15961bd3bae4b80f09b70b1bcd69aada |
A382247 | Number of fixed points of solid partitions under twice the 'time-lapse' operation. | [
"1",
"0",
"2",
"2",
"3",
"4",
"7",
"12",
"16",
"22",
"32",
"50",
"68",
"96",
"134",
"195",
"261",
"364",
"497",
"701",
"941",
"1288",
"1738"
]
| [
"nonn",
"hard",
"more"
]
| 7 | 1 | 3 | [
"A000293",
"A094504",
"A094508",
"A096272",
"A096573",
"A096574",
"A096575",
"A096576",
"A096578",
"A096579",
"A096580",
"A096581",
"A119266",
"A382247"
]
| null | Wouter Meeussen, Mar 19 2025 | 2025-03-20T12:04:24 | oeisdata/seq/A382/A382247.seq | 00010e93f43c16577e53dbfdb298e017 |
A382248 | Smallest number k that is neither squarefree nor a prime power such that k is coprime to n. | [
"12",
"45",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"63",
"12",
"175",
"12",
"45",
"28",
"45",
"12",
"175",
"12",
"63",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"45",
"12",
"539",
"12",
"45",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"63",
"12",
"275",
"12",
"45",
"28",
"45",
"12",
"175",
"12",
"63",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"45",
"12",
"539",
"12",
"45",
"20"
]
| [
"nonn",
"easy"
]
| 39 | 1 | 1 | [
"A002110",
"A007947",
"A053669",
"A126706",
"A380539",
"A382248"
]
| null | Michael De Vlieger, Mar 31 2025 | 2025-04-05T10:58:44 | oeisdata/seq/A382/A382248.seq | abb6518aecb5592d4a6ca89bf88f8c14 |
A382249 | a(n) is the smallest starting prime of a sequence of exactly n consecutive primes that are alternately of the form 6*k+1 and 6*k-1 or vice versa. | [
"23",
"19",
"17",
"13",
"11",
"7",
"5",
"97",
"89",
"877",
"863",
"859",
"857",
"853",
"839",
"829",
"827",
"823",
"821",
"811",
"809",
"3954889",
"15186331",
"15186323",
"15186319",
"77011331",
"77011303",
"77011289",
"288413249",
"288413233",
"288413219",
"288413173",
"288413159",
"62585146739",
"114058236679",
"143014298851",
"143014298831",
"143014298809"
]
| [
"nonn"
]
| 25 | 1 | 1 | [
"A057620",
"A057622",
"A382249"
]
| null | Jean-Marc Rebert, Mar 19 2025 | 2025-04-25T20:41:22 | oeisdata/seq/A382/A382249.seq | 617fcc8f93ee5af4f942a37973b0b563 |
A382250 | Irregular 3-dimensional table, where layer n is an irregular 2D table with A000041(n) columns, each of which lists the n-bit binary numbers whose run lengths correspond to a given partition. | [
"0",
"0",
"0",
"1",
"0",
"1",
"3",
"2",
"0",
"1",
"7",
"2",
"4",
"6",
"3",
"5",
"0",
"1",
"15",
"2",
"8",
"14",
"3",
"7",
"4",
"6",
"12",
"5",
"9",
"11",
"13",
"10",
"0",
"1",
"31",
"2",
"16",
"30",
"3",
"15",
"4",
"6",
"8",
"14",
"24",
"28",
"5",
"17",
"23",
"29",
"7",
"9",
"11",
"13",
"19",
"25",
"27",
"10",
"18",
"20",
"22",
"26",
"12",
"21",
"0",
"1",
"63",
"2",
"32",
"62",
"3",
"31",
"4",
"6",
"16",
"30",
"48",
"60",
"5",
"33",
"47",
"61",
"7",
"15",
"8",
"14"
]
| [
"nonn"
]
| 16 | 0 | 7 | [
"A000005",
"A000041",
"A000079",
"A007088",
"A101211",
"A175020",
"A175021",
"A318927",
"A382250"
]
| null | Ali Sada and M. F. Hasler, Mar 24 2025 | 2025-03-26T22:03:28 | oeisdata/seq/A382/A382250.seq | 290427b8036e01cb6349ee92289c091a |
A382251 | a(n) = 7*n^3 - 6*n^2. | [
"1",
"32",
"135",
"352",
"725",
"1296",
"2107",
"3200",
"4617",
"6400",
"8591",
"11232",
"14365",
"18032",
"22275",
"27136",
"32657",
"38880",
"45847",
"53600",
"62181",
"71632",
"81995",
"93312",
"105625",
"118976",
"133407",
"148960",
"165677",
"183600",
"202771",
"223232",
"245025",
"268192",
"292775",
"318816",
"346357",
"375440",
"406107",
"438400",
"472361"
]
| [
"nonn",
"easy"
]
| 64 | 1 | 2 | null | null | Noel B. Lacpao, May 17 2025 | 2025-06-15T17:58:55 | oeisdata/seq/A382/A382251.seq | 5f3534478d27752e7ab35170493d5dbc |
A382252 | Triangle T(n,k) = numerator of (n+k)/(1+n*k), 0 <= k <= n >= 0, read by rows. | [
"0",
"1",
"1",
"2",
"1",
"4",
"3",
"1",
"5",
"3",
"4",
"1",
"2",
"7",
"8",
"5",
"1",
"7",
"1",
"3",
"5",
"6",
"1",
"8",
"9",
"2",
"11",
"12",
"7",
"1",
"3",
"5",
"11",
"1",
"13",
"7",
"8",
"1",
"10",
"11",
"4",
"13",
"2",
"5",
"16",
"9",
"1",
"11",
"3",
"13",
"7",
"3",
"1",
"17",
"9",
"10",
"1",
"4",
"13",
"14",
"5",
"16",
"17",
"2",
"19",
"20",
"11",
"1",
"13",
"7",
"1",
"2",
"17",
"3",
"19",
"1",
"7",
"11",
"12",
"1",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"2",
"23",
"24"
]
| [
"nonn",
"tabl",
"frac"
]
| 9 | 0 | 4 | [
"A000012",
"A001477",
"A228564",
"A382252",
"A382253",
"A382257"
]
| null | M. F. Hasler, Apr 15 2025 | 2025-04-16T10:25:15 | oeisdata/seq/A382/A382252.seq | 4694dd0f3be453676be73dd8f25b3338 |
A382253 | Triangle T(n,k) = denominator of (n+k)/(1+n*k), 0 <= k <= n >= 0, read by rows. | [
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"7",
"5",
"1",
"1",
"3",
"13",
"17",
"1",
"1",
"11",
"2",
"7",
"13",
"1",
"1",
"13",
"19",
"5",
"31",
"37",
"1",
"1",
"5",
"11",
"29",
"3",
"43",
"25",
"1",
"1",
"17",
"25",
"11",
"41",
"7",
"19",
"65",
"1",
"1",
"19",
"7",
"37",
"23",
"11",
"4",
"73",
"41",
"1",
"1",
"7",
"31",
"41",
"17",
"61",
"71",
"9",
"91",
"101",
"1"
]
| [
"nonn",
"tabl",
"frac"
]
| 7 | 0 | 6 | [
"A000012",
"A001477",
"A228564",
"A382252",
"A382253",
"A382257"
]
| null | M. F. Hasler, Apr 15 2025 | 2025-04-16T10:25:24 | oeisdata/seq/A382/A382253.seq | 57f68ab653e6faf49322c0efc8a5b654 |
A382254 | Least prime p that has a decomposition into n distinct positive parts p(1) +...+ p(n) = p so that p + 6*p(k) is prime for each k. | [
"5",
"7",
"11",
"23",
"37",
"41",
"61",
"83",
"97",
"127",
"139",
"167",
"227",
"227",
"227",
"307",
"347",
"383",
"419",
"443",
"541",
"571",
"601",
"727",
"797",
"797",
"911",
"991",
"1091",
"1151",
"1181",
"1277",
"1381",
"1423",
"1531",
"1741",
"1811",
"1871",
"2063",
"2207",
"2207",
"2267",
"2333",
"2531",
"2657",
"3001",
"3019",
"3109",
"3163"
]
| [
"nonn"
]
| 11 | 2 | 1 | null | null | M. F. Hasler, Apr 17 2025 | 2025-04-23T10:34:23 | oeisdata/seq/A382/A382254.seq | e6885e0f75bbe584ee66572f22f249d2 |
A382255 | Heinz number of the partition corresponding to run lengths in the bits of n. | [
"1",
"2",
"4",
"3",
"6",
"8",
"6",
"5",
"10",
"12",
"16",
"12",
"9",
"12",
"10",
"7",
"14",
"20",
"24",
"18",
"24",
"32",
"24",
"20",
"15",
"18",
"24",
"18",
"15",
"20",
"14",
"11",
"22",
"28",
"40",
"30",
"36",
"48",
"36",
"30",
"40",
"48",
"64",
"48",
"36",
"48",
"40",
"28",
"21",
"30",
"36",
"27",
"36",
"48",
"36",
"30",
"25",
"30",
"40",
"30",
"21",
"28",
"22",
"13",
"26",
"44",
"56",
"42"
]
| [
"nonn",
"look",
"base"
]
| 26 | 0 | 2 | [
"A001747",
"A001749",
"A007088",
"A008578",
"A011782",
"A030017",
"A036036",
"A080576",
"A080577",
"A112798",
"A129129",
"A185974",
"A296150",
"A334433",
"A334434",
"A334435",
"A334436",
"A334438",
"A382255"
]
| null | M. F. Hasler and Ali Sada, Mar 19 2025 | 2025-03-24T17:16:29 | oeisdata/seq/A382/A382255.seq | 1aea0a43248a25b89e960e50c9a974fb |
A382256 | Smallest binary number whose run lengths of bits correspond to a partition with Heinz number n. | [
"0",
"1",
"3",
"2",
"7",
"4",
"15",
"5",
"12",
"8",
"31",
"11",
"63",
"16",
"24",
"10",
"127",
"19",
"255",
"23",
"48",
"32",
"511",
"22",
"56",
"64",
"51",
"47",
"1023",
"39",
"2047",
"21",
"96",
"128",
"112",
"44",
"4095",
"256",
"192",
"46",
"8191",
"79",
"16383",
"95",
"103",
"512",
"32767",
"45",
"240",
"71",
"384",
"191",
"65535",
"76",
"224",
"94",
"768",
"1024",
"131071",
"92",
"262143",
"2048",
"207",
"42",
"448",
"159"
]
| [
"nonn"
]
| 12 | 1 | 3 | [
"A036036",
"A080576",
"A080577",
"A382255",
"A382256"
]
| null | M. F. Hasler, Mar 19 2025 | 2025-03-24T18:37:39 | oeisdata/seq/A382/A382256.seq | 974036c9540cb9e75fa62b500cd344d5 |
A382257 | a(n) is the numerator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function. | [
"0",
"1",
"9",
"17",
"125",
"461",
"1715",
"3217",
"24309",
"92377",
"352715",
"1352077",
"5200299",
"20058299",
"77558759",
"150270097",
"1166803109",
"4537567649",
"17672631899",
"68923264409",
"269128937219",
"1052049481859",
"4116715363799",
"16123801841549",
"63205303218875",
"247959266474051",
"973469712824055",
"3824345300380219",
"15033633249770519"
]
| [
"nonn",
"frac"
]
| 37 | 1 | 3 | [
"A001700",
"A010763",
"A034602",
"A382257",
"A383431"
]
| null | M. F. Hasler, Apr 15 2025 | 2025-04-27T14:55:15 | oeisdata/seq/A382/A382257.seq | c2896ec73f8ee4289503082b32fbc6f4 |
A382258 | a(n) = last number placed on an infinite square grid at the n-th step, in order to surround the last number placed at the previous step, always using the next larger integer and going counter-clockwise, starting with a 1 at the origin. | [
"1",
"9",
"14",
"18",
"21",
"25",
"27",
"30",
"34",
"36",
"39",
"42",
"46",
"48",
"51",
"54",
"58",
"60",
"62",
"65",
"68",
"72",
"74",
"76",
"78",
"81",
"84",
"88",
"90",
"92",
"94",
"97",
"100",
"103",
"107",
"109",
"111",
"113",
"116",
"119",
"122",
"126",
"128",
"130",
"132",
"134",
"137",
"140",
"143",
"147",
"149",
"151",
"153",
"155",
"157",
"160",
"163",
"166",
"170",
"172",
"174",
"176",
"178",
"180",
"183",
"186"
]
| [
"nonn"
]
| 32 | 0 | 2 | [
"A382258",
"A382259"
]
| null | M. F. Hasler and Ali Sada, Apr 08 2025 | 2025-05-08T20:51:59 | oeisdata/seq/A382/A382258.seq | 7f7689810773b1fc55283b9a2b8d7c3d |
A382259 | a(n) = number of empty places to fill on an infinite square grid, at the n-th step, in order to completely surround the last square filled at the previous step n-1, starting with the origin at step 0. | [
"1",
"8",
"5",
"4",
"3",
"4",
"2",
"3",
"4",
"2",
"3",
"3",
"4",
"2",
"5",
"4",
"1",
"4",
"2",
"2",
"3",
"3",
"4",
"2",
"2",
"2",
"3",
"3",
"4",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"1",
"4",
"2",
"5",
"4",
"1",
"4",
"1",
"4",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"1",
"4",
"1",
"4",
"2",
"5",
"4",
"1",
"4",
"1",
"4",
"1",
"4",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"2",
"2",
"2",
"2",
"2"
]
| [
"nonn"
]
| 6 | 0 | 2 | [
"A382258",
"A382259"
]
| null | M. F. Hasler, Apr 08 2025 | 2025-04-13T16:36:41 | oeisdata/seq/A382/A382259.seq | 59a7080605e14f7eadedefd08dd9dce6 |
A382260 | Decimal expansion of x, where x is the smallest number for which floor(x^(phi^k)) is prime for k > 0 where phi = (1+sqrt(5))/2, assuming that Oppermann's conjecture holds. | [
"1",
"5",
"8",
"3",
"1",
"2",
"0",
"4",
"0",
"4",
"8",
"5",
"8",
"1",
"0",
"9",
"2",
"2",
"1",
"0",
"3",
"5",
"9",
"0",
"5",
"9",
"7",
"0",
"7",
"0",
"0",
"1",
"3",
"4",
"5",
"4",
"0",
"3",
"1",
"1",
"0",
"5",
"4",
"9",
"6",
"0",
"6",
"4",
"1",
"7",
"9",
"3",
"7",
"8",
"6",
"3",
"7",
"6",
"2",
"8",
"2",
"8",
"8",
"6",
"1",
"9",
"2",
"8",
"9",
"5",
"8",
"7",
"1",
"1",
"5",
"0",
"0",
"0",
"8",
"5",
"2",
"7",
"4",
"7",
"4",
"7",
"2",
"9",
"7",
"5",
"7",
"3",
"7"
]
| [
"nonn",
"cons"
]
| 24 | 1 | 2 | [
"A001622",
"A051021",
"A112597",
"A382260",
"A382261"
]
| null | Thomas Scheuerle, Mar 19 2025 | 2025-03-28T15:27:26 | oeisdata/seq/A382/A382260.seq | 86309110e2ae5a9113a06ab9328e20c5 |
A382261 | a(n) = floor(x^(phi^n)), where phi = (1+sqrt(5))/2 and x is the constant A382260. | [
"2",
"3",
"7",
"23",
"163",
"3803",
"620549",
"2359981439",
"1464484123012601",
"3456155348019933976288373",
"5061484633840283809323162088349619180781",
"17493277186167814180104995425523045477935447066389138909089293633"
]
| [
"nonn"
]
| 13 | 1 | 1 | [
"A001622",
"A051254",
"A059784",
"A090253",
"A243358",
"A382260",
"A382261"
]
| null | Thomas Scheuerle, Mar 19 2025 | 2025-03-27T18:37:49 | oeisdata/seq/A382/A382261.seq | 16d6c5f800b1c3eb81a454be23251593 |
A382262 | Nonnegative numbers whose factorial base expansion, when read from right to left, corresponds to the ordinal transform of some finite sequence, with offset 0. | [
"0",
"1",
"3",
"5",
"9",
"11",
"15",
"23",
"33",
"35",
"39",
"47",
"57",
"59",
"63",
"83",
"87",
"119",
"153",
"155",
"159",
"167",
"177",
"179",
"183",
"203",
"207",
"239",
"273",
"275",
"279",
"287",
"297",
"323",
"327",
"395",
"399",
"417",
"419",
"423",
"527",
"563",
"567",
"719",
"873",
"875",
"879",
"887",
"897",
"899",
"903",
"923",
"927",
"959",
"993",
"995"
]
| [
"nonn",
"base"
]
| 10 | 0 | 3 | [
"A000085",
"A120696",
"A382262",
"A382263"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-21T14:39:18 | oeisdata/seq/A382/A382262.seq | 5dd9ca34f0885b50c18bcc61c91390b5 |
A382263 | a(n) is the unique k such that the factorial base expansion of A382262(n) is, when read from right to left, the ordinal transform of that of A382262(k). | [
"0",
"1",
"3",
"2",
"7",
"6",
"5",
"4",
"17",
"16",
"15",
"12",
"11",
"14",
"13",
"10",
"9",
"8",
"43",
"42",
"41",
"37",
"40",
"39",
"38",
"36",
"35",
"28",
"27",
"34",
"33",
"32",
"31",
"30",
"29",
"26",
"25",
"21",
"24",
"23",
"22",
"20",
"19",
"18",
"119",
"118",
"117",
"112",
"116",
"114",
"113",
"111",
"110",
"95",
"115",
"109",
"108",
"99",
"107",
"97",
"96",
"106",
"105",
"104"
]
| [
"nonn",
"base"
]
| 11 | 0 | 3 | [
"A382262",
"A382263",
"A382269"
]
| null | Rémy Sigrist, Mar 19 2025 | 2025-03-21T14:39:07 | oeisdata/seq/A382/A382263.seq | 198924ba25034019980607b418fca4a8 |
A382264 | Semiprimes that are the sum of the m-th prime and the m-th semiprime for some m. | [
"6",
"9",
"14",
"25",
"38",
"55",
"86",
"122",
"141",
"158",
"178",
"185",
"218",
"262",
"301",
"326",
"446",
"466",
"537",
"634",
"695",
"723",
"758",
"785",
"866",
"878",
"886",
"895",
"898",
"921",
"993",
"1006",
"1041",
"1047",
"1077",
"1099",
"1126",
"1138",
"1154",
"1198",
"1214",
"1219",
"1234",
"1262",
"1366",
"1466",
"1535",
"1679",
"1706",
"1751",
"1774",
"1779",
"1822",
"1977",
"2026",
"2173"
]
| [
"nonn"
]
| 7 | 1 | 1 | [
"A092021",
"A133796",
"A382186",
"A382264"
]
| null | Zak Seidov and Robert Israel, Mar 19 2025 | 2025-03-21T11:23:54 | oeisdata/seq/A382/A382264.seq | 16ca30eb5409b8d7895c96630ed9bc5d |
A382265 | In the prime factorization of n replace the k-th prime with the k-th nonprime number. | [
"1",
"1",
"4",
"1",
"6",
"4",
"8",
"1",
"16",
"6",
"9",
"4",
"10",
"8",
"24",
"1",
"12",
"16",
"14",
"6",
"32",
"9",
"15",
"4",
"36",
"10",
"64",
"8",
"16",
"24",
"18",
"1",
"36",
"12",
"48",
"16",
"20",
"14",
"40",
"6",
"21",
"32",
"22",
"9",
"96",
"15",
"24",
"4",
"64",
"36",
"48",
"10",
"25",
"64",
"54",
"8",
"56",
"16",
"26",
"24",
"27",
"18",
"128",
"1",
"60",
"36",
"28",
"12",
"60",
"48",
"30",
"16",
"32",
"20",
"144"
]
| [
"nonn",
"mult"
]
| 11 | 1 | 3 | [
"A000720",
"A003963",
"A018252",
"A066260",
"A382265"
]
| null | Ilya Gutkovskiy, Mar 19 2025 | 2025-03-22T13:04:46 | oeisdata/seq/A382/A382265.seq | 74a58473a836230b4fd322df6ea41388 |
A382266 | Numerator of the harmonic mean of the exponents in the prime factorization of n. | [
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"4",
"1",
"1",
"1",
"4",
"1",
"4",
"1",
"4",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"4",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"4",
"4",
"1",
"1",
"8",
"2",
"4",
"1",
"4",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"6",
"1",
"1",
"4",
"6",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"12",
"1",
"1",
"4",
"4",
"1",
"1",
"1",
"8",
"4",
"1",
"1",
"6",
"1",
"1",
"1",
"3",
"1",
"6",
"1",
"4",
"1",
"1",
"1",
"5",
"1",
"4",
"4",
"2"
]
| [
"nonn",
"frac"
]
| 10 | 2 | 3 | [
"A070012",
"A088529",
"A250096",
"A382266",
"A382267"
]
| null | Ilya Gutkovskiy, Mar 19 2025 | 2025-03-22T08:43:53 | oeisdata/seq/A382/A382266.seq | cc6bd909c7f9a1e4e26db180fce1471c |
A382267 | Denominator of the harmonic mean of the exponents in the prime factorization of n. | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"5",
"1",
"3",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"5",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"5",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"3",
"3",
"1"
]
| [
"nonn",
"frac"
]
| 9 | 2 | 11 | [
"A070012",
"A088530",
"A250097",
"A382266",
"A382267"
]
| null | Ilya Gutkovskiy, Mar 19 2025 | 2025-03-22T08:43:48 | oeisdata/seq/A382/A382267.seq | b6421494df09640ad414a44c71cf0e42 |
A382268 | Numbers k such that a right triangle can be formed from a chain of linked rods of lengths 1, 2, 3, ..., k, with the perimeter equal to the total length. | [
"15",
"20",
"24",
"35",
"39",
"44",
"48",
"55",
"56",
"63",
"75",
"76",
"80",
"84",
"91",
"95",
"99",
"104",
"111",
"119",
"120",
"132",
"135",
"140",
"143",
"144",
"152",
"155",
"168",
"175",
"176",
"187",
"188",
"195",
"203",
"207",
"215",
"216",
"219",
"224",
"252",
"259",
"260",
"264",
"272",
"275",
"279",
"287",
"288",
"296",
"299",
"308",
"315",
"320",
"324",
"335",
"351",
"360"
]
| [
"nonn"
]
| 20 | 1 | 1 | [
"A000217",
"A010814",
"A380867",
"A380868",
"A380875",
"A382268"
]
| null | Ali Sada and Daniel Mondot, Mar 19 2025 | 2025-04-03T13:22:46 | oeisdata/seq/A382/A382268.seq | 3d19d1536e3cc194309308804ba3031a |
A382269 | The factorial base expansion of a(n) is, when read from right to left, the ordinal transform of that of n. | [
"0",
"1",
"3",
"5",
"3",
"3",
"11",
"15",
"15",
"23",
"9",
"15",
"11",
"9",
"9",
"11",
"15",
"15",
"11",
"9",
"9",
"11",
"9",
"9",
"47",
"63",
"63",
"83",
"39",
"57",
"59",
"87",
"87",
"119",
"57",
"87",
"35",
"57",
"57",
"83",
"39",
"63",
"35",
"57",
"57",
"83",
"33",
"57",
"47",
"39",
"39",
"35",
"63",
"57",
"35",
"39",
"39",
"47",
"57",
"63",
"59",
"57",
"57",
"59",
"87",
"87",
"35",
"33"
]
| [
"nonn",
"base"
]
| 7 | 0 | 3 | [
"A382262",
"A382269"
]
| null | Rémy Sigrist, Mar 20 2025 | 2025-03-21T14:38:47 | oeisdata/seq/A382/A382269.seq | 5b18c0c42f718ebbd8aec8100924ddfa |
A382270 | Maximum number of intercalates in a Brown's diagonal Latin square of order 2n. | [
"0",
"12",
"9",
"112",
"57"
]
| [
"nonn",
"more",
"hard"
]
| 8 | 1 | 2 | [
"A092237",
"A307163",
"A307164",
"A339641",
"A345760",
"A368182",
"A379665",
"A382270"
]
| null | Eduard I. Vatutin, Mar 20 2025 | 2025-04-01T21:43:01 | oeisdata/seq/A382/A382270.seq | 888aa5c4b94c9d803824920055e7f408 |
A382271 | Smallest k such that A073734(k) = 2^n, where A073734 is the GCD of consecutive terms of the EKG sequence A064413. | [
"2",
"3",
"8",
"17",
"3070",
"20143",
"46660",
"187759",
"1339550",
"2692614",
"81281233",
"61760615",
"98845851"
]
| [
"nonn",
"more"
]
| 13 | 0 | 1 | [
"A064413",
"A064740",
"A073734",
"A073735",
"A382222",
"A382271"
]
| null | Scott R. Shannon and Michael De Vlieger, Mar 20 2025 | 2025-03-23T13:54:09 | oeisdata/seq/A382/A382271.seq | 603b2366e772084c5c832ba1c4af0067 |
A382272 | Maximum number of orthogonal diagonal Latin squares with the first row in ascending order that can be orthogonal to a given Brown's diagonal Latin square of order 2n. | [
"0",
"1",
"0",
"824",
"8"
]
| [
"nonn",
"more",
"hard"
]
| 6 | 1 | 4 | [
"A287695",
"A339641",
"A382272"
]
| null | Eduard I. Vatutin, Mar 20 2025 | 2025-03-27T20:22:42 | oeisdata/seq/A382/A382272.seq | cf0050aaa97a619f539fd3d1de7b7428 |
A382273 | Number of minimum connected dominating sets in the n-Fibonacci cube graph. | [
"2",
"1",
"2",
"3",
"16",
"7",
"4",
"2"
]
| [
"nonn",
"more"
]
| 10 | 1 | 1 | null | null | Eric W. Weisstein, Mar 20 2025 | 2025-03-21T06:58:59 | oeisdata/seq/A382/A382273.seq | 30261d7ad6edd3bda91ad64b6b696916 |
A382274 | Expansion of 1/(1 - 4*x/(1-x)^2)^(5/2). | [
"1",
"10",
"90",
"730",
"5570",
"40762",
"289370",
"2007210",
"13671170",
"91750250",
"608294490",
"3991833210",
"25968131010",
"167664187290",
"1075453670490",
"6858654320970",
"43517809896450",
"274862176368330",
"1728960219827290",
"10835520927931930",
"67679638209628098",
"421442759107879930"
]
| [
"nonn"
]
| 27 | 0 | 2 | [
"A002802",
"A110170",
"A377198",
"A377199",
"A382274",
"A382332"
]
| null | Seiichi Manyama, Mar 29 2025 | 2025-04-13T03:10:22 | oeisdata/seq/A382/A382274.seq | e2fb2ce0299831992dd025d65b8c53a8 |
A382275 | Number of minimum connected dominating sets in the n-hypercube graph. | [
"1",
"2",
"4",
"30",
"192",
"16320"
]
| [
"nonn",
"more"
]
| 4 | 0 | 2 | null | null | Eric W. Weisstein, Mar 20 2025 | 2025-03-20T09:27:19 | oeisdata/seq/A382/A382275.seq | 4717976cee52c5c2f061dd4704f003a5 |
A382276 | Number of minimum connected dominating sets in the n-odd graph. | [
"1",
"3",
"10",
"8610"
]
| [
"nonn",
"more"
]
| 4 | 1 | 2 | null | null | Eric W. Weisstein, Mar 20 2025 | 2025-03-20T09:27:14 | oeisdata/seq/A382/A382276.seq | 598e3b9718f8c50577bc08c2f37bfd60 |
A382277 | a(n) is the least composite number obtained by inserting a nonempty string of 0's inside n. | [
"100",
"1001",
"102",
"1003",
"104",
"105",
"106",
"1007",
"108",
"100009",
"200",
"201",
"202",
"203",
"204",
"205",
"206",
"207",
"208",
"209",
"300",
"301",
"302",
"303",
"304",
"305",
"306",
"3007",
"308",
"309",
"400",
"40001",
"402",
"403",
"404",
"405",
"406",
"407",
"408",
"4009",
"500",
"501",
"502",
"50003",
"504",
"505",
"506",
"507",
"508",
"50009",
"600",
"6001",
"602",
"603",
"604",
"605"
]
| [
"nonn",
"base",
"look"
]
| 6 | 10 | 1 | null | null | Robert Israel, Mar 20 2025 | 2025-03-21T11:24:03 | oeisdata/seq/A382/A382277.seq | bc54f382714a72e10897b6a6bb3f8bf7 |
A382278 | a(n) = least integer m >= 2 such that n is a sum of the form Sum_{k>=0} floor(h/m^k) for some integer h >= 1. | [
"2",
"3",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"2",
"2",
"4",
"3",
"3",
"2",
"2",
"3",
"2",
"2",
"5",
"3",
"2",
"2",
"4",
"2",
"2",
"3",
"3",
"4",
"3",
"2",
"2",
"4",
"2",
"2",
"3",
"4",
"2",
"2",
"3",
"2",
"2",
"4",
"3",
"3",
"2",
"2",
"3",
"2",
"2",
"5",
"4",
"2",
"2",
"3",
"2",
"2",
"3",
"3",
"4",
"3",
"3",
"2",
"2",
"4",
"2",
"2",
"3",
"4",
"2",
"2",
"3",
"2",
"2",
"3",
"3",
"5",
"2",
"2",
"3",
"2",
"2",
"5",
"3",
"2",
"2"
]
| [
"nonn"
]
| 15 | 1 | 1 | [
"A005187",
"A381897",
"A382278",
"A382324"
]
| null | Clark Kimberling, Mar 21 2025 | 2025-03-31T21:21:04 | oeisdata/seq/A382/A382278.seq | 25d1c1760ef3ceb85b7e0e80e19961ac |
A382279 | a(n) is the integer whose bits encode subset sums of the first n arithmetic numbers (A003601). | [
"1",
"3",
"27",
"891",
"57339",
"7340027",
"15032385531",
"123145302310907",
"2017612633061982203",
"66113130760175032991739",
"8665580274997661924293869563",
"4543259751217974174964184288067579",
"4763953136893138488487244504044754960379",
"9990733848941719167408001786146465954679226363"
]
| [
"nonn",
"base"
]
| 27 | 0 | 2 | [
"A003601",
"A368491",
"A382279"
]
| null | Yigit Oktar, Mar 20 2025 | 2025-04-03T11:40:05 | oeisdata/seq/A382/A382279.seq | 7f8344f091fc9d63b412fbfc14a2e930 |
A382280 | Area of the Pythagoras Tree. | [
"1",
"4",
"6",
"1",
"3",
"3",
"6",
"9",
"4",
"7",
"8",
"7",
"0",
"6",
"7",
"0",
"3",
"4",
"8",
"6",
"8",
"6",
"5",
"6",
"9",
"5",
"1",
"4",
"0",
"4",
"5",
"4",
"2",
"2",
"5",
"5",
"7",
"0",
"6",
"1",
"5",
"9",
"3",
"8",
"4",
"3",
"6",
"6",
"9",
"7",
"0",
"0",
"1",
"0",
"3",
"9",
"2",
"7",
"1",
"7",
"0",
"6",
"8",
"7",
"4",
"6",
"2",
"9",
"5",
"9",
"3",
"2",
"6",
"5",
"2",
"3",
"4",
"7",
"7",
"1",
"1",
"7",
"4",
"8",
"4",
"4",
"5"
]
| [
"nonn",
"cons",
"easy"
]
| 7 | 2 | 2 | [
"A276647",
"A276677",
"A382280"
]
| null | Charles R Greathouse IV, Mar 20 2025 | 2025-03-25T19:53:07 | oeisdata/seq/A382/A382280.seq | 9882b8d36254f62ea985fa1d4a62c2a7 |
A382281 | Let n encode the edges of a graph by taking edges (u,v), with u < v, in colexicographic order ((0,1), (0,2), (1,2), (0,3), ...) and adding each edge to the graph if the corresponding binary digit of n (starting with the least significant digit) is 1. a(n) is the smallest nonnegative integer that encodes the same unlabeled graph as n (disregarding any isolated vertices), i.e., the code of the graph as defined in A076184. | [
"0",
"1",
"1",
"3",
"1",
"3",
"3",
"7",
"1",
"3",
"3",
"11",
"12",
"13",
"13",
"15",
"1",
"3",
"12",
"13",
"3",
"11",
"13",
"15",
"3",
"7",
"13",
"15",
"13",
"15",
"30",
"31",
"1",
"12",
"3",
"13",
"3",
"13",
"11",
"15",
"3",
"13",
"7",
"15",
"13",
"30",
"15",
"31",
"3",
"13",
"13",
"30",
"7",
"15",
"15",
"31",
"11",
"15",
"15",
"31",
"15",
"31",
"31",
"63",
"1",
"3",
"3",
"11",
"12",
"13",
"13",
"15"
]
| [
"nonn"
]
| 5 | 0 | 4 | [
"A076184",
"A382281"
]
| null | Pontus von Brömssen, Mar 21 2025 | 2025-03-21T09:55:45 | oeisdata/seq/A382/A382281.seq | 2f3c3fb5a4eeaf9c009d545664c7cc6e |
A382282 | Code for the n-dimensional hypercube graph, encoded as in A076184. | [
"0",
"1",
"30",
"15054720",
"608598583690983931143264520896512"
]
| [
"nonn",
"more"
]
| 5 | 0 | 3 | [
"A076184",
"A382282"
]
| null | Pontus von Brömssen, Mar 21 2025 | 2025-03-21T09:56:45 | oeisdata/seq/A382/A382282.seq | 3affb17b720abafe57d1a3f9eaacf271 |
A382283 | Number of square roots of connected square graphs in the order listed in A382194. | [
"1",
"1",
"2",
"1",
"5",
"1",
"2",
"3",
"15",
"1",
"1",
"2",
"3",
"4",
"1",
"3",
"3",
"15",
"1",
"1",
"17",
"60",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"4",
"2",
"3",
"2",
"4",
"11",
"10",
"11",
"2",
"1",
"5",
"3",
"3",
"6",
"9",
"8",
"6",
"1",
"1",
"19",
"51",
"3",
"21",
"1",
"1",
"3",
"21",
"2",
"3",
"113",
"1",
"11",
"127",
"374",
"1",
"1",
"2",
"3",
"4",
"1",
"1",
"2",
"3",
"4",
"1",
"1",
"2",
"1",
"1",
"1",
"2"
]
| [
"nonn",
"tabf"
]
| 6 | 1 | 3 | [
"A076184",
"A241706",
"A382180",
"A382194",
"A382283"
]
| null | Pontus von Brömssen, Mar 22 2025 | 2025-03-22T18:50:37 | oeisdata/seq/A382/A382283.seq | b2f1ad8c64fea9777334325f8c770c06 |
A382284 | Number of unlabeled connected graphs with n vertices which are planar squares. | [
"1",
"1",
"1",
"1",
"2",
"3",
"7",
"13",
"31",
"60",
"146",
"320",
"787",
"1864",
"4654",
"11526",
"29318",
"74632",
"192868",
"500487",
"1310826"
]
| [
"nonn",
"more",
"hard"
]
| 8 | 0 | 5 | [
"A381961",
"A382180",
"A382284"
]
| null | Brendan McKay and Sean A. Irvine, Mar 20 2025 | 2025-03-21T15:28:28 | oeisdata/seq/A382/A382284.seq | 031e2f2c473b2abc81e58675aa316283 |
A382285 | Initial members of prime octuplets (p, p+4, p+12, p+24, p+28, p+40, p+48, p+52), where all primes are consecutive primes. | [
"241639",
"44533249",
"120833809",
"245843149",
"480454939",
"547838359",
"945331939",
"1272712579",
"1318911019",
"1334157859",
"1413122899",
"1801178629",
"1977960949",
"2708995099",
"3073533559",
"3234255499",
"3359304829",
"3485412349",
"3836960419",
"4202567899",
"4311168259",
"4984840999",
"5044981129"
]
| [
"nonn"
]
| 17 | 1 | 1 | [
"A022012",
"A382285"
]
| null | Federico Salas, Mar 20 2025 | 2025-03-28T15:59:28 | oeisdata/seq/A382/A382285.seq | 121a8f32b08808fa2b23cd16b3b2cc54 |
A382286 | a(n) is the least k such that floor(sqrt(n*k/d(n*k))) = floor(sqrt(d(n*k))), where d(k) is the largest divisor of k which is <= sqrt(k). | [
"1",
"1",
"1",
"1",
"4",
"1",
"4",
"2",
"1",
"2",
"9",
"2",
"9",
"2",
"2",
"1",
"16",
"2",
"16",
"1",
"2",
"5",
"16",
"1",
"1",
"5",
"3",
"1",
"25",
"1",
"25",
"1",
"3",
"8",
"1",
"1",
"36",
"8",
"3",
"1",
"36",
"1",
"36",
"3",
"2",
"8",
"36",
"1",
"1",
"2",
"6",
"3",
"49",
"2",
"2",
"1",
"6",
"13",
"49",
"2",
"49",
"13",
"2",
"1",
"2",
"2",
"64",
"4",
"6",
"2",
"64",
"2",
"64",
"18",
"2",
"4",
"2",
"2",
"64",
"4",
"1",
"18",
"81",
"2",
"4",
"18",
"9",
"4",
"81"
]
| [
"nonn"
]
| 52 | 1 | 5 | [
"A000196",
"A033676",
"A033677",
"A048760",
"A382286"
]
| null | Hassan Baloui, Mar 20 2025 | 2025-06-19T20:57:43 | oeisdata/seq/A382/A382286.seq | 538ba3ffd49c3cd92f7ffb4521395083 |
A382287 | Irregular triangle T(n,k), n >= 0, 0 <= k <= 2*n+1, read by rows, where T(n,k) = [x^k] (1-x)^(n+1) * Sum_{k=0..n} (k+1)^n * x^k. | [
"1",
"-1",
"1",
"0",
"-3",
"2",
"1",
"1",
"0",
"-16",
"23",
"-9",
"1",
"4",
"1",
"0",
"-125",
"284",
"-229",
"64",
"1",
"11",
"11",
"1",
"0",
"-1296",
"4079",
"-5051",
"2869",
"-625",
"1",
"26",
"66",
"26",
"1",
"0",
"-16807",
"68074",
"-114546",
"98914",
"-43531",
"7776",
"1",
"57",
"302",
"302",
"57",
"1",
"0",
"-262144",
"1303567",
"-2784937",
"3243218",
"-2159662",
"776887",
"-117649"
]
| [
"sign",
"tabf",
"easy"
]
| 16 | 0 | 5 | [
"A000004",
"A173018",
"A382287",
"A382289"
]
| null | Seiichi Manyama, Mar 20 2025 | 2025-03-21T11:16:52 | oeisdata/seq/A382/A382287.seq | 193b65c44bcd406f2aec8a9ee7727333 |
A382288 | Number of records in the n-th composition in standard order. | [
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"2",
"2",
"2",
"1",
"1"
]
| [
"nonn",
"easy"
]
| 10 | 0 | 7 | [
"A066099",
"A124762",
"A124767",
"A124768",
"A164894",
"A333381",
"A333382",
"A382288",
"A382312"
]
| null | John Tyler Rascoe, Mar 20 2025 | 2025-05-06T00:34:46 | oeisdata/seq/A382/A382288.seq | 94c8211fb65eb86d360a6fec0e3715bd |
A382289 | Irregular triangle T(n,k), n >= 0, 0 <= k <= 2*n+1, read by rows, where T(n,k) = [x^k] (1-x)^(n+1) * Sum_{k=0..n} (2*k+1)^n * x^k. | [
"1",
"-1",
"1",
"1",
"-5",
"3",
"1",
"6",
"1",
"-49",
"66",
"-25",
"1",
"23",
"23",
"1",
"-729",
"1585",
"-1247",
"343",
"1",
"76",
"230",
"76",
"1",
"-14641",
"44644",
"-54230",
"30404",
"-6561",
"1",
"237",
"1682",
"1682",
"237",
"1",
"-371293",
"1468383",
"-2433002",
"2078278",
"-907257",
"161051",
"1",
"722",
"10543",
"23548",
"10543",
"722",
"1",
"-11390625",
"55596806",
"-117286023",
"135337972",
"-89493503",
"32016102",
"-4826809"
]
| [
"sign",
"tabf",
"easy"
]
| 12 | 0 | 5 | [
"A000004",
"A060187",
"A382287",
"A382289"
]
| null | Seiichi Manyama, Mar 21 2025 | 2025-03-21T11:17:00 | oeisdata/seq/A382/A382289.seq | 6e47237f845834bb3c0b9933a9d181fb |
A382290 | a(n) = A064547(n) - A001221(n). | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0"
]
| [
"nonn",
"easy",
"base"
]
| 11 | 1 | null | [
"A000120",
"A001221",
"A034444",
"A037445",
"A046660",
"A048881",
"A064547",
"A138302",
"A295662",
"A367512",
"A382290",
"A382291",
"A382292",
"A382293",
"A382294"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:03:58 | oeisdata/seq/A382/A382290.seq | f0c66bd10694208744889f17a8eccc43 |
A382291 | a(n) = A037445(n)/A034444(n). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1"
]
| [
"nonn",
"easy",
"mult"
]
| 11 | 1 | 8 | [
"A000120",
"A034444",
"A037445",
"A138302",
"A243036",
"A359411",
"A367516",
"A368168",
"A368979",
"A382290",
"A382291",
"A382292"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:04:12 | oeisdata/seq/A382/A382291.seq | 77af427c320dfb8b4d7f2e692577ae86 |
A382292 | Numbers k such that A382290(k) = 1. | [
"8",
"24",
"27",
"32",
"40",
"54",
"56",
"64",
"72",
"88",
"96",
"104",
"108",
"120",
"125",
"135",
"136",
"152",
"160",
"168",
"184",
"189",
"192",
"200",
"224",
"232",
"243",
"248",
"250",
"264",
"270",
"280",
"288",
"296",
"297",
"312",
"320",
"328",
"343",
"344",
"351",
"352",
"360",
"375",
"376",
"378",
"392",
"408",
"416",
"424",
"432",
"440",
"448",
"456",
"459",
"472",
"480",
"486",
"488",
"500"
]
| [
"nonn",
"easy"
]
| 10 | 1 | 1 | [
"A018900",
"A030078",
"A030516",
"A030629",
"A030631",
"A046660",
"A048109",
"A050997",
"A060687",
"A065036",
"A143610",
"A163569",
"A178740",
"A179646",
"A179665",
"A179666",
"A179692",
"A179702",
"A189975",
"A189987",
"A189990",
"A190115",
"A190464",
"A271727",
"A374590",
"A375432",
"A381315",
"A382290",
"A382291",
"A382292"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:04:21 | oeisdata/seq/A382/A382292.seq | d26aaa31ac1708dd6ed0979188189213 |
A382293 | a(n) is the least number k such that A382290(k) = n. | [
"1",
"8",
"128",
"3456",
"279936",
"34992000",
"8957952000",
"3072577536000",
"1920360960000000",
"2556000437760000000",
"5615532961758720000000",
"13482894641182686720000000",
"66241461372130539855360000000",
"434610228062548471991016960000000",
"2980991554281019969386385328640000000"
]
| [
"nonn"
]
| 7 | 0 | 2 | [
"A025487",
"A037992",
"A050376",
"A382290",
"A382291",
"A382293"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:04:33 | oeisdata/seq/A382/A382293.seq | f86009c8fb0c7c8d14302130c9af74aa |
A382294 | Decimal expansion of the asymptotic mean of the excess of the number of Fermi-Dirac factors of k over the number of distinct prime factors of k when k runs over the positive integers. | [
"1",
"3",
"6",
"0",
"5",
"4",
"4",
"7",
"0",
"4",
"9",
"6",
"2",
"2",
"8",
"3",
"6",
"5",
"2",
"2",
"9",
"9",
"8",
"9",
"2",
"6",
"3",
"8",
"3",
"7",
"6",
"8",
"9",
"9",
"7",
"6",
"1",
"6",
"5",
"8",
"2",
"4",
"6",
"9",
"0",
"8",
"3",
"7",
"8",
"3",
"9",
"7",
"1",
"0",
"3",
"6",
"8",
"9",
"3",
"4",
"2",
"7",
"8",
"7",
"1",
"5",
"6",
"1",
"4",
"9",
"7",
"6",
"6",
"7",
"4",
"9",
"7",
"7",
"1",
"7",
"9",
"1",
"4",
"6",
"0",
"6",
"5",
"2",
"2",
"8",
"2",
"9",
"7",
"5",
"0",
"8",
"5",
"4",
"1",
"4",
"8",
"7",
"3",
"5",
"9"
]
| [
"nonn",
"cons"
]
| 7 | 0 | 2 | [
"A001221",
"A046660",
"A064547",
"A088705",
"A136141",
"A382290",
"A382294"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:04:41 | oeisdata/seq/A382/A382294.seq | 36362a697e03ea4a0c95b316c9b944f3 |
A382295 | Decimal expansion of the asymptotic mean of the number of ways to factor k into "Fermi-Dirac primes" when k runs over the positive integers. | [
"1",
"7",
"8",
"7",
"6",
"3",
"6",
"8",
"0",
"0",
"1",
"6",
"9",
"4",
"4",
"5",
"6",
"6",
"6",
"9",
"8",
"8",
"6",
"3",
"2",
"9",
"3",
"9",
"4",
"8",
"9",
"4",
"5",
"9",
"8",
"8",
"1",
"4",
"6",
"5",
"9",
"0",
"0",
"4",
"6",
"1",
"3",
"7",
"0",
"0",
"2",
"2",
"6",
"4",
"1",
"1",
"6",
"7",
"3",
"2",
"9",
"5",
"4",
"5",
"6",
"6",
"6",
"3",
"7",
"5",
"1",
"3",
"9",
"5",
"4",
"3",
"4",
"0",
"2",
"5",
"1",
"5",
"5",
"1",
"5",
"5",
"0",
"8",
"8",
"3",
"3",
"3",
"5",
"8",
"7",
"1",
"3",
"7",
"5",
"6",
"1",
"5",
"6",
"0",
"4"
]
| [
"nonn",
"cons"
]
| 5 | 1 | 2 | [
"A005117",
"A050377",
"A082293",
"A330687",
"A382295"
]
| null | Amiram Eldar, Mar 21 2025 | 2025-03-21T10:04:52 | oeisdata/seq/A382/A382295.seq | bcb0484065de50536c1897cc3bcda6f2 |
A382296 | Number of states in smallest DFAO computing t(i+n) on input n in base 2, msd-first, where t(n) = A010060(n), the Thue-Morse sequence. | [
"2",
"4",
"6",
"10",
"10",
"16",
"18",
"20",
"16",
"26",
"28",
"34",
"32",
"38",
"34",
"36",
"26",
"42",
"44",
"50",
"48",
"62",
"60",
"66",
"58",
"70",
"66",
"68",
"60",
"70",
"62",
"62",
"42",
"68",
"70",
"76",
"74",
"88",
"86",
"94",
"84",
"110",
"108",
"114",
"106",
"124",
"120",
"124",
"106",
"128",
"124",
"126",
"116",
"124",
"120",
"128",
"110",
"130",
"122",
"128",
"112"
]
| [
"nonn"
]
| 7 | 0 | 1 | [
"A000045",
"A010060",
"A382296",
"A382298"
]
| null | Jeffrey Shallit, Mar 21 2025 | 2025-03-21T10:03:21 | oeisdata/seq/A382/A382296.seq | 9b79ab412289116d83c450d8055e4195 |
A382297 | Indices of right triangles in A381337. | [
"1",
"2",
"3",
"4",
"6",
"7",
"12",
"14",
"17",
"23",
"28",
"31",
"34",
"35",
"49",
"51",
"62",
"69",
"71",
"73",
"77",
"85",
"93",
"97",
"98",
"102",
"119",
"127",
"142",
"161",
"170",
"194",
"196",
"199",
"223",
"233",
"238",
"241",
"245",
"279",
"281",
"287",
"291",
"337",
"357",
"381",
"388",
"391",
"398",
"439",
"446",
"449",
"476",
"482",
"483",
"511",
"521",
"527",
"562"
]
| [
"nonn"
]
| 7 | 1 | 2 | [
"A381336",
"A381337",
"A382297"
]
| null | Felix Huber, Mar 26 2025 | 2025-03-29T18:37:44 | oeisdata/seq/A382/A382297.seq | c24cf0e149a61ca1c47684b6370de8d8 |
A382298 | Number of states in smallest DFAO computing t(i+n) on input n in base 2, lsd-first, where t(n) = A010060(n), the Thue-Morse sequence. | [
"2",
"3",
"5",
"6",
"7",
"8",
"9",
"9",
"9",
"10",
"11",
"11",
"11",
"12",
"13",
"12",
"11",
"13",
"15",
"14",
"13",
"14",
"15",
"14",
"13",
"15",
"17",
"16",
"15",
"16",
"17",
"15",
"13",
"16",
"19",
"18",
"17",
"18",
"19",
"17",
"15",
"17",
"19",
"18",
"17",
"18",
"19",
"17",
"15",
"18",
"21",
"20",
"19",
"20",
"21",
"19",
"17",
"19",
"21",
"20",
"19",
"20",
"21",
"18",
"15",
"19",
"23"
]
| [
"nonn"
]
| 4 | 0 | 1 | [
"A010060",
"A382296",
"A382298"
]
| null | Jeffrey Shallit, Mar 21 2025 | 2025-03-21T10:03:29 | oeisdata/seq/A382/A382298.seq | e395d7391d1d9fbba81ea47c71d5df4b |
A382299 | Number of minimum connected dominating sets in the n-folded cube graph. | [
"2",
"4",
"16",
"40",
"1520"
]
| [
"nonn",
"more"
]
| 11 | 2 | 1 | null | null | Eric W. Weisstein, Mar 29 2025 | 2025-03-29T09:15:30 | oeisdata/seq/A382/A382299.seq | b9dda700f16adf575f0f9d41bf25611a |
A382300 | a(n) = Sum_{k=0..floor(n/2)} (k+1) * binomial(2*k,2*n-4*k). | [
"1",
"0",
"2",
"2",
"3",
"18",
"7",
"60",
"65",
"144",
"356",
"410",
"1272",
"1722",
"3743",
"7202",
"11482",
"25566",
"40421",
"81610",
"147169",
"259810",
"507267",
"867792",
"1659112",
"2961860",
"5362592",
"9940420",
"17583485",
"32564548",
"58228386",
"105606458",
"191831767",
"343313042",
"625086891",
"1119760040",
"2023087045"
]
| [
"nonn",
"easy"
]
| 23 | 0 | 3 | [
"A034839",
"A375218",
"A376729",
"A381421",
"A382300",
"A382494",
"A382495",
"A382496"
]
| null | Seiichi Manyama, Mar 29 2025 | 2025-05-12T13:59:48 | oeisdata/seq/A382/A382300.seq | f997f47fc819ec19fb7d279efdaa288c |
A382301 | Number of integer partitions of n having a unique multiset partition into constant blocks with distinct sums. | [
"1",
"1",
"2",
"2",
"3",
"6",
"8",
"9",
"14",
"16",
"25",
"30",
"41",
"52",
"69",
"83",
"105",
"129",
"164",
"208",
"263",
"315",
"388",
"449",
"573",
"694"
]
| [
"nonn",
"more"
]
| 9 | 0 | 3 | [
"A000009",
"A000041",
"A000688",
"A000726",
"A001055",
"A004709",
"A006171",
"A045778",
"A047966",
"A050361",
"A265947",
"A279784",
"A279786",
"A293511",
"A295935",
"A300383",
"A317141",
"A326535",
"A353864",
"A355743",
"A381453",
"A381455",
"A381633",
"A381635",
"A381636",
"A381716",
"A381717",
"A381870",
"A381990",
"A381991",
"A381992",
"A381993",
"A382079",
"A382203",
"A382301",
"A382427",
"A382460"
]
| null | Gus Wiseman, Mar 26 2025 | 2025-03-28T22:54:32 | oeisdata/seq/A382/A382301.seq | 60d0534ccbb82cc94b39e7797004499d |
A382302 | Number of integer partitions of n with greatest part, greatest multiplicity, and number of distinct parts all equal. | [
"0",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"4",
"3",
"3",
"4",
"4",
"3",
"6",
"5",
"8",
"8",
"13",
"13",
"16",
"17",
"21",
"22",
"25",
"26",
"32",
"34",
"37",
"44",
"47",
"55",
"62",
"72",
"78",
"94",
"103",
"118",
"132",
"151",
"163",
"189",
"205",
"230",
"251",
"284",
"307",
"346",
"377",
"420",
"462",
"515",
"562",
"629",
"690",
"763"
]
| [
"nonn"
]
| 14 | 0 | 11 | [
"A000009",
"A000041",
"A001221",
"A007814",
"A008284",
"A008289",
"A047966",
"A047993",
"A051903",
"A055932",
"A061395",
"A091602",
"A106529",
"A116598",
"A116608",
"A130091",
"A212166",
"A237984",
"A239455",
"A239964",
"A240312",
"A241131",
"A351293",
"A362608",
"A363719",
"A365676",
"A381079",
"A381438",
"A381542",
"A381543",
"A381544",
"A382302",
"A382303"
]
| null | Gus Wiseman, Mar 24 2025 | 2025-03-26T08:30:52 | oeisdata/seq/A382/A382302.seq | df2cebc3a92642fb8f85012c37427dc2 |
A382303 | Number of integer partitions of n with exactly as many ones as the next greatest multiplicity. | [
"0",
"0",
"0",
"1",
"1",
"1",
"3",
"2",
"4",
"5",
"8",
"6",
"15",
"13",
"19",
"25",
"33",
"36",
"54",
"58",
"80",
"96",
"122",
"141",
"188",
"217",
"274",
"326",
"408",
"474",
"600",
"695",
"859",
"1012",
"1233",
"1440",
"1763",
"2050",
"2475",
"2899",
"3476",
"4045",
"4850",
"5630",
"6695",
"7797",
"9216",
"10689",
"12628",
"14611",
"17162",
"19875",
"23253"
]
| [
"nonn"
]
| 6 | 0 | 7 | [
"A000009",
"A000041",
"A007814",
"A008284",
"A008289",
"A047966",
"A047993",
"A051903",
"A051904",
"A091602",
"A091605",
"A106529",
"A116598",
"A116861",
"A212166",
"A237984",
"A239455",
"A239964",
"A240312",
"A241131",
"A360013",
"A360014",
"A360015",
"A362608",
"A363724",
"A381079",
"A381437",
"A381438",
"A381439",
"A381542",
"A381543",
"A381544",
"A382302",
"A382303"
]
| null | Gus Wiseman, Mar 24 2025 | 2025-03-25T08:57:46 | oeisdata/seq/A382/A382303.seq | 4a7c4980b82f79fd4db4f24c2aee5ab1 |
A382304 | MM-numbers of multiset partitions into sets with a common sum. | [
"1",
"2",
"3",
"4",
"5",
"8",
"9",
"11",
"13",
"16",
"17",
"25",
"27",
"29",
"31",
"32",
"41",
"43",
"47",
"59",
"64",
"67",
"73",
"79",
"81",
"83",
"101",
"109",
"113",
"121",
"125",
"127",
"128",
"137",
"139",
"143",
"149",
"157",
"163",
"167",
"169",
"179",
"181",
"191",
"199",
"211",
"233",
"241",
"243",
"256",
"257",
"269",
"271",
"277",
"283",
"289",
"293",
"313",
"317"
]
| [
"nonn"
]
| 8 | 1 | 2 | [
"A000720",
"A003465",
"A005117",
"A035470",
"A050320",
"A050326",
"A055396",
"A056239",
"A058891",
"A061395",
"A112798",
"A279788",
"A293511",
"A302242",
"A302478",
"A302494",
"A323818",
"A326534",
"A326535",
"A381635",
"A381636",
"A381995",
"A382080",
"A382201",
"A382215",
"A382304",
"A382429"
]
| null | Gus Wiseman, Apr 01 2025 | 2025-04-03T14:57:57 | oeisdata/seq/A382/A382304.seq | 8fcfd4700a3bf6f4b9c3693defabfb54 |
A382305 | Consecutive internal states of the linear congruential pseudo-random number rand48 for Unix when started at 1. | [
"1",
"25214903928",
"206026503483683",
"245470556921330",
"105707381795861",
"223576932655868",
"102497929776471",
"87262199322646",
"266094224901481",
"44061996164032",
"147838658590923",
"157704700760186",
"262146585501693",
"99421425265860",
"6056585619327",
"169186298309406"
]
| [
"nonn",
"easy"
]
| 59 | 1 | 2 | [
"A096550",
"A096561",
"A382305"
]
| null | Sean A. Irvine, Jun 08 2025 | 2025-06-22T18:21:38 | oeisdata/seq/A382/A382305.seq | 614dab17d8a27be05fd1fe517b015b03 |
A382306 | a(n) is the number of values m that satisfy floor(sqrt(m))=n and A382286(m)=1. | [
"3",
"2",
"1",
"3",
"5",
"4",
"2",
"1",
"3",
"5",
"7",
"6",
"4",
"2",
"1",
"3",
"5",
"7",
"9",
"8",
"6",
"4",
"2",
"1",
"3",
"5",
"7",
"9",
"11",
"10",
"8",
"6",
"4",
"2",
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"12",
"10",
"8",
"6",
"4",
"2",
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"15",
"14",
"12",
"10",
"8",
"6",
"4",
"2",
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"15",
"17",
"16",
"14",
"12",
"10",
"8",
"6",
"4",
"2",
"1"
]
| [
"nonn"
]
| 32 | 1 | 1 | [
"A033676",
"A033677",
"A382286",
"A382306"
]
| null | Hassan Baloui, Mar 21 2025 | 2025-04-14T18:15:30 | oeisdata/seq/A382/A382306.seq | 9411e81a5917184fa3313dea80e559cc |
A382307 | Position of start of first run of alternating bit values in the base-2 representation of Pi, or -1 if no such run exists. | [
"1",
"2",
"2",
"19",
"19",
"19",
"19",
"19",
"1195",
"1697",
"1890",
"1890",
"1890",
"1890",
"15081",
"63795",
"206825",
"206825",
"206825",
"470577",
"470577",
"557265",
"557265",
"557265",
"557265",
"557265",
"447666572",
"447666572",
"699793337",
"699793337",
"2049646803",
"2250772991"
]
| [
"nonn",
"base",
"more"
]
| 25 | 1 | 2 | [
"A004601",
"A175945",
"A178708",
"A233836",
"A378472",
"A382307"
]
| null | James S. DeArmon, Mar 21 2025 | 2025-04-07T10:37:35 | oeisdata/seq/A382/A382307.seq | aae8268896368bc1d3234f2cdbb2d7cc |
A382308 | Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000045(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"1",
"7",
"7",
"17",
"31",
"71",
"161",
"391",
"967",
"2449",
"6271",
"16199",
"42049",
"109511",
"285767",
"746641",
"1952287",
"5107207",
"13364449",
"34978247",
"91557511",
"239673617",
"627429887",
"1642561927",
"4300168321",
"11257801351",
"29473006471",
"77160847121",
"202008934687",
"528864985799",
"1384584451361"
]
| [
"nonn",
"easy"
]
| 34 | 0 | 2 | [
"A000045",
"A382308",
"A382608",
"A382609",
"A382610"
]
| null | Miguel-Ángel Pérez García-Ortega, Apr 13 2025 | 2025-04-19T16:56:58 | oeisdata/seq/A382/A382308.seq | 07a614b559c3548f06d15ccacc116c2d |
A382309 | Number of permutations of [2n] with exactly n ascents and an even number of inversions. | [
"1",
"1",
"5",
"147",
"7819",
"655315",
"81255642",
"13985577438",
"3191399514435",
"932692830330915",
"339781108888268398",
"150979116192562395562",
"80377829037419610855326",
"50509994170589416909171726",
"36995186973806250851237265812",
"31240798437883511927927569474140"
]
| [
"nonn"
]
| 14 | 0 | 3 | [
"A128612",
"A180056",
"A382309"
]
| null | Alois P. Heinz, Mar 21 2025 | 2025-04-02T07:04:46 | oeisdata/seq/A382/A382309.seq | bc6d41750d45fbe21fa40ba6e8ae014c |
A382310 | Array read by ascending antidiagonals: A(n,m) is the squared distance between the roots of the 2nd degree equations z^2 +- n*z + m = 0 on the complex plane. | [
"0",
"1",
"4",
"4",
"3",
"8",
"9",
"0",
"7",
"12",
"16",
"5",
"4",
"11",
"16",
"25",
"12",
"1",
"8",
"15",
"20",
"36",
"21",
"8",
"3",
"12",
"19",
"24",
"49",
"32",
"17",
"4",
"7",
"16",
"23",
"28",
"64",
"45",
"28",
"13",
"0",
"11",
"20",
"27",
"32",
"81",
"60",
"41",
"24",
"9",
"4",
"15",
"24",
"31",
"36",
"100",
"77",
"56",
"37",
"20",
"5",
"8",
"19",
"28",
"35",
"40",
"121",
"96",
"73",
"52",
"33",
"16",
"1",
"12",
"23",
"32",
"39",
"44"
]
| [
"nonn",
"easy",
"tabl"
]
| 16 | 0 | 3 | [
"A000290",
"A008586",
"A028347",
"A028566",
"A028884",
"A131098",
"A134594",
"A145917",
"A382310",
"A382311"
]
| null | Stefano Spezia, Mar 21 2025 | 2025-03-22T19:22:03 | oeisdata/seq/A382/A382310.seq | 98366ee1d5c8b8d92c6e19987d1bb9e2 |
A382311 | Antidiagonal sums of A382310. | [
"0",
"5",
"15",
"28",
"52",
"81",
"123",
"176",
"240",
"325",
"425",
"542",
"684",
"849",
"1037",
"1250",
"1498",
"1775",
"2083",
"2424",
"2806",
"3227",
"3687",
"4188",
"4732",
"5329",
"5973",
"6666",
"7410",
"8207",
"9065",
"9982",
"10958",
"11995",
"13095",
"14260",
"15500",
"16809",
"18189",
"19642",
"21170",
"22775",
"24465",
"26238",
"28094",
"30035"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A382310",
"A382311"
]
| null | Stefano Spezia, Mar 21 2025 | 2025-03-22T08:43:44 | oeisdata/seq/A382/A382311.seq | 0af20249ac3ae8ddf8f924b9fd2b55f6 |
A382312 | Irregular triangle read by rows: T(n,k) is the number of compositions of n with k records. | [
"1",
"0",
"1",
"0",
"2",
"0",
"3",
"1",
"0",
"5",
"3",
"0",
"8",
"8",
"0",
"14",
"17",
"1",
"0",
"24",
"36",
"4",
"0",
"43",
"72",
"13",
"0",
"77",
"143",
"36",
"0",
"140",
"281",
"90",
"1",
"0",
"256",
"550",
"213",
"5",
"0",
"472",
"1073",
"484",
"19",
"0",
"874",
"2093",
"1068",
"61",
"0",
"1628",
"4079",
"2308",
"177",
"0",
"3045",
"7950",
"4912",
"476",
"1",
"0",
"5719",
"15498",
"10328",
"1217",
"6"
]
| [
"nonn",
"tabf",
"easy"
]
| 18 | 0 | 5 | [
"A002024",
"A011782",
"A079500",
"A336482",
"A352525",
"A382312"
]
| null | John Tyler Rascoe, Mar 21 2025 | 2025-05-06T00:34:15 | oeisdata/seq/A382/A382312.seq | 2f1a58ce964f31322d582c876e74beed |
A382313 | The factorial base expansion of a(n) corresponds to the restricted growth sequence of that of n (when read from right to left). | [
"0",
"1",
"5",
"3",
"5",
"5",
"15",
"11",
"17",
"9",
"23",
"11",
"15",
"23",
"23",
"15",
"17",
"17",
"15",
"23",
"23",
"15",
"23",
"23",
"57",
"41",
"59",
"39",
"83",
"47",
"63",
"35",
"65",
"33",
"95",
"35",
"87",
"47",
"71",
"39",
"89",
"41",
"87",
"47",
"71",
"39",
"119",
"47",
"57",
"89",
"83",
"87",
"59",
"71",
"87",
"83",
"89",
"57",
"71",
"59",
"63",
"95",
"95",
"63",
"65",
"65",
"87"
]
| [
"nonn",
"base",
"easy"
]
| 6 | 0 | 3 | [
"A120696",
"A382269",
"A382313"
]
| null | Rémy Sigrist, Mar 21 2025 | 2025-03-22T08:44:35 | oeisdata/seq/A382/A382313.seq | 5dd96a4967e58ac8751c93d64e981b3a |
A382314 | G.f. satisfies A(x) = 1/(1-x) + 2*x*A(x^2) + 3*x^2*A(x^3). | [
"1",
"3",
"4",
"7",
"1",
"18",
"1",
"15",
"13",
"3",
"1",
"58",
"1",
"3",
"4",
"31",
"1",
"81",
"1",
"7",
"4",
"3",
"1",
"162",
"1",
"3",
"40",
"7",
"1",
"18",
"1",
"63",
"4",
"3",
"1",
"337",
"1",
"3",
"4",
"15",
"1",
"18",
"1",
"7",
"13",
"3",
"1",
"418",
"1",
"3",
"4",
"7",
"1",
"324",
"1",
"15",
"4",
"3",
"1",
"58",
"1",
"3",
"13",
"127",
"1",
"18",
"1",
"7",
"4",
"3",
"1",
"1161",
"1",
"3",
"4",
"7",
"1",
"18",
"1",
"31",
"121",
"3",
"1",
"58",
"1",
"3",
"4",
"15",
"1",
"81",
"1",
"7",
"4",
"3",
"1",
"1026"
]
| [
"nonn"
]
| 14 | 0 | 2 | [
"A003586",
"A007814",
"A007949",
"A072079",
"A382126",
"A382314"
]
| null | Paul D. Hanna, Apr 14 2025 | 2025-04-15T18:46:03 | oeisdata/seq/A382/A382314.seq | e7d75e82286fbc16c5a6d8d4b2e2bf97 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.