sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A382115
a(n) is the smallest positive number not already used and whose binary expansion occurs, ending at position n, in the binary Champernowne word.
[ "1", "3", "2", "5", "11", "7", "6", "4", "9", "18", "37", "75", "23", "14", "13", "27", "55", "15", "30", "12", "8", "17", "34", "68", "137", "19", "38", "77", "10", "21", "42", "85", "43", "87", "47", "94", "28", "25", "51", "102", "205", "155", "311", "111", "222", "29", "59", "119", "239", "31", "62", "60", "24", "16", "33", "66", "132", "264", "529", "35", "70", "140", "281", "50" ]
[ "nonn", "base" ]
34
1
2
[ "A030190", "A083652", "A382115" ]
null
Ruud H.G. van Tol, Mar 16 2025
2025-03-27T20:28:32
oeisdata/seq/A382/A382115.seq
688e696ce5907527a9a301492f2394a5
A382116
a(n) = floor(n*g+(g-1)/2), where g is the golden ratio.
[ "0", "1", "3", "5", "6", "8", "10", "11", "13", "14", "16", "18", "19", "21", "22", "24", "26", "27", "29", "31", "32", "34", "35", "37", "39", "40", "42", "43", "45", "47", "48", "50", "52", "53", "55", "56", "58", "60", "61", "63", "65", "66", "68", "69", "71", "73", "74", "76", "77", "79", "81", "82", "84", "86", "87", "89", "90", "92", "94", "95", "97", "99", "100", "102", "103", "105" ]
[ "nonn", "easy" ]
13
0
3
[ "A001622", "A382113", "A382116" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-23T20:52:28
oeisdata/seq/A382/A382116.seq
c29e57dc07a339f58997cf9a307d8bd5
A382117
a(n) = sum (-1)^(((x - 1)*(y - 1))/4), where x and y are coprime positive integers, equidistant from n, such that x <= y.
[ "1", "1", "1", "2", "0", "2", "1", "4", "1", "4", "1", "4", "0", "6", "0", "8", "0", "6", "1", "8", "2", "10", "1", "8", "0", "12", "1", "12", "0", "8", "1", "16", "2", "16", "0", "12", "0", "18", "0", "16", "0", "12", "1", "20", "0", "22", "1", "16", "1", "20", "0", "24", "0", "18", "0", "24", "2", "28", "1", "16", "0", "30", "2", "32", "0", "20", "1", "32", "2", "24", "1", "24", "0", "36", "0", "36", "2", "24" ]
[ "nonn" ]
51
1
4
[ "A309812", "A382117" ]
null
Mike Jones, Apr 26 2025
2025-05-03T18:55:36
oeisdata/seq/A382/A382117.seq
7b09f4a4c3d188928dddad70c3561d96
A382118
Prime indices k such that prime(k) and prime(k) + 9 are anagrams.
[ "19", "73", "79", "163", "197", "241", "269", "281", "431", "439", "619", "647", "691", "739", "751", "761", "823", "877", "953", "1019", "1051", "1109", "1223", "1259", "1291", "1307", "1423", "1471", "1723", "1741", "1747", "1847", "1949", "1979", "2213", "2371", "2473", "2503", "2647", "2789", "2803", "2819", "2879", "2903", "2909", "3019", "3163", "3361" ]
[ "nonn", "base" ]
14
1
1
[ "A140353", "A228157", "A379208", "A382118" ]
null
Vincenzo Librandi, Apr 15 2025
2025-04-22T08:01:50
oeisdata/seq/A382/A382118.seq
b3b23a86168fe6cb6f3cae863bcba091
A382119
Numbers k = x*y such that (x*2^k - 1)*(y*2^k - 1) is semiprime.
[ "2", "3", "4", "6", "16", "126" ]
[ "nonn", "more" ]
27
1
1
[ "A000668", "A001358", "A161904", "A382119" ]
null
Juri-Stepan Gerasimov, Mar 25 2025
2025-04-07T17:46:15
oeisdata/seq/A382/A382119.seq
43cfbafc8c76f1fd37c772f7dd0e6ec4
A382120
Numbers k in A024619 such that there exists a prime p | k for which p^(m+1) == r (mod k), where r is also in A024619, and a prime q | k for which q^(m+1) == r (mod k), where r is a prime power.
[ "10", "18", "20", "21", "22", "26", "28", "30", "34", "36", "38", "40", "42", "46", "48", "50", "52", "54", "55", "57", "58", "60", "68", "72", "74", "78", "82", "84", "86", "93", "94", "96", "98", "100", "106", "108", "110", "111", "114", "116", "117", "118", "122", "124", "126", "129", "132", "134", "136", "142", "146", "147", "148", "150", "156", "158", "162", "164", "165" ]
[ "nonn" ]
23
1
1
[ "A000961", "A024619", "A381750", "A381864", "A382120" ]
null
Michael De Vlieger, Apr 06 2025
2025-05-30T23:15:22
oeisdata/seq/A382/A382120.seq
c0c317353293a1a0fdce48127988d60c
A382121
Minimal polynomials of nimbers *(2^(2^n)-1), evaluated at 2.
[ "7", "25", "425", "101021", "7158330089", "27971386341277386797", "557019405516812760530014815489825522433", "200070165806576462487855236097886014378133571492030310620129377307348366314169" ]
[ "nonn" ]
11
1
1
[ "A051775", "A382121" ]
null
Simon Tatham, Mar 16 2025
2025-03-24T11:54:05
oeisdata/seq/A382/A382121.seq
d49bdc33216fc8e0f11122a9b4281b7f
A382122
G.f. satisfies Sum_{n>=0} x^n * abs(1/A(x)^n) = C(x), where C(x) = 1 + x*C(x)^2 and abs(F(x)) equals the series expansion formed by the unsigned coefficients in F(x).
[ "1", "1", "3", "12", "49", "202", "838", "3486", "14575", "60820", "254406", "1061438", "4444802", "18602018", "78066384", "326985608", "1365996909", "5697914836", "23752394338", "99027785702", "413203462516", "1726164299990", "7219911692522", "30228722494504", "126658682953328", "530772842793396", "2224199143900798", "9319843329508200", "39051457052597480" ]
[ "nonn" ]
13
0
3
[ "A000108", "A382122", "A382123" ]
null
Paul D. Hanna, Mar 16 2025
2025-03-28T04:38:23
oeisdata/seq/A382/A382122.seq
d7f16ba4758b9cf431a7ed18f7470656
A382123
a(n) = sigma(n)*sigma(2*n)/3 for n >= 1.
[ "1", "7", "16", "35", "36", "112", "64", "155", "169", "252", "144", "560", "196", "448", "576", "651", "324", "1183", "400", "1260", "1024", "1008", "576", "2480", "961", "1372", "1600", "2240", "900", "4032", "1024", "2667", "2304", "2268", "2304", "5915", "1444", "2800", "3136", "5580", "1764", "7168", "1936", "5040", "6084", "4032", "2304", "10416", "3249", "6727", "5184", "6860" ]
[ "nonn" ]
8
1
2
[ "A000203", "A062731", "A087943", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T16:51:29
oeisdata/seq/A382/A382123.seq
58ba6426ca2eb2ec4a1f76852c817835
A382124
G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n)/3 * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
[ "1", "1", "4", "9", "22", "44", "105", "200", "425", "825", "1634", "3072", "5917", "10846", "20153", "36436", "65882", "116831", "207293", "361502", "629539", "1083068", "1856251", "3150554", "5328137", "8933266", "14920357", "24745481", "40869317", "67089425", "109697089", "178379353", "288953043", "465805681", "748079686", "1196148976", "1905801579", "3024212984" ]
[ "nonn" ]
8
0
3
[ "A000041", "A000203", "A087943", "A156302", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T14:55:22
oeisdata/seq/A382/A382124.seq
f6a4415ba1f547d13106584b564d0314
A382125
G.f. A(x) = exp( Sum_{n>=1} sigma(n)*sigma(2*n) * x^n/n ), where sigma(n) = A000203(n) is the sum of the divisors of n.
[ "1", "3", "15", "52", "180", "555", "1696", "4809", "13410", "35844", "93771", "238305", "594403", "1449441", "3476607", "8190824", "19015548", "43492230", "98197506", "218885763", "482337864", "1051051262", "2266904481", "4840955055", "10242621395", "21479302368", "44666897613", "92139573135", "188617118541", "383280793962", "773395096907" ]
[ "nonn" ]
10
0
2
[ "A000041", "A000203", "A087943", "A156302", "A329963", "A347108", "A382123", "A382124", "A382125" ]
null
Paul D. Hanna, Apr 06 2025
2025-04-06T14:55:34
oeisdata/seq/A382/A382125.seq
b0ed6ed8c3d492650f403b280ea676bb
A382126
G.f. satisfies A(x) = A(x^2)*A(x^3) / (1-x).
[ "1", "1", "2", "3", "5", "6", "11", "13", "20", "26", "36", "44", "66", "78", "106", "132", "174", "208", "282", "332", "430", "520", "656", "774", "1000", "1166", "1456", "1731", "2131", "2486", "3097", "3585", "4374", "5125", "6177", "7144", "8700", "9994", "11966", "13874", "16482", "18908", "22598", "25800", "30472", "35014", "41062", "46802", "55178", "62624", "73094", "83384", "96834" ]
[ "nonn" ]
13
0
3
[ "A003586", "A007814", "A007949", "A382126" ]
null
Paul D. Hanna, Apr 14 2025
2025-04-15T08:56:26
oeisdata/seq/A382/A382126.seq
eba158c7fdcf5dce883a81d1566be076
A382127
Smallest prime p with n distinct digits, such that for each digit of p, 2*p*(digit) + 1 is prime.
[ "3", "131", "173", "4391", "4746616799" ]
[ "nonn", "base", "fini", "full" ]
40
1
1
[ "A000040", "A005384", "A382127", "A382179", "A382198", "A382199" ]
null
Jakub Buczak, Mar 16 2025
2025-03-19T23:20:59
oeisdata/seq/A382/A382127.seq
c11762aa3d5e4754dd33ed25b5b19d02
A382128
Fractalization of the Recamán sequence.
[ "0", "0", "1", "0", "3", "1", "6", "0", "2", "3", "7", "1", "13", "6", "20", "0", "12", "2", "21", "3", "11", "7", "22", "1", "10", "13", "23", "6", "9", "20", "24", "0", "8", "12", "25", "2", "43", "21", "62", "3", "42", "11", "63", "7", "41", "22", "18", "1", "42", "10", "17", "13", "43", "23", "16", "6", "44", "9", "15", "20", "45", "24", "14", "0", "46", "8", "79", "12", "113", "25", "78", "2", "114", "43", "77", "21", "39", "62", "78" ]
[ "nonn", "easy" ]
25
1
5
[ "A003602", "A005132", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:50:37
oeisdata/seq/A382/A382128.seq
cdd63f2b6c0cd99599156813680c702e
A382129
Fractalization of the prime numbers.
[ "2", "2", "3", "2", "5", "3", "7", "2", "11", "5", "13", "3", "17", "7", "19", "2", "23", "11", "29", "5", "31", "13", "37", "3", "41", "17", "43", "7", "47", "19", "53", "2", "59", "23", "61", "11", "67", "29", "71", "5", "73", "31", "79", "13", "83", "37", "89", "3", "97", "41", "101", "17", "103", "43", "107", "7", "109", "47", "113", "19", "127", "53", "131", "2", "137", "59", "139", "23", "149", "61", "151", "11", "157" ]
[ "nonn", "easy" ]
29
1
1
[ "A000040", "A003602", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:50:51
oeisdata/seq/A382/A382129.seq
f910ff7a886205a6aec5ca5f39d468c2
A382130
Fractalization of the golden ratio.
[ "1", "1", "6", "1", "1", "6", "8", "1", "0", "1", "3", "6", "3", "8", "9", "1", "8", "0", "8", "1", "7", "3", "4", "6", "9", "3", "8", "8", "9", "9", "4", "1", "8", "8", "4", "0", "8", "8", "2", "1", "0", "7", "4", "3", "5", "4", "8", "6", "6", "9", "8", "3", "3", "8", "4", "8", "3", "9", "6", "9", "5", "4", "6", "1", "3", "8", "8", "8", "1", "4", "1", "0", "7", "8", "7", "8", "2", "2", "0", "1", "3", "0", "0", "7", "9", "4", "1", "3", "7", "5", "9", "4", "8", "8", "0" ]
[ "nonn", "easy", "base" ]
28
1
3
[ "A001622", "A003602", "A110766", "A110779", "A110812", "A382128", "A382129", "A382130" ]
null
David Cleaver, Mar 16 2025
2025-03-22T22:51:21
oeisdata/seq/A382/A382130.seq
9c2fc6000e8d84db8e1690fe2b91f41a
A382131
Complement of A381767.
[ "2", "3", "5", "15", "46", "136", "385", "1072", "2949", "8063", "21977", "59814", "162683", "442329", "1202507", "3268905", "8885983", "24154809", "65659808", "178482121", "485164996", "1318815514", "3584912605", "9744803182", "26489121842", "72004899025", "195729609091", "532048240238", "1446257063900", "3931334296724", "10686474581075" ]
[ "nonn" ]
28
1
1
[ "A381767", "A382131" ]
null
Mike Sheppard, Mar 16 2025
2025-06-14T00:16:25
oeisdata/seq/A382/A382131.seq
519d4de7de7bc98f25dd7d21dc24006b
A382132
Centered pentagonal numbers which are semiprimes.
[ "6", "51", "106", "141", "226", "391", "526", "681", "766", "951", "1501", "1891", "2031", "2326", "2481", "2641", "3151", "3901", "4101", "4306", "6631", "6891", "7981", "8266", "8851", "10081", "10401", "11391", "13141", "14631", "15406", "16201", "20931", "22801", "23281", "24751", "27301", "27826", "28891", "29431", "30526", "32206", "33351", "35701", "36301", "38131", "38751" ]
[ "nonn" ]
19
1
1
[ "A001358", "A005891", "A364610", "A382132" ]
null
Massimo Kofler, Mar 17 2025
2025-03-25T18:01:53
oeisdata/seq/A382/A382132.seq
27d1390ab409898c4dce96010e5e4403
A382133
Products of 4 distinct primes that are the average of two consecutive primes.
[ "462", "570", "714", "858", "870", "1190", "1230", "1254", "1290", "1302", "1482", "1590", "1722", "1785", "1806", "1995", "2046", "2130", "2170", "2210", "2470", "2490", "2870", "3030", "3045", "3255", "3390", "3410", "3705", "3774", "3795", "3885", "3930", "4002", "4218", "4242", "4278", "4422", "4510", "4515", "4641", "4785", "4935", "5010", "5110" ]
[ "nonn" ]
21
1
1
[ "A024675", "A046386", "A078443", "A130178", "A382133" ]
null
Massimo Kofler, Mar 17 2025
2025-03-31T21:25:27
oeisdata/seq/A382/A382133.seq
3831b013c27094104ff5be3232f736e9
A382134
Number of completely asymmetric matchings (not containing centered or coupled arcs) of [2n].
[ "1", "0", "0", "8", "48", "384", "4480", "59520", "897792", "15368192", "293769216", "6198589440", "143130972160", "3590253477888", "97214510235648", "2826205634330624", "87801981951344640", "2902989352269250560", "101776549707306237952", "3771425415371470405632", "147285455218020210180096" ]
[ "nonn" ]
18
0
4
[ "A000079", "A001205", "A047974", "A053871", "A382134" ]
null
R. J. Mathar, Mar 17 2025
2025-03-17T16:01:46
oeisdata/seq/A382/A382134.seq
20130d6e1858ae3d922c943062dbabc8
A382135
Square array read by antidiagonals: T(n,k) = S(n+k) - S(n) - S(k) - min(n,k), where S(k) = A000788(k-1).
[ "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "1", "0", "0", "1", "1", "2", "2", "2", "0", "2", "2", "2", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "2", "2", "2", "0", "1", "0", "1", "0", "2", "2", "2", "1", "2", "2", "1", "0", "0", "0", "0", "1", "2", "2", "1", "2", "2", "3", "2", "2", "0", "0", "0", "2" ]
[ "nonn", "easy", "base", "tabl" ]
25
1
22
[ "A000120", "A000788", "A382135" ]
null
Yifan Xie, Mar 17 2025
2025-04-02T15:04:25
oeisdata/seq/A382/A382135.seq
86b45624565919dc216af1a2099bc908
A382136
Number of triples of non-crossing lattice paths from (0,0) to (n,n) using (1,0) and (0,1) as steps.
[ "1", "4", "50", "980", "24696", "731808", "24293412", "877262100", "33803832920", "1371597504992", "58043512597616", "2543610972177184", "114801908084920000", "5313688317073440000", "251370667949555421000", "12120154230252872020500", "594283640753967620247000", "29576997448419995135100000" ]
[ "nonn", "easy", "changed" ]
35
0
2
[ "A000108", "A000891", "A382136" ]
null
Yifan Xie, Mar 27 2025
2025-07-03T02:35:40
oeisdata/seq/A382/A382136.seq
cecc22baeca9462428c1cc7ecb0f4344
A382137
Smallest integer that cannot be be converted to a multiple of n by changing at most one of its decimal digit.
[ "545", "51", "44", "31", "21", "21", "22", "21", "21", "11", "15", "11", "11", "11", "11", "11", "12", "11", "11", "11", "14", "11", "11", "11", "11", "11", "11", "11", "11", "11", "13", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12", "11", "11", "11", "11", "11", "11", "11", "11", "11", "12" ]
[ "nonn", "base" ]
36
11
1
[ "A192545", "A353023", "A382137" ]
null
Mickaël Launay, Mar 27 2025
2025-04-03T02:51:56
oeisdata/seq/A382/A382137.seq
ec97c8319a87155f03fe2c50000ae272
A382138
a(n) = A381800(n) - A381798(n).
[ "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "0", "2", "0", "1", "1", "0", "0", "3", "0", "2", "1", "1", "0", "4", "0", "1", "0", "2", "0", "8", "0", "0", "1", "1", "1", "5", "0", "1", "1", "3", "0", "10", "0", "2", "3", "1", "0", "6", "0", "5", "1", "2", "0", "9", "1", "4", "1", "1", "0", "16", "0", "1", "2", "0", "1", "14", "0", "2", "1", "12", "0", "8", "0", "1", "5", "2", "1", "16", "0", "5", "0", "1", "0", "19", "1" ]
[ "nonn" ]
24
1
12
[ "A000961", "A024619", "A381798", "A381799", "A381800", "A381801", "A382138" ]
null
Michael De Vlieger, Apr 12 2025
2025-04-19T18:06:30
oeisdata/seq/A382/A382138.seq
62b1ad18c27ee071a5a8751ce8b8ebf0
A382139
Number of matchings of [2n] with no coupled arcs.
[ "1", "1", "1", "9", "81", "705", "7665", "100905", "1524705", "26022465", "496042785", "10445342985", "240779831985", "6030718158465", "163087008669585", "4735950860666025", "146987669673669825", "4855606200012593025", "170101350767940617025", "6298861062893921346825", "245834199405298416337425" ]
[ "nonn" ]
8
0
4
[ "A001147", "A047974", "A053871", "A067994", "A382134", "A382139" ]
null
R. J. Mathar, Mar 17 2025
2025-03-17T14:23:42
oeisdata/seq/A382/A382139.seq
9b24818dba754478c357ab0d997c42af
A382140
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n.
[ "6", "18", "50", "154", "536" ]
[ "nonn", "more" ]
12
1
1
[ "A382140", "A382141", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:14
oeisdata/seq/A382/A382140.seq
5560db2c80ec7d97a587d413ae6685d1
A382141
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group A_n.
[ "3", "8", "18", "42", "112" ]
[ "nonn", "more" ]
11
1
1
[ "A382140", "A382141", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:20
oeisdata/seq/A382/A382141.seq
3fdcf9102351c5e32ade165ff78a14ff
A382142
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "24", "102", "486", "2436" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382142", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:26
oeisdata/seq/A382/A382142.seq
f52e77b635cc104d6d2f26a895d6f0e6
A382143
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "12", "51", "237", "1122" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382143", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:31
oeisdata/seq/A382/A382143.seq
4760434196831d0682321e874270e7b3
A382144
Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group C_n.
[ "13", "58", "302", "1598" ]
[ "nonn", "more" ]
9
2
1
[ "A382140", "A382144", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:43
oeisdata/seq/A382/A382144.seq
b015c5fab2b61cf97bd2c780611f2bcc
A382145
Number of facets of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "50", "306", "1982", "12162" ]
[ "nonn", "more" ]
9
3
1
[ "A382140", "A382145", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:17:52
oeisdata/seq/A382/A382145.seq
dd55f604347fd17225713eedbce67031
A382146
Number of extremal rays of the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "18", "81", "492", "3258" ]
[ "nonn", "more" ]
14
3
1
[ "A382140", "A382146", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:18:08
oeisdata/seq/A382/A382146.seq
428b9287fc747bdaaca263d01e2709a5
A382147
Number of Hilbert basis elements for the semigroup S_1 arising in studying the "saturation question" for the Lie group D_n.
[ "18", "82", "505", "3470" ]
[ "nonn", "more" ]
10
3
1
[ "A382140", "A382146", "A382147" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-17T22:18:14
oeisdata/seq/A382/A382147.seq
0205a705b9b2f9b65d393161a74e5b3f
A382148
Index of first occurrence of n in A381238, or -1 if n does not appear there.
[ "0", "14", "1", "3", "79", "11", "30", "8", "108", "17", "6", "111", "169", "18", "76", "78", "74", "388", "239", "86", "383", "345", "191", "1017", "178", "486", "163", "1828", "209", "364", "484", "582", "160", "289", "436", "878", "174", "320", "37", "1029", "698", "1386", "768", "618", "558", "212", "1318", "2213", "826", "350", "877", "1780", "1033", "407", "188", "229", "1478", "467", "305" ]
[ "nonn" ]
7
1
2
[ "A381238", "A382148" ]
null
N. J. A. Sloane, Mar 17 2025
2025-03-18T15:46:37
oeisdata/seq/A382/A382148.seq
e8cf66c1bdeed420b5895b518dabf674
A382149
Primes p such that the elliptic curve X_0^{+}(p) has genus 2.
[ "67", "73", "103", "107", "167", "191" ]
[ "nonn", "fini", "full" ]
5
1
1
[ "A382149", "A382150" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:32:46
oeisdata/seq/A382/A382149.seq
f4a7f323661b5ef2a668cbe8e8c365f0
A382150
Primes p such that the elliptic curve X_0^{+}(p) has genus 3.
[ "97", "109", "113", "127", "139", "149", "151", "179", "239" ]
[ "nonn", "fini", "full" ]
7
1
1
[ "A382149", "A382150" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:33:54
oeisdata/seq/A382/A382150.seq
17f8eb384b27f9265fd39b19f6e44b5c
A382151
Primes p such that some elliptic curve over Q admits a Q-rational p-isogeny.
[ "2", "3", "5", "7", "11", "13", "17", "19", "37", "43", "67", "163" ]
[ "nonn", "fini", "full" ]
6
1
1
[ "A382151", "A382152" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:45:45
oeisdata/seq/A382/A382151.seq
e6ce7b08c98c110e912a07a3a3064076
A382152
Numbers k such that there is an elliptic curve defined over Q with a Q-rational cyclic isogeny of degree k.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "25", "27", "37", "43", "67", "163" ]
[ "nonn", "fini", "full" ]
7
1
2
[ "A382151", "A382152" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:55:53
oeisdata/seq/A382/A382152.seq
76021c83863deaac4079b1dc0e5293f4
A382153
Numbers k such that there is an exceptional k-isogeny arising from the rational points on an elliptic curve X_0^{+}(k) of genus at most 6.
[ "73", "91", "103", "125", "137", "191", "311" ]
[ "nonn", "fini", "full" ]
7
1
1
null
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T14:17:24
oeisdata/seq/A382/A382153.seq
aaf778167f5b3485c48577e98482e73f
A382154
a(0) = 1; thereafter a(n) = 2*n if n even or 4*n if n odd.
[ "1", "4", "4", "12", "8", "20", "12", "28", "16", "36", "20", "44", "24", "52", "28", "60", "32", "68", "36", "76", "40", "84", "44", "92", "48", "100", "52", "108", "56", "116", "60", "124", "64", "132", "68", "140", "72", "148", "76", "156", "80", "164", "84", "172", "88", "180", "92", "188", "96", "196", "100", "204", "104", "212", "108", "220", "112", "228", "116", "236", "120", "244", "124", "252", "128", "260", "132", "268", "136", "276", "140", "284", "144", "292" ]
[ "nonn" ]
40
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025
2025-03-24T13:51:53
oeisdata/seq/A382/A382154.seq
87ff024c3e8ac096f6b6fd2f7a6b3ede
A382155
a(n) = (n+1)! if n <= 2; thereafter a(n) = 4*n if n even or 2*n if n odd.
[ "1", "2", "6", "6", "16", "10", "24", "14", "32", "18", "40", "22", "48", "26", "56", "30", "64", "34", "72", "38", "80", "42", "88", "46", "96", "50", "104", "54", "112", "58", "120", "62", "128", "66", "136", "70", "144", "74", "152", "78", "160", "82", "168", "86", "176", "90", "184", "94", "192", "98", "200", "102", "208", "106", "216", "110", "224", "114", "232", "118", "240", "122", "248", "126", "256", "130", "264", "134", "272", "138", "280", "142", "288", "146", "296" ]
[ "nonn" ]
35
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025
2025-03-24T11:53:50
oeisdata/seq/A382/A382155.seq
27eee300a4c9a684c66bc0d3a0001d13
A382156
Partial sums of A382155.
[ "1", "3", "9", "15", "31", "41", "65", "79", "111", "129", "169", "191", "239", "265", "321", "351", "415", "449", "521", "559", "639", "681", "769", "815", "911", "961", "1065", "1119", "1231", "1289", "1409", "1471", "1599", "1665", "1801", "1871", "2015", "2089", "2241", "2319", "2479", "2561", "2729", "2815", "2991", "3081", "3265", "3359", "3551", "3649", "3849", "3951", "4159", "4265", "4481", "4591", "4815", "4929", "5161", "5279", "5519" ]
[ "nonn", "changed" ]
13
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025
2025-07-09T05:08:14
oeisdata/seq/A382/A382156.seq
bd7d03d90ae38c8bba996dd72d64c8eb
A382157
Number of n-node digraphs without loops, not necessarily connected, which are squares.
[ "1", "1", "3", "9", "46", "473", "13763", "1121383" ]
[ "nonn", "more", "changed" ]
12
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025
2025-07-09T05:08:21
oeisdata/seq/A382/A382157.seq
62e0e2fa3844a6d038505c81d54c244d
A382158
Number of n-node oriented graphs (no loops or cycles of length 2), not necessarily connected, which are squares.
[ "1", "1", "2", "6", "26", "209", "4115", "206205", "24982238" ]
[ "nonn", "more", "changed" ]
11
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025
2025-07-09T05:08:28
oeisdata/seq/A382/A382158.seq
8c0a031983711065b78f3e92ecf344e1
A382159
Number of n-node acyclic digraphs, not necessarily connected, which are squares.
[ "1", "1", "2", "5", "17", "81", "600", "7182", "142425", "4664203", "4071974770" ]
[ "nonn", "more", "changed" ]
17
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025
2025-07-09T05:08:34
oeisdata/seq/A382/A382159.seq
57d8f310cbe7fe5ce0a24c6bafd7df02
A382160
Kaprekar numbers according to the definition in A006886 that are not in A053816.
[ "4879", "5292", "38962", "627615", "5479453", "8161912", "243902440", "665188470", "867208672", "909090909", "2646002646", "7359343993", "8975672343", "19481019481", "65098401732", "71428071429", "74074074075", "74761738129", "81433418067", "81933418567", "90909090910", "93555093555", "98268434902", "218400870420" ]
[ "nonn", "base" ]
15
1
1
[ "A006886", "A053816", "A382160" ]
null
N. J. A. Sloane, Mar 25 2025
2025-03-26T16:17:47
oeisdata/seq/A382/A382160.seq
e305c7970459de79560545ff7d41ed1a
A382161
"Repunit" Kaprekar numbers.
[ "1", "1111111111", "1111111111111111111", "1111111111111111111111111111", "1111111111111111111111111111111111111", "1111111111111111111111111111111111111111111111" ]
[ "nonn", "base", "more" ]
10
1
2
[ "A006886", "A145875", "A382161" ]
null
N. J. A. Sloane, Mar 25 2025
2025-03-26T08:27:13
oeisdata/seq/A382/A382161.seq
db0b223b4958b41be980d704598effaf
A382162
Number of pairs (i,j), 1 <= i < j <= n such that A019444(i) < A019444(j).
[ "0", "1", "2", "5", "9", "12", "18", "22", "30", "39", "45", "56", "68", "76", "90", "99", "115", "132", "143", "162", "174", "195", "217", "231", "255", "280", "296", "323", "340", "369", "399", "418", "450", "483", "504", "539", "561", "598", "636", "660", "700", "725", "767", "810", "837", "882", "928", "957", "1005", "1035", "1085", "1136", "1168", "1221", "1254", "1309", "1365", "1400", "1458", "1517", "1554", "1615", "1653", "1716", "1780", "1820" ]
[ "nonn" ]
8
1
3
[ "A019444", "A382162" ]
null
N. J. A. Sloane, Mar 31 2025
2025-04-01T03:29:01
oeisdata/seq/A382/A382162.seq
7cf0d59d482b3a967ff565c53d68aad2
A382163
Palindromic Kaprekar numbers.
[ "1", "9", "55", "99", "999", "7777", "9999", "22222", "99999", "999999", "4444444", "9999999", "88888888", "99999999", "909090909", "999999999", "1111111111", "9999999999", "55555555555", "99999999999", "999999999999", "7777777777777", "9999999999999", "22222222222222", "99999999999999", "999999999999999", "4444444444444444", "9999999999999999", "88888888888888888" ]
[ "nonn", "base", "changed" ]
21
1
2
[ "A002113", "A006886", "A382163", "A382164" ]
null
N. J. A. Sloane, Mar 26 2025
2025-07-09T05:08:40
oeisdata/seq/A382/A382163.seq
08b7bae1e708edacc51f0a3f65aa738c
A382164
Palindromic Kaprekar numbers that are not repdigit Kaprekar numbers.
[ "909090909", "9090909090909090909090909090909", "81188118811881188118811881188118", "545545545545545545545545545545545", "277227722772277227722772277227722772", "505050505050505050505050505050505050505", "4040404040404040404040404040404040404040404040404" ]
[ "nonn", "base" ]
9
1
1
[ "A006886", "A145875", "A382163", "A382164" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T08:28:40
oeisdata/seq/A382/A382164.seq
45056ec7cc9a39b3f74717018920d30d
A382165
Kaprekar numbers (A006886) that are divisible by the sum of their digits.
[ "1", "9", "45", "999", "2223", "4950", "5050", "5292", "7272", "142857", "148149", "187110", "356643", "466830", "499500", "500500", "538461", "627615", "648648", "681318", "791505", "818181", "961038", "994708", "5555556", "11111112", "16590564", "30884184", "36363636", "49995000", "50005000", "55474452", "74747475", "234567901", "432432432", "665188470", "999999999", "2020202020", "3846956652", "4132841328", "4999950000", "5000050000" ]
[ "nonn", "base" ]
10
1
2
[ "A005349", "A006886", "A382165" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T16:17:33
oeisdata/seq/A382/A382165.seq
e0c8f16ba6f7a30e1db4b8345e813ab5
A382166
Self-numbers (A003052) that are cubes.
[ "1", "64", "512", "1728", "35937", "50653", "195112", "287496", "300763", "314432", "681472", "804357", "884736", "1000000", "2248091", "2744000", "3241792", "4173281", "4913000", "5929741", "6434856", "6859000", "10077696", "10360232", "12167000", "13481272", "15813251", "18399744", "19902511", "22188041", "27270901", "29791000", "36264691", "37933056", "47045881" ]
[ "nonn", "base" ]
9
1
2
[ "A000578", "A003052", "A171671", "A382166" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T17:49:17
oeisdata/seq/A382/A382166.seq
f77a8eedead3cfc0e82d10c92b32cc60
A382167
Repdigit self-numbers that are not in A337208.
[ "3", "5", "7", "9", "222", "88888", "666666", "7777777", "44444444", "555555555", "3333333333", "777777777777", "999999999999", "44444444444444", "222222222222222", "5555555555555555", "333333333333333333", "8888888888888888888", "666666666666666666666", "9999999999999999999999", "77777777777777777777777", "4444444444444444444444444" ]
[ "nonn", "base" ]
5
1
1
[ "A003052", "A337208", "A382167" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T09:12:41
oeisdata/seq/A382/A382167.seq
57e0528134905db17a920a5dd247f98a
A382168
Number of triples (i,j,k), 1 <= i < j < k <= n such that A019444(i) < A019444(k) < A019444(j).
[ "0", "0", "1", "1", "1", "7", "7", "17", "17", "17", "38", "38", "38", "74", "74", "119", "119", "119", "185", "185", "263", "263", "263", "368", "368", "368", "504", "504", "657", "657", "657", "847", "847", "847", "1078", "1078", "1331", "1331", "1331", "1631", "1631", "1956", "1956", "1956", "2334", "2334", "2334", "2769", "2769", "3234", "3234", "3234", "3762", "3762", "4323", "4323", "4323", "4953", "4953", "4953", "5656", "5656", "6397", "6397", "6397" ]
[ "nonn" ]
9
1
6
[ "A000108", "A019444", "A382162", "A382168", "A382169" ]
null
N. J. A. Sloane, Mar 31 2025
2025-03-31T22:30:30
oeisdata/seq/A382/A382168.seq
593cddc8a1caa170f664b84b88cc74ee
A382169
A382168 with duplicates removed.
[ "0", "1", "7", "17", "38", "74", "119", "185", "263", "368", "504", "657", "847", "1078", "1331", "1631", "1956", "2334", "2769", "3234", "3762", "4323", "4953", "5656", "6397", "7217", "8120", "9066", "10101", "11182", "12358", "13633", "14959", "16390", "17930", "19526", "21237", "23007", "24898", "26914", "28994", "31205", "33483", "35898" ]
[ "nonn" ]
12
1
3
[ "A000217", "A019444", "A382168", "A382169" ]
null
N. J. A. Sloane, Mar 31 2025
2025-04-01T19:33:07
oeisdata/seq/A382/A382169.seq
1c2d54dff58b81ed26f7cb28aef6f152
A382170
a(0) = 0; for n >= 1, one-eighth of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(5^n).
[ "0", "1", "4", "13", "80", "401", "1924", "9773", "48960", "243841", "1220644", "6105133", "30514640", "152585681", "762958564", "3814670093", "19073445120", "95367649921", "476836927684", "2384185160653", "11920931368400", "59604643100561", "298023215160004", "1490116145192813", "7450580588892480", "37252902871641601", "186264515189207524" ]
[ "nonn", "easy" ]
14
0
3
[ "A382170", "A382171" ]
null
Jianing Song, Mar 17 2025
2025-03-18T03:08:20
oeisdata/seq/A382/A382170.seq
4e0049bc2ed62fe8ffd01b0c0b3c0439
A382171
a(0) = 0; for n >= 1, one quarter of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(3^n).
[ "0", "1", "4", "7", "16", "61", "196", "547", "1600", "4921", "14884", "44287", "132496", "398581", "1196836", "3587227", "10758400", "32285041", "96864964", "290565367", "871666576", "2615088301", "7845353476", "23535794707", "70607118400", "211822152361", "635467254244", "1906399371247", "5719195722256", "17157594341221", "51472790198116" ]
[ "nonn", "easy" ]
16
0
3
[ "A382170", "A382171" ]
null
Jianing Song, Mar 17 2025
2025-03-18T03:08:04
oeisdata/seq/A382/A382171.seq
a36e8ab039afad6e0110c83eed36f5da
A382172
Irregular triangle read by rows in which row n contains the digits of the period of 1/n when expanded in golden ratio base.
[ "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn", "tabf", "easy", "base" ]
9
1
null
[ "A001175", "A001622", "A055778", "A173856", "A173857", "A173858", "A173859", "A173860", "A173861", "A173864", "A294168", "A354948", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:04:04
oeisdata/seq/A382/A382172.seq
147babb374a1bb3c9a592991250b700e
A382173
a(n) is the sum of row n of A382172.
[ "0", "1", "2", "1", "6", "7", "4", "2", "6", "16", "1", "5", "8", "14", "10", "5", "10", "6", "3", "15", "2", "7", "13", "4", "26", "24", "19", "9", "1", "31", "6", "10", "8", "10", "20", "4", "22", "2", "13", "14", "11", "11", "24", "5", "31", "13", "8", "4", "30", "80", "17", "20", "30", "18", "2", "11", "17", "9", "14", "30", "16", "5", "10", "25", "36", "29", "38", "6", "9", "63", "16", "2", "40", "64" ]
[ "nonn", "easy", "base" ]
7
1
3
[ "A000032", "A002878", "A007733", "A055778", "A093960", "A276350", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:57
oeisdata/seq/A382/A382173.seq
7b91c5f38f6bde981ed55b832486bafb
A382174
Numbers k such that A382173(k) >= k.
[ "5", "6", "10", "14", "25", "30", "50", "125", "150", "250", "625", "750", "1250", "3125", "3750", "6250", "15625", "18750", "31250", "78125" ]
[ "nonn", "base", "more" ]
5
1
1
[ "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:51
oeisdata/seq/A382/A382174.seq
5dd7643a78e0c6cfeb64f29a2370a747
A382175
Indices of records in A382173.
[ "1", "2", "3", "5", "6", "10", "25", "30", "50", "98", "125", "150", "194", "206", "243", "250", "490", "554", "566", "625", "750", "1030", "1046", "1094", "1154", "1214", "1226", "1250", "2450", "2738", "2846", "2894", "2906", "3086", "3125", "3750", "4802", "5534", "5594", "5606", "5666", "5714", "5770", "5774", "5834", "5906", "5990", "6070", "6074", "6130" ]
[ "nonn", "base" ]
8
1
2
[ "A001175", "A326612", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:45
oeisdata/seq/A382/A382175.seq
d5f50416a988d2bf7e81d98b3d32dafe
A382176
Numbers k such that the period of 1/k when expanded in golden ratio base is palindromic.
[ "1", "2", "36", "38", "644", "646", "682", "11556", "11558", "11592", "12198", "12238" ]
[ "nonn", "base", "more" ]
5
1
2
[ "A330722", "A362781", "A373085", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:40
oeisdata/seq/A382/A382176.seq
f635009e3762b9133365fa517ab0f515
A382177
a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n while the remaining digits are zeros.
[ "2", "2", "3", "10", "3", "312", "4", "18", "18", "96", "96", "600", "4", "6168960", "6120", "18", "18", "11017036800", "4", "56229997824000", "114", "760", "68947200", "18", "5", "14544", "141120", "192", "13320", "9092075324665919034015350784000000", "28", "520412336961032355840000", "27", "1400", "199584000", "116496", "180" ]
[ "nonn", "base" ]
8
0
1
[ "A153880", "A382177", "A382178" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:36
oeisdata/seq/A382/A382177.seq
6eeecbb636fac53c03ed015bdccd28ea
A382178
a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n.
[ "2", "2", "3", "3", "3", "3", "4", "18", "18", "17", "17", "16", "4", "19", "19", "18", "18", "101", "4", "115", "114", "110", "110", "18", "5", "203", "199", "192", "189", "183", "28", "187", "27", "179", "177", "1341", "180", "176", "26", "170", "168", "165", "1320", "168", "1277", "1251", "162", "159", "5", "1649", "204", "1598", "1579", "1551", "200", "197", "195" ]
[ "nonn", "base" ]
8
0
1
[ "A153880", "A382177", "A382178" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:28
oeisdata/seq/A382/A382178.seq
9f98cbbcfe7dcafc7ac5f2c90903e22e
A382179
Numbers k such that for each digit of k, 2*k*(digit) + 1 is prime.
[ "1", "3", "6", "9", "11", "14", "15", "22", "24", "25", "27", "28", "33", "44", "54", "63", "75", "78", "81", "88", "99", "111", "119", "131", "141", "153", "168", "173", "219", "249", "252", "255", "279", "282", "322", "325", "333", "357", "363", "414", "441", "459", "474", "491", "538", "553", "558", "565", "611", "666", "674", "699", "794", "797", "828", "831", "832", "858", "895", "924", "947", "955" ]
[ "nonn", "base" ]
43
1
2
[ "A000040", "A382127", "A382179", "A382198", "A382199" ]
null
Jakub Buczak, Mar 17 2025
2025-03-30T08:17:02
oeisdata/seq/A382/A382179.seq
bd03067077b2912d5b500b8de8e72d6a
A382180
Number of unlabeled connected graphs with n vertices which are squares.
[ "1", "1", "1", "1", "2", "4", "13", "42", "206", "1310", "12622", "180700", "3925282" ]
[ "nonn", "more" ]
23
0
5
[ "A000055", "A001349", "A382180", "A382181", "A382194" ]
null
Brendan McKay and Sean A. Irvine, Mar 17 2025
2025-03-24T14:00:32
oeisdata/seq/A382/A382180.seq
e8317bd9731e2ab6e208a6123cbe039e
A382181
Number of unlabeled graphs with n vertices (including disconnected graphs) which are squares.
[ "1", "1", "2", "3", "6", "11", "28", "77", "307", "1688", "14620", "197050", "4137271" ]
[ "nonn", "more" ]
13
0
3
[ "A382180", "A382181" ]
null
Brendan McKay and Sean A. Irvine, Mar 17 2025
2025-03-18T21:40:11
oeisdata/seq/A382/A382181.seq
80e139cbac52eef46725f06a19ce8a17
A382182
Lexicographically earliest increasing sequence starting with a(0) = 1 such that the polynomial which interpolates the first k values has degree k-1 and only integer coefficients.
[ "1", "2", "5", "16", "17", "86", "1237", "1940", "25601", "617482", "1386821", "25329272", "815052625", "2379750686", "55319082197", "2225093600956", "7995962217857", "225701855249810", "10894058270134021", "46488524334434912", "1543800689908468241", "86934584995669200742", "429553964850178236245", "16404426130967383104356" ]
[ "nonn" ]
20
0
2
[ "A000522", "A182386", "A382182" ]
null
Thomas Scheuerle, Mar 17 2025
2025-03-19T10:18:17
oeisdata/seq/A382/A382182.seq
2df4a0865d33ac81495893fa54e385bd
A382183
Binary sequence linking A105774 and A382113.
[ "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1" ]
[ "nonn" ]
10
1
null
[ "A105774", "A382113", "A382183" ]
null
Jeffrey Shallit, Mar 17 2025
2025-03-19T10:20:57
oeisdata/seq/A382/A382183.seq
1a66e5b1c5f4207b02c39ed958d422c7
A382184
a(n) is the least k >= 0 such that the factorial base expansion of n starts with that of k while the remaining digits are zeros.
[ "0", "1", "1", "3", "4", "5", "1", "7", "3", "9", "10", "11", "4", "13", "5", "15", "16", "17", "18", "19", "20", "21", "22", "23", "1", "25", "7", "27", "28", "29", "3", "31", "9", "33", "34", "35", "10", "37", "11", "39", "40", "41", "42", "43", "44", "45", "46", "47", "4", "49", "13", "51", "52", "53", "5", "55", "15", "57", "58", "59", "16", "61", "17", "63", "64", "65", "66", "67", "68", "69" ]
[ "nonn", "base" ]
9
0
4
[ "A000265", "A004151", "A153880", "A273670", "A382177", "A382184", "A382217" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:22
oeisdata/seq/A382/A382184.seq
7a7d0c32be1c3a88f6eb3963ac79c827
A382185
a(n) is the n-th tribonacci number modulo the n-th prime.
[ "0", "1", "1", "2", "4", "7", "13", "5", "21", "23", "25", "15", "12", "24", "13", "9", "45", "56", "16", "35", "20", "71", "47", "9", "40", "80", "18", "46", "75", "101", "55", "48", "65", "36", "142", "34", "91", "0", "43", "147", "118", "41", "175", "24", "131", "152", "189", "213", "116", "201", "116", "66", "73", "9", "0", "53", "210", "239", "167", "171", "87", "262", "251", "111", "115", "69", "284", "186", "211", "321", "331", "135" ]
[ "nonn", "look", "easy" ]
23
1
4
[ "A000040", "A000073", "A072123", "A382185" ]
null
Michael Figelius, Mar 17 2025
2025-04-15T16:37:50
oeisdata/seq/A382/A382185.seq
288171807b8c56511fa44ec615473426
A382186
Prime numbers that are the sum of the m-th prime and the m-th semiprime for some m.
[ "17", "41", "71", "131", "281", "331", "353", "397", "449", "487", "563", "953", "1279", "1289", "1409", "1627", "2621", "2999", "3533", "3631", "3697", "3989", "4057", "4133", "4523", "4603", "4733", "4919", "5273", "5591", "5641", "6211", "6247", "6269", "6299", "6469", "6803", "7753", "7879", "7937", "8353", "8543", "8971", "8999", "9041", "9181", "9413", "9479", "9787", "9887", "9941", "10487" ]
[ "nonn" ]
12
1
1
[ "A000040", "A001358", "A092108", "A133796", "A382186" ]
null
Zak Seidov and Robert Israel, Mar 18 2025
2025-03-20T13:59:08
oeisdata/seq/A382/A382186.seq
bd21ba2f73a59ffbbe33fe18caf2b99e
A382187
Expansion of 1/(1 - 4 * Sum_{k>=0} x^(2^k))^(1/2).
[ "1", "2", "8", "32", "138", "604", "2696", "12176", "55512", "254888", "1177064", "5461040", "25435296", "118856272", "556962928", "2616287392", "12315914698", "58084552572", "274395134600", "1298187523792", "6150051540460", "29170558879736", "138512004786624", "658362443599296", "3132140164624680" ]
[ "nonn", "easy" ]
8
0
2
[ "A023359", "A223142", "A382187", "A382188" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T16:24:02
oeisdata/seq/A382/A382187.seq
2d746cfb8511e3caebbb0487afa0577e
A382188
Expansion of 1/(1 - 9 * Sum_{k>=0} x^(2^k))^(1/3).
[ "1", "3", "21", "162", "1344", "11565", "102033", "916002", "8330331", "76515363", "708379137", "6600436794", "61829064882", "581783753232", "5495344743924", "52079440119336", "494985533135250", "4716537209764020", "45043670723519952", "431041661857081656", "4132290587464466820", "39680088682182010749" ]
[ "nonn", "easy" ]
8
0
2
[ "A023359", "A382187", "A382188" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:44:16
oeisdata/seq/A382/A382188.seq
4bc90bb24ac8fbcd99a1bdd1b2b356d2
A382189
Expansion of 1/(1 - 4 * Sum_{k>=0} x^(3^k))^(1/2).
[ "1", "2", "6", "22", "82", "312", "1210", "4752", "18834", "75186", "301868", "1217664", "4930918", "20033432", "81621456", "333357656", "1364395770", "5594799576", "22980090870", "94529049296", "389367825444", "1605758772136", "6629456308464", "27397510466856", "113329594803078", "469183242566016", "1943927996932656" ]
[ "nonn", "easy" ]
7
0
2
[ "A078932", "A382189", "A382190" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:44:10
oeisdata/seq/A382/A382189.seq
608b83e1f1c260b28b4208f035837fa3
A382190
Expansion of 1/(1 - 9 * Sum_{k>=0} x^(3^k))^(1/3).
[ "1", "3", "18", "129", "981", "7749", "62766", "517401", "4320864", "36446565", "309876444", "2651681826", "22812645339", "197144727876", "1710267824304", "14886242261595", "129946357148661", "1137235357935279", "9975129925544568", "87672540348112779", "771962724133452441", "6808329943495097076" ]
[ "nonn", "easy" ]
9
0
2
[ "A078932", "A382189", "A382190", "A382196" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T16:23:45
oeisdata/seq/A382/A382190.seq
b4da2589a4be1898cdd601add2ae256e
A382191
Number of edges of the graph with code A076184(n).
[ "0", "1", "2", "3", "3", "2", "3", "4", "4", "5", "6", "4", "3", "4", "5", "4", "5", "5", "6", "4", "5", "6", "7", "6", "7", "6", "5", "6", "7", "7", "8", "8", "9", "10", "5", "4", "5", "6", "4", "5", "5", "6", "6", "7", "5", "6", "7", "8", "6", "7", "3", "4", "5", "6", "5", "6", "5", "6", "6", "7", "7", "8", "7", "8", "7", "6", "7", "8", "6", "7", "7", "8", "8", "9", "5", "6", "7", "6", "7", "8", "7", "8", "7", "8", "9", "9", "8" ]
[ "nonn", "tabf" ]
6
1
3
[ "A000120", "A002494", "A076184", "A382191" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T09:46:30
oeisdata/seq/A382/A382191.seq
48cb6f468d665ec1e860b2fa746e0e6b
A382192
Number of components of the graph with code A076184(n).
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabf" ]
5
1
6
[ "A002494", "A076184", "A382192", "A382193" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T09:46:59
oeisdata/seq/A382/A382192.seq
0468e36d5da7ecf0fe4a7ac9368d0421
A382193
List of connected graphs, encoded as in A076184.
[ "0", "1", "3", "7", "11", "13", "15", "30", "31", "63", "75", "77", "79", "86", "87", "94", "95", "117", "119", "127", "222", "223", "235", "236", "237", "239", "254", "255", "507", "511", "1023", "1099", "1101", "1103", "1109", "1110", "1111", "1118", "1119", "1141", "1143", "1151", "1182", "1183", "1187", "1191", "1195", "1196", "1197", "1198", "1199", "1214" ]
[ "nonn", "tabf" ]
7
1
3
[ "A001349", "A076184", "A382192", "A382193" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T11:14:36
oeisdata/seq/A382/A382193.seq
c1ea7c73aabdcd3c1313ec3b2ee9e6e7
A382194
List of connected graphs that are squares, encoded as in A076184.
[ "0", "1", "7", "31", "63", "239", "255", "511", "1023", "3455", "3887", "3951", "3967", "4095", "7679", "7903", "7935", "8191", "16350", "16351", "16383", "32767", "104063", "104447", "106287", "106351", "111587", "111599", "112511", "112623", "112639", "127791", "127855", "127871", "128879", "128895", "129023", "131071", "237567" ]
[ "nonn", "tabf" ]
15
1
3
[ "A076184", "A382180", "A382193", "A382194", "A382195", "A382283" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-22T12:00:48
oeisdata/seq/A382/A382194.seq
41de2ea2891cf3c63967e5d1e087d79a
A382195
a(n) is the code (in the encoding given by A076184) of the square of the graph with code A076184(n).
[ "0", "1", "7", "7", "63", "12", "31", "63", "63", "63", "63", "1023", "116", "255", "1023", "239", "511", "511", "1023", "116", "255", "511", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "32767", "1972", "4095", "32767", "3873", "7903", "3951", "8191", "8191", "32767", "3873", "7903", "8191", "32767" ]
[ "nonn", "tabf", "base" ]
12
1
3
[ "A002494", "A076184", "A382194", "A382195" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T11:14:02
oeisdata/seq/A382/A382195.seq
4e8f90a9a7a37049965c4552e0713afc
A382196
Expansion of (1 + 9 * Sum_{k>=0} x^(3^k))^(1/3).
[ "1", "3", "-9", "48", "-288", "1917", "-13563", "99927", "-758079", "5879757", "-46401705", "371337021", "-3005974710", "24568145019", "-202442064183", "1679864383800", "-14024716370064", "117715927282470", "-992725129013121", "8407191323492226", "-71467963130581758", "609605555349330009" ]
[ "sign", "easy" ]
9
0
2
[ "A223142", "A223143", "A298308", "A382190", "A382196" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:45:30
oeisdata/seq/A382/A382196.seq
fe4622ffaf3038a48559b4370ca23215
A382197
Decimal expansion of 24^(1/6).
[ "1", "6", "9", "8", "3", "8", "1", "3", "2", "9", "5", "6", "4", "9", "5", "2", "7", "8", "4", "9", "1", "2", "5", "6", "4", "5", "2", "4", "6", "5", "9", "7", "4", "9", "3", "6", "0", "2", "0", "3", "5", "0", "0", "0", "9", "0", "3", "3", "5", "9", "7", "1", "4", "4", "8", "9", "0", "4", "1", "0", "6", "1", "6", "1", "9", "6", "9", "5", "4", "9", "3", "2", "0", "1", "3", "8", "0", "8", "9", "0", "0", "9", "2", "7", "8", "1", "3", "6", "7", "0", "0", "3", "4", "1", "9", "8", "8", "0", "2", "1" ]
[ "nonn", "cons", "easy" ]
7
1
2
[ "A002193", "A010480", "A010596", "A011020", "A011109", "A246708", "A382197" ]
null
Stefano Spezia, Mar 18 2025
2025-03-19T10:03:30
oeisdata/seq/A382/A382197.seq
5ed60622f792823288a303897da58eaf
A382198
Smallest integer k with n distinct digits, such that for each digit of k, 2*k*(digit) + 1 is prime.
[ "3", "14", "153", "2169", "48165", "125769", "327174495" ]
[ "nonn", "base", "fini", "full" ]
11
1
1
[ "A382127", "A382179", "A382198", "A382199" ]
null
Michel Marcus, Mar 18 2025
2025-03-18T16:23:14
oeisdata/seq/A382/A382198.seq
60187c9f9dc569ca8f25d1ebf815e5fc
A382199
Primes p such that for each digit of p, 2*p*(digit) + 1 is prime.
[ "3", "11", "131", "173", "491", "797", "947", "1931", "3583", "4391", "6173", "7937", "32323", "49919", "64499", "79997", "83383", "149111", "232333", "296269", "366161", "477947", "611333", "616169", "616961", "635563", "667673", "969179", "1111991", "1779779", "2232523", "2662669", "2922229", "3444341", "5333353", "5599999", "6853663", "6919691", "6929929" ]
[ "nonn", "base" ]
7
1
1
[ "A382127", "A382179", "A382198", "A382199" ]
null
Michel Marcus, Mar 18 2025
2025-03-18T13:47:16
oeisdata/seq/A382/A382199.seq
af2c200ed3c4a7e28c7e5f2873fdafcb
A382200
Numbers that can be written as a product of distinct squarefree numbers.
[ "1", "2", "3", "5", "6", "7", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84" ]
[ "nonn" ]
14
1
2
[ "A000720", "A001055", "A001222", "A005117", "A045778", "A050320", "A050326", "A050342", "A050345", "A089259", "A116539", "A270995", "A279785", "A292432", "A292444", "A293243", "A293511", "A300383", "A302494", "A317141", "A358914", "A381441", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382201", "A382214", "A382216" ]
null
Gus Wiseman, Mar 21 2025
2025-04-21T17:00:45
oeisdata/seq/A382/A382200.seq
7070ad0f35a46f4649364ec41e5bf0ca
A382201
MM-numbers of sets of sets with distinct sums.
[ "1", "2", "3", "5", "6", "10", "11", "13", "15", "17", "22", "26", "29", "30", "31", "33", "34", "39", "41", "43", "47", "51", "55", "58", "59", "62", "65", "66", "67", "73", "78", "79", "82", "83", "85", "86", "87", "93", "94", "101", "102", "109", "110", "113", "118", "123", "127", "129", "130", "134", "137", "139", "141", "145", "146", "149", "155", "157", "158", "163", "165" ]
[ "nonn" ]
8
1
2
[ "A000720", "A001055", "A003963", "A005117", "A007716", "A045778", "A050320", "A050326", "A055396", "A056239", "A061395", "A112798", "A275780", "A279785", "A293511", "A302242", "A302478", "A302494", "A302497", "A319899", "A321455", "A321469", "A326519", "A326533", "A326534", "A326535", "A326537", "A368100", "A368101", "A381633", "A381635", "A381718", "A382080", "A382201", "A382215" ]
null
Gus Wiseman, Mar 21 2025
2025-03-23T08:40:28
oeisdata/seq/A382/A382201.seq
e23c4777c31e1280405651b7a3e346ff
A382202
Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums.
[ "0", "0", "1", "1", "3", "5", "9", "16", "27", "48", "78", "133" ]
[ "nonn", "more" ]
8
0
5
[ "A000110", "A000670", "A001055", "A007716", "A019536", "A034691", "A035310", "A045778", "A050320", "A050326", "A050342", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A318360", "A318361", "A321469", "A326517", "A326518", "A326519", "A333217", "A358914", "A381633", "A381718", "A381806", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382429", "A382430", "A382458", "A382459", "A382460" ]
null
Gus Wiseman, Mar 29 2025
2025-03-30T20:24:25
oeisdata/seq/A382/A382202.seq
3dc887bb8415b9de7ecd866f68157e92
A382203
Number of normal multiset partitions of weight n into constant multisets with distinct sums.
[ "1", "1", "2", "4", "9", "19", "37", "76", "159", "326", "671", "1376", "2815", "5759", "11774", "24083", "49249", "100632", "205490", "419420", "855799", "1745889", "3561867", "7268240", "14836127", "30295633", "61888616" ]
[ "nonn", "more" ]
13
0
3
[ "A000670", "A001055", "A007716", "A019536", "A035310", "A045778", "A055887", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A275780", "A279785", "A279786", "A304969", "A317532", "A317583", "A321469", "A326517", "A326518", "A326519", "A326535", "A333217", "A381633", "A381635", "A381636", "A381718", "A381806", "A381870", "A382203", "A382204", "A382216", "A382428", "A382429" ]
null
Gus Wiseman, Mar 26 2025
2025-04-04T23:42:07
oeisdata/seq/A382/A382203.seq
2847e1d4592ab325641cde5cdb15778f
A382204
Number of normal multiset partitions of weight n into constant blocks with a common sum.
[ "1", "1", "2", "3", "4", "4", "7", "5", "8", "8", "10", "8", "15", "9", "14", "15", "17", "13", "22", "14", "25", "21", "23", "19", "34", "24", "29", "28", "37", "27", "45", "29", "44", "38", "43", "43", "59", "40", "51", "48", "69", "48", "71", "52", "73", "69", "72", "61", "93", "72", "91", "77", "99", "78", "105", "95", "119", "95", "113", "96", "146", "107", "126", "123", "151", "130" ]
[ "nonn" ]
28
0
3
[ "A000670", "A001055", "A007716", "A019536", "A034691", "A034729", "A035310", "A045778", "A055887", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A279789", "A296119", "A304969", "A317532", "A317583", "A318360", "A321469", "A326518", "A326520", "A326535", "A333217", "A356945", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381995", "A382203", "A382204", "A382216", "A382429" ]
null
Gus Wiseman, Mar 26 2025
2025-04-05T12:01:55
oeisdata/seq/A382/A382204.seq
4887a7bdff44390ff04775779161d6b3
A382205
Number of minimum connected dominating sets in the n-halved cube graph.
[ "1", "2", "4", "24", "240", "1440", "80640" ]
[ "nonn", "more" ]
4
1
2
null
null
Eric W. Weisstein, Mar 18 2025
2025-03-18T21:44:25
oeisdata/seq/A382/A382205.seq
d6ae27413d40cb900798dd74b291017b
A382206
Number of minimum connected dominating sets in the n X n king graph.
[ "1", "4", "1", "21", "1", "21", "843", "720", "556841", "99357", "458", "32", "3600", "30580044", "826720", "4" ]
[ "nonn", "more" ]
25
1
2
[ "A289180", "A347554", "A370428", "A381730", "A382206" ]
null
Eric W. Weisstein, Mar 18 2025
2025-03-31T15:20:41
oeisdata/seq/A382/A382206.seq
d2009128af68d6269bbfeb02a758f9c7
A382207
Number of minimum connected dominating sets in the n X n knight graph.
[ "1", "0", "0", "64", "4", "18", "78", "184", "648", "344" ]
[ "nonn", "more" ]
16
1
4
[ "A382047", "A382207" ]
null
Eric W. Weisstein, Mar 18 2025
2025-03-21T07:00:27
oeisdata/seq/A382/A382207.seq
02c2b248ecf9f989c3ac2e9d95482e13
A382208
Numbers k for which pi(bigomega(k)) = omega(k).
[ "1", "4", "9", "12", "18", "20", "24", "25", "28", "36", "40", "44", "45", "49", "50", "52", "54", "56", "63", "68", "75", "76", "88", "92", "98", "99", "100", "104", "116", "117", "120", "121", "124", "135", "136", "147", "148", "152", "153", "164", "168", "169", "171", "172", "175", "180", "184", "188", "189", "196", "207", "212", "225", "232", "236", "240", "242", "244", "245" ]
[ "nonn" ]
22
1
2
[ "A000720", "A001221", "A001222", "A001248", "A046386", "A054753", "A065036", "A085986", "A162143", "A179644", "A179693", "A179700", "A179704", "A382208" ]
null
Felix Huber, Mar 30 2025
2025-04-05T15:27:00
oeisdata/seq/A382/A382208.seq
7e179f09919867a163e8ec89551392f1
A382209
Numbers k such that 10+k and 10*k are perfect squares.
[ "90", "136890", "197402490", "284654260890", "410471246808090", "591899253243012090", "853518312705176632890", "1230772815021611461622490", "1774773545742851022483004890", "2559222222188376152809031436090", "3690396669622092669499600847844090", "5321549438372835441042271613559748890" ]
[ "nonn", "easy" ]
102
1
1
[ "A005667", "A008843", "A075796", "A081071", "A097315", "A158490", "A173127", "A245226", "A382209", "A383734" ]
null
Emilio Martín, Mar 18 2025
2025-05-22T05:18:59
oeisdata/seq/A382/A382209.seq
7f328292a98ee8b3f1299c0e14a945fd
A382210
Irregular triangle read by rows: T(n,k) = k^2 - k + (A003173(n) + 1)/4 with 1 <= k < (A003173(n) + 1)/4.
[ "2", "3", "5", "5", "7", "11", "17", "11", "13", "17", "23", "31", "41", "53", "67", "83", "101", "17", "19", "23", "29", "37", "47", "59", "73", "89", "107", "127", "149", "173", "199", "227", "257", "41", "43", "47", "53", "61", "71", "83", "97", "113", "131", "151", "173", "197", "223", "251", "281", "313", "347", "383", "421", "461", "503", "547", "593", "641", "691", "743", "797", "853", "911", "971", "1033", "1097", "1163", "1231", "1301", "1373", "1447", "1523", "1601" ]
[ "nonn", "easy", "fini", "full", "tabf" ]
7
4
1
[ "A003173", "A048058", "A302445", "A382210" ]
null
Stefano Spezia, Mar 18 2025
2025-03-18T21:41:15
oeisdata/seq/A382/A382210.seq
bc20c258b3e67f7310123e6034e9c41b
A382211
Prime of the form p^q + q^r + r^p, for primes p, q and r.
[ "61", "181", "2557", "98057", "338323", "8389141", "48829699", "536871757", "1162268353", "2147484613", "2199023257237", "27368747340087430811", "196525143636054676607", "4656612873077421210401", "239072435917782732706099", "1978419655679387077928203", "9671406556917033397656301" ]
[ "nonn" ]
17
1
1
[ "A123207", "A382211" ]
null
Karst Koymans, Mar 18 2025
2025-03-25T23:17:55
oeisdata/seq/A382/A382211.seq
e5a4a2160298774af2f06f07bf9b0968
A382212
Number of labeled Eulerian oriented graphs with n nodes without isolated vertices.
[ "0", "0", "2", "6", "168", "6700", "726360", "202827786" ]
[ "nonn", "more" ]
8
1
3
[ "A007081", "A382212" ]
null
Bert Dobbelaere, Mar 18 2025
2025-03-19T09:04:17
oeisdata/seq/A382/A382212.seq
279f8ee5b3962c58244d097b45a49cbe
A382213
Largest squarefree number dividing the numerator of harmonic number H(n).
[ "1", "3", "11", "5", "137", "7", "33", "761", "7129", "671", "83711", "6617", "1145993", "1171733", "1195757", "143327", "42142223", "751279", "275295799", "55835135", "18858053", "830139", "444316699", "1347822955", "34052522467", "34395742267", "312536252003", "10876020307", "214582477009", "300151059037", "290774257297357" ]
[ "nonn" ]
46
1
2
[ "A001008", "A002805", "A007913", "A333196", "A382213", "A382329" ]
null
Ali Sada, Mar 22 2025
2025-04-24T13:20:47
oeisdata/seq/A382/A382213.seq
27a56c36059262f4c934bbaa1a2e887d
A382214
Number of normal multisets of size n that can be partitioned into a set of sets.
[ "1", "1", "1", "3", "5", "11", "23", "48", "101", "210", "436", "894" ]
[ "nonn", "more" ]
15
0
4
[ "A000110", "A000670", "A001055", "A007716", "A019536", "A034691", "A035310", "A045778", "A050320", "A050326", "A050342", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A317532", "A318360", "A318361", "A326517", "A326519", "A333217", "A358914", "A381633", "A381718", "A381990", "A381992", "A381996", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382458", "A382459", "A382460" ]
null
Gus Wiseman, Mar 29 2025
2025-03-30T20:24:20
oeisdata/seq/A382/A382214.seq
ffcfe6cf9dea1397905a5ea83c8a00c4