sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A382149
Primes p such that the elliptic curve X_0^{+}(p) has genus 2.
[ "67", "73", "103", "107", "167", "191" ]
[ "nonn", "fini", "full" ]
5
1
1
[ "A382149", "A382150" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:32:46
oeisdata/seq/A382/A382149.seq
f4a7f323661b5ef2a668cbe8e8c365f0
A382150
Primes p such that the elliptic curve X_0^{+}(p) has genus 3.
[ "97", "109", "113", "127", "139", "149", "151", "179", "239" ]
[ "nonn", "fini", "full" ]
7
1
1
[ "A382149", "A382150" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:33:54
oeisdata/seq/A382/A382150.seq
17f8eb384b27f9265fd39b19f6e44b5c
A382151
Primes p such that some elliptic curve over Q admits a Q-rational p-isogeny.
[ "2", "3", "5", "7", "11", "13", "17", "19", "37", "43", "67", "163" ]
[ "nonn", "fini", "full" ]
6
1
1
[ "A382151", "A382152" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:45:45
oeisdata/seq/A382/A382151.seq
e6ce7b08c98c110e912a07a3a3064076
A382152
Numbers k such that there is an elliptic curve defined over Q with a Q-rational cyclic isogeny of degree k.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "21", "25", "27", "37", "43", "67", "163" ]
[ "nonn", "fini", "full" ]
7
1
2
[ "A382151", "A382152" ]
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T13:55:53
oeisdata/seq/A382/A382152.seq
76021c83863deaac4079b1dc0e5293f4
A382153
Numbers k such that there is an exceptional k-isogeny arising from the rational points on an elliptic curve X_0^{+}(k) of genus at most 6.
[ "73", "91", "103", "125", "137", "191", "311" ]
[ "nonn", "fini", "full" ]
7
1
1
null
null
N. J. A. Sloane, Mar 22 2025
2025-03-22T14:17:24
oeisdata/seq/A382/A382153.seq
aaf778167f5b3485c48577e98482e73f
A382154
a(0) = 1; thereafter a(n) = 2*n if n even or 4*n if n odd.
[ "1", "4", "4", "12", "8", "20", "12", "28", "16", "36", "20", "44", "24", "52", "28", "60", "32", "68", "36", "76", "40", "84", "44", "92", "48", "100", "52", "108", "56", "116", "60", "124", "64", "132", "68", "140", "72", "148", "76", "156", "80", "164", "84", "172", "88", "180", "92", "188", "96", "196", "100", "204", "104", "212", "108", "220", "112", "228", "116", "236", "120", "244", "124", "252", "128", "260", "132", "268", "136", "276", "140", "284", "144", "292" ]
[ "nonn" ]
40
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025
2025-03-24T13:51:53
oeisdata/seq/A382/A382154.seq
87ff024c3e8ac096f6b6fd2f7a6b3ede
A382155
a(n) = (n+1)! if n <= 2; thereafter a(n) = 4*n if n even or 2*n if n odd.
[ "1", "2", "6", "6", "16", "10", "24", "14", "32", "18", "40", "22", "48", "26", "56", "30", "64", "34", "72", "38", "80", "42", "88", "46", "96", "50", "104", "54", "112", "58", "120", "62", "128", "66", "136", "70", "144", "74", "152", "78", "160", "82", "168", "86", "176", "90", "184", "94", "192", "98", "200", "102", "208", "106", "216", "110", "224", "114", "232", "118", "240", "122", "248", "126", "256", "130", "264", "134", "272", "138", "280", "142", "288", "146", "296" ]
[ "nonn" ]
35
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025
2025-03-24T11:53:50
oeisdata/seq/A382/A382155.seq
27eee300a4c9a684c66bc0d3a0001d13
A382156
Partial sums of A382155.
[ "1", "3", "9", "15", "31", "41", "65", "79", "111", "129", "169", "191", "239", "265", "321", "351", "415", "449", "521", "559", "639", "681", "769", "815", "911", "961", "1065", "1119", "1231", "1289", "1409", "1471", "1599", "1665", "1801", "1871", "2015", "2089", "2241", "2319", "2479", "2561", "2729", "2815", "2991", "3081", "3265", "3359", "3551", "3649", "3849", "3951", "4159", "4265", "4481", "4591", "4815", "4929", "5161", "5279", "5519" ]
[ "nonn" ]
11
0
2
[ "A319384", "A382154", "A382155", "A382156" ]
null
N. J. A. Sloane, Mar 23 2025.
2025-03-24T09:24:16
oeisdata/seq/A382/A382156.seq
5912cc35b29a2aeac883f8821fa8ceb2
A382157
Number of n-node digraphs without loops, not necessarily connected, which are squares.
[ "1", "1", "3", "9", "46", "473", "13763", "1121383" ]
[ "nonn", "more" ]
10
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025.
2025-03-24T19:25:22
oeisdata/seq/A382/A382157.seq
5babe6f5c73704ef7da47359a693a9b4
A382158
Number of n-node oriented graphs (no loops or cycles of length 2), not necessarily connected, which are squares.
[ "1", "1", "2", "6", "26", "209", "4115", "206205", "24982238" ]
[ "nonn", "more" ]
9
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025.
2025-03-24T19:25:44
oeisdata/seq/A382/A382158.seq
2bde67181a629c61e3037881caaf6b12
A382159
Number of n-node acyclic digraphs, not necessarily connected, which are squares.
[ "1", "1", "2", "5", "17", "81", "600", "7182", "142425", "4664203", "4071974770" ]
[ "nonn", "more" ]
15
0
3
[ "A382157", "A382158", "A382159", "A382180" ]
null
N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025.
2025-03-24T19:26:04
oeisdata/seq/A382/A382159.seq
9a92ae8b84da80a39eae589e021cf323
A382160
Kaprekar numbers according to the definition in A006886 that are not in A053816.
[ "4879", "5292", "38962", "627615", "5479453", "8161912", "243902440", "665188470", "867208672", "909090909", "2646002646", "7359343993", "8975672343", "19481019481", "65098401732", "71428071429", "74074074075", "74761738129", "81433418067", "81933418567", "90909090910", "93555093555", "98268434902", "218400870420" ]
[ "nonn", "base" ]
15
1
1
[ "A006886", "A053816", "A382160" ]
null
N. J. A. Sloane, Mar 25 2025
2025-03-26T16:17:47
oeisdata/seq/A382/A382160.seq
e305c7970459de79560545ff7d41ed1a
A382161
"Repunit" Kaprekar numbers.
[ "1", "1111111111", "1111111111111111111", "1111111111111111111111111111", "1111111111111111111111111111111111111", "1111111111111111111111111111111111111111111111" ]
[ "nonn", "base", "more" ]
10
1
2
[ "A006886", "A145875", "A382161" ]
null
N. J. A. Sloane, Mar 25 2025
2025-03-26T08:27:13
oeisdata/seq/A382/A382161.seq
db0b223b4958b41be980d704598effaf
A382162
Number of pairs (i,j), 1 <= i < j <= n such that A019444(i) < A019444(j).
[ "0", "1", "2", "5", "9", "12", "18", "22", "30", "39", "45", "56", "68", "76", "90", "99", "115", "132", "143", "162", "174", "195", "217", "231", "255", "280", "296", "323", "340", "369", "399", "418", "450", "483", "504", "539", "561", "598", "636", "660", "700", "725", "767", "810", "837", "882", "928", "957", "1005", "1035", "1085", "1136", "1168", "1221", "1254", "1309", "1365", "1400", "1458", "1517", "1554", "1615", "1653", "1716", "1780", "1820" ]
[ "nonn" ]
8
1
3
[ "A019444", "A382162" ]
null
N. J. A. Sloane, Mar 31 2025
2025-04-01T03:29:01
oeisdata/seq/A382/A382162.seq
7cf0d59d482b3a967ff565c53d68aad2
A382163
Palindromic Kaprekar numbers.
[ "1", "9", "55", "99", "999", "7777", "9999", "22222", "99999", "999999", "4444444", "9999999", "88888888", "99999999", "909090909", "999999999", "1111111111", "9999999999", "55555555555", "99999999999", "999999999999", "7777777777777", "9999999999999", "22222222222222", "99999999999999", "999999999999999", "4444444444444444", "9999999999999999", "88888888888888888" ]
[ "nonn", "base" ]
19
1
2
[ "A002113", "A006886", "A382163", "A382164" ]
null
N. J. A. Sloane, Mar 26 2025.
2025-03-26T16:17:38
oeisdata/seq/A382/A382163.seq
ea55c398dd94738c3a5ba337e6702789
A382164
Palindromic Kaprekar numbers that are not repdigit Kaprekar numbers.
[ "909090909", "9090909090909090909090909090909", "81188118811881188118811881188118", "545545545545545545545545545545545", "277227722772277227722772277227722772", "505050505050505050505050505050505050505", "4040404040404040404040404040404040404040404040404" ]
[ "nonn", "base" ]
9
1
1
[ "A006886", "A145875", "A382163", "A382164" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T08:28:40
oeisdata/seq/A382/A382164.seq
45056ec7cc9a39b3f74717018920d30d
A382165
Kaprekar numbers (A006886) that are divisible by the sum of their digits.
[ "1", "9", "45", "999", "2223", "4950", "5050", "5292", "7272", "142857", "148149", "187110", "356643", "466830", "499500", "500500", "538461", "627615", "648648", "681318", "791505", "818181", "961038", "994708", "5555556", "11111112", "16590564", "30884184", "36363636", "49995000", "50005000", "55474452", "74747475", "234567901", "432432432", "665188470", "999999999", "2020202020", "3846956652", "4132841328", "4999950000", "5000050000" ]
[ "nonn", "base" ]
10
1
2
[ "A005349", "A006886", "A382165" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T16:17:33
oeisdata/seq/A382/A382165.seq
e0c8f16ba6f7a30e1db4b8345e813ab5
A382166
Self-numbers (A003052) that are cubes.
[ "1", "64", "512", "1728", "35937", "50653", "195112", "287496", "300763", "314432", "681472", "804357", "884736", "1000000", "2248091", "2744000", "3241792", "4173281", "4913000", "5929741", "6434856", "6859000", "10077696", "10360232", "12167000", "13481272", "15813251", "18399744", "19902511", "22188041", "27270901", "29791000", "36264691", "37933056", "47045881" ]
[ "nonn", "base" ]
9
1
2
[ "A000578", "A003052", "A171671", "A382166" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T17:49:17
oeisdata/seq/A382/A382166.seq
f77a8eedead3cfc0e82d10c92b32cc60
A382167
Repdigit self-numbers that are not in A337208.
[ "3", "5", "7", "9", "222", "88888", "666666", "7777777", "44444444", "555555555", "3333333333", "777777777777", "999999999999", "44444444444444", "222222222222222", "5555555555555555", "333333333333333333", "8888888888888888888", "666666666666666666666", "9999999999999999999999", "77777777777777777777777", "4444444444444444444444444" ]
[ "nonn", "base" ]
5
1
1
[ "A003052", "A337208", "A382167" ]
null
N. J. A. Sloane, Mar 26 2025
2025-03-26T09:12:41
oeisdata/seq/A382/A382167.seq
57e0528134905db17a920a5dd247f98a
A382168
Number of triples (i,j,k), 1 <= i < j < k <= n such that A019444(i) < A019444(k) < A019444(j).
[ "0", "0", "1", "1", "1", "7", "7", "17", "17", "17", "38", "38", "38", "74", "74", "119", "119", "119", "185", "185", "263", "263", "263", "368", "368", "368", "504", "504", "657", "657", "657", "847", "847", "847", "1078", "1078", "1331", "1331", "1331", "1631", "1631", "1956", "1956", "1956", "2334", "2334", "2334", "2769", "2769", "3234", "3234", "3234", "3762", "3762", "4323", "4323", "4323", "4953", "4953", "4953", "5656", "5656", "6397", "6397", "6397" ]
[ "nonn" ]
9
1
6
[ "A000108", "A019444", "A382162", "A382168", "A382169" ]
null
N. J. A. Sloane, Mar 31 2025
2025-03-31T22:30:30
oeisdata/seq/A382/A382168.seq
593cddc8a1caa170f664b84b88cc74ee
A382169
A382168 with duplicates removed.
[ "0", "1", "7", "17", "38", "74", "119", "185", "263", "368", "504", "657", "847", "1078", "1331", "1631", "1956", "2334", "2769", "3234", "3762", "4323", "4953", "5656", "6397", "7217", "8120", "9066", "10101", "11182", "12358", "13633", "14959", "16390", "17930", "19526", "21237", "23007", "24898", "26914", "28994", "31205", "33483", "35898" ]
[ "nonn" ]
12
1
3
[ "A000217", "A019444", "A382168", "A382169" ]
null
N. J. A. Sloane, Mar 31 2025
2025-04-01T19:33:07
oeisdata/seq/A382/A382169.seq
1c2d54dff58b81ed26f7cb28aef6f152
A382170
a(0) = 0; for n >= 1, one-eighth of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(5^n).
[ "0", "1", "4", "13", "80", "401", "1924", "9773", "48960", "243841", "1220644", "6105133", "30514640", "152585681", "762958564", "3814670093", "19073445120", "95367649921", "476836927684", "2384185160653", "11920931368400", "59604643100561", "298023215160004", "1490116145192813", "7450580588892480", "37252902871641601", "186264515189207524" ]
[ "nonn", "easy" ]
14
0
3
[ "A382170", "A382171" ]
null
Jianing Song, Mar 17 2025
2025-03-18T03:08:20
oeisdata/seq/A382/A382170.seq
4e0049bc2ed62fe8ffd01b0c0b3c0439
A382171
a(0) = 0; for n >= 1, one quarter of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(3^n).
[ "0", "1", "4", "7", "16", "61", "196", "547", "1600", "4921", "14884", "44287", "132496", "398581", "1196836", "3587227", "10758400", "32285041", "96864964", "290565367", "871666576", "2615088301", "7845353476", "23535794707", "70607118400", "211822152361", "635467254244", "1906399371247", "5719195722256", "17157594341221", "51472790198116" ]
[ "nonn", "easy" ]
16
0
3
[ "A382170", "A382171" ]
null
Jianing Song, Mar 17 2025
2025-03-18T03:08:04
oeisdata/seq/A382/A382171.seq
a36e8ab039afad6e0110c83eed36f5da
A382172
Irregular triangle read by rows in which row n contains the digits of the period of 1/n when expanded in golden ratio base.
[ "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "1", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0" ]
[ "nonn", "tabf", "easy", "base" ]
9
1
null
[ "A001175", "A001622", "A055778", "A173856", "A173857", "A173858", "A173859", "A173860", "A173861", "A173864", "A294168", "A354948", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:04:04
oeisdata/seq/A382/A382172.seq
147babb374a1bb3c9a592991250b700e
A382173
a(n) is the sum of row n of A382172.
[ "0", "1", "2", "1", "6", "7", "4", "2", "6", "16", "1", "5", "8", "14", "10", "5", "10", "6", "3", "15", "2", "7", "13", "4", "26", "24", "19", "9", "1", "31", "6", "10", "8", "10", "20", "4", "22", "2", "13", "14", "11", "11", "24", "5", "31", "13", "8", "4", "30", "80", "17", "20", "30", "18", "2", "11", "17", "9", "14", "30", "16", "5", "10", "25", "36", "29", "38", "6", "9", "63", "16", "2", "40", "64" ]
[ "nonn", "easy", "base" ]
7
1
3
[ "A000032", "A002878", "A007733", "A055778", "A093960", "A276350", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:57
oeisdata/seq/A382/A382173.seq
7b91c5f38f6bde981ed55b832486bafb
A382174
Numbers k such that A382173(k) >= k.
[ "5", "6", "10", "14", "25", "30", "50", "125", "150", "250", "625", "750", "1250", "3125", "3750", "6250", "15625", "18750", "31250", "78125" ]
[ "nonn", "base", "more" ]
5
1
1
[ "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:51
oeisdata/seq/A382/A382174.seq
5dd7643a78e0c6cfeb64f29a2370a747
A382175
Indices of records in A382173.
[ "1", "2", "3", "5", "6", "10", "25", "30", "50", "98", "125", "150", "194", "206", "243", "250", "490", "554", "566", "625", "750", "1030", "1046", "1094", "1154", "1214", "1226", "1250", "2450", "2738", "2846", "2894", "2906", "3086", "3125", "3750", "4802", "5534", "5594", "5606", "5666", "5714", "5770", "5774", "5834", "5906", "5990", "6070", "6074", "6130" ]
[ "nonn", "base" ]
8
1
2
[ "A001175", "A326612", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:45
oeisdata/seq/A382/A382175.seq
d5f50416a988d2bf7e81d98b3d32dafe
A382176
Numbers k such that the period of 1/k when expanded in golden ratio base is palindromic.
[ "1", "2", "36", "38", "644", "646", "682", "11556", "11558", "11592", "12198", "12238" ]
[ "nonn", "base", "more" ]
5
1
2
[ "A330722", "A362781", "A373085", "A382172", "A382173", "A382174", "A382175", "A382176" ]
null
Amiram Eldar, Mar 17 2025
2025-03-19T09:03:40
oeisdata/seq/A382/A382176.seq
f635009e3762b9133365fa517ab0f515
A382177
a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n while the remaining digits are zeros.
[ "2", "2", "3", "10", "3", "312", "4", "18", "18", "96", "96", "600", "4", "6168960", "6120", "18", "18", "11017036800", "4", "56229997824000", "114", "760", "68947200", "18", "5", "14544", "141120", "192", "13320", "9092075324665919034015350784000000", "28", "520412336961032355840000", "27", "1400", "199584000", "116496", "180" ]
[ "nonn", "base" ]
8
0
1
[ "A153880", "A382177", "A382178" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:36
oeisdata/seq/A382/A382177.seq
6eeecbb636fac53c03ed015bdccd28ea
A382178
a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n.
[ "2", "2", "3", "3", "3", "3", "4", "18", "18", "17", "17", "16", "4", "19", "19", "18", "18", "101", "4", "115", "114", "110", "110", "18", "5", "203", "199", "192", "189", "183", "28", "187", "27", "179", "177", "1341", "180", "176", "26", "170", "168", "165", "1320", "168", "1277", "1251", "162", "159", "5", "1649", "204", "1598", "1579", "1551", "200", "197", "195" ]
[ "nonn", "base" ]
8
0
1
[ "A153880", "A382177", "A382178" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:28
oeisdata/seq/A382/A382178.seq
9f98cbbcfe7dcafc7ac5f2c90903e22e
A382179
Numbers k such that for each digit of k, 2*k*(digit) + 1 is prime.
[ "1", "3", "6", "9", "11", "14", "15", "22", "24", "25", "27", "28", "33", "44", "54", "63", "75", "78", "81", "88", "99", "111", "119", "131", "141", "153", "168", "173", "219", "249", "252", "255", "279", "282", "322", "325", "333", "357", "363", "414", "441", "459", "474", "491", "538", "553", "558", "565", "611", "666", "674", "699", "794", "797", "828", "831", "832", "858", "895", "924", "947", "955" ]
[ "nonn", "base" ]
43
1
2
[ "A000040", "A382127", "A382179", "A382198", "A382199" ]
null
Jakub Buczak, Mar 17 2025
2025-03-30T08:17:02
oeisdata/seq/A382/A382179.seq
bd03067077b2912d5b500b8de8e72d6a
A382180
Number of unlabeled connected graphs with n vertices which are squares.
[ "1", "1", "1", "1", "2", "4", "13", "42", "206", "1310", "12622", "180700", "3925282" ]
[ "nonn", "more" ]
23
0
5
[ "A000055", "A001349", "A382180", "A382181", "A382194" ]
null
Brendan McKay and Sean A. Irvine, Mar 17 2025
2025-03-24T14:00:32
oeisdata/seq/A382/A382180.seq
e8317bd9731e2ab6e208a6123cbe039e
A382181
Number of unlabeled graphs with n vertices (including disconnected graphs) which are squares.
[ "1", "1", "2", "3", "6", "11", "28", "77", "307", "1688", "14620", "197050", "4137271" ]
[ "nonn", "more" ]
13
0
3
[ "A382180", "A382181" ]
null
Brendan McKay and Sean A. Irvine, Mar 17 2025
2025-03-18T21:40:11
oeisdata/seq/A382/A382181.seq
80e139cbac52eef46725f06a19ce8a17
A382182
Lexicographically earliest increasing sequence starting with a(0) = 1 such that the polynomial which interpolates the first k values has degree k-1 and only integer coefficients.
[ "1", "2", "5", "16", "17", "86", "1237", "1940", "25601", "617482", "1386821", "25329272", "815052625", "2379750686", "55319082197", "2225093600956", "7995962217857", "225701855249810", "10894058270134021", "46488524334434912", "1543800689908468241", "86934584995669200742", "429553964850178236245", "16404426130967383104356" ]
[ "nonn" ]
20
0
2
[ "A000522", "A182386", "A382182" ]
null
Thomas Scheuerle, Mar 17 2025
2025-03-19T10:18:17
oeisdata/seq/A382/A382182.seq
2df4a0865d33ac81495893fa54e385bd
A382183
Binary sequence linking A105774 and A382113.
[ "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "1" ]
[ "nonn" ]
10
1
null
[ "A105774", "A382113", "A382183" ]
null
Jeffrey Shallit, Mar 17 2025
2025-03-19T10:20:57
oeisdata/seq/A382/A382183.seq
1a66e5b1c5f4207b02c39ed958d422c7
A382184
a(n) is the least k >= 0 such that the factorial base expansion of n starts with that of k while the remaining digits are zeros.
[ "0", "1", "1", "3", "4", "5", "1", "7", "3", "9", "10", "11", "4", "13", "5", "15", "16", "17", "18", "19", "20", "21", "22", "23", "1", "25", "7", "27", "28", "29", "3", "31", "9", "33", "34", "35", "10", "37", "11", "39", "40", "41", "42", "43", "44", "45", "46", "47", "4", "49", "13", "51", "52", "53", "5", "55", "15", "57", "58", "59", "16", "61", "17", "63", "64", "65", "66", "67", "68", "69" ]
[ "nonn", "base" ]
9
0
4
[ "A000265", "A004151", "A153880", "A273670", "A382177", "A382184", "A382217" ]
null
Rémy Sigrist, Mar 17 2025
2025-03-20T09:29:22
oeisdata/seq/A382/A382184.seq
7a7d0c32be1c3a88f6eb3963ac79c827
A382185
a(n) is the n-th tribonacci number modulo the n-th prime.
[ "0", "1", "1", "2", "4", "7", "13", "5", "21", "23", "25", "15", "12", "24", "13", "9", "45", "56", "16", "35", "20", "71", "47", "9", "40", "80", "18", "46", "75", "101", "55", "48", "65", "36", "142", "34", "91", "0", "43", "147", "118", "41", "175", "24", "131", "152", "189", "213", "116", "201", "116", "66", "73", "9", "0", "53", "210", "239", "167", "171", "87", "262", "251", "111", "115", "69", "284", "186", "211", "321", "331", "135" ]
[ "nonn", "look", "easy", "changed" ]
23
1
4
[ "A000040", "A000073", "A072123", "A382185" ]
null
Michael Figelius, Mar 17 2025
2025-04-15T16:37:50
oeisdata/seq/A382/A382185.seq
a11651b1b2d315e86400ceab2f481601
A382186
Prime numbers that are the sum of the m-th prime and the m-th semiprime for some m.
[ "17", "41", "71", "131", "281", "331", "353", "397", "449", "487", "563", "953", "1279", "1289", "1409", "1627", "2621", "2999", "3533", "3631", "3697", "3989", "4057", "4133", "4523", "4603", "4733", "4919", "5273", "5591", "5641", "6211", "6247", "6269", "6299", "6469", "6803", "7753", "7879", "7937", "8353", "8543", "8971", "8999", "9041", "9181", "9413", "9479", "9787", "9887", "9941", "10487" ]
[ "nonn" ]
12
1
1
[ "A000040", "A001358", "A092108", "A133796", "A382186" ]
null
Zak Seidov and Robert Israel, Mar 18 2025
2025-03-20T13:59:08
oeisdata/seq/A382/A382186.seq
bd21ba2f73a59ffbbe33fe18caf2b99e
A382187
Expansion of 1/(1 - 4 * Sum_{k>=0} x^(2^k))^(1/2).
[ "1", "2", "8", "32", "138", "604", "2696", "12176", "55512", "254888", "1177064", "5461040", "25435296", "118856272", "556962928", "2616287392", "12315914698", "58084552572", "274395134600", "1298187523792", "6150051540460", "29170558879736", "138512004786624", "658362443599296", "3132140164624680" ]
[ "nonn", "easy" ]
8
0
2
[ "A023359", "A223142", "A382187", "A382188" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T16:24:02
oeisdata/seq/A382/A382187.seq
2d746cfb8511e3caebbb0487afa0577e
A382188
Expansion of 1/(1 - 9 * Sum_{k>=0} x^(2^k))^(1/3).
[ "1", "3", "21", "162", "1344", "11565", "102033", "916002", "8330331", "76515363", "708379137", "6600436794", "61829064882", "581783753232", "5495344743924", "52079440119336", "494985533135250", "4716537209764020", "45043670723519952", "431041661857081656", "4132290587464466820", "39680088682182010749" ]
[ "nonn", "easy" ]
8
0
2
[ "A023359", "A382187", "A382188" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:44:16
oeisdata/seq/A382/A382188.seq
4bc90bb24ac8fbcd99a1bdd1b2b356d2
A382189
Expansion of 1/(1 - 4 * Sum_{k>=0} x^(3^k))^(1/2).
[ "1", "2", "6", "22", "82", "312", "1210", "4752", "18834", "75186", "301868", "1217664", "4930918", "20033432", "81621456", "333357656", "1364395770", "5594799576", "22980090870", "94529049296", "389367825444", "1605758772136", "6629456308464", "27397510466856", "113329594803078", "469183242566016", "1943927996932656" ]
[ "nonn", "easy" ]
7
0
2
[ "A078932", "A382189", "A382190" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:44:10
oeisdata/seq/A382/A382189.seq
608b83e1f1c260b28b4208f035837fa3
A382190
Expansion of 1/(1 - 9 * Sum_{k>=0} x^(3^k))^(1/3).
[ "1", "3", "18", "129", "981", "7749", "62766", "517401", "4320864", "36446565", "309876444", "2651681826", "22812645339", "197144727876", "1710267824304", "14886242261595", "129946357148661", "1137235357935279", "9975129925544568", "87672540348112779", "771962724133452441", "6808329943495097076" ]
[ "nonn", "easy" ]
9
0
2
[ "A078932", "A382189", "A382190", "A382196" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T16:23:45
oeisdata/seq/A382/A382190.seq
b4da2589a4be1898cdd601add2ae256e
A382191
Number of edges of the graph with code A076184(n).
[ "0", "1", "2", "3", "3", "2", "3", "4", "4", "5", "6", "4", "3", "4", "5", "4", "5", "5", "6", "4", "5", "6", "7", "6", "7", "6", "5", "6", "7", "7", "8", "8", "9", "10", "5", "4", "5", "6", "4", "5", "5", "6", "6", "7", "5", "6", "7", "8", "6", "7", "3", "4", "5", "6", "5", "6", "5", "6", "6", "7", "7", "8", "7", "8", "7", "6", "7", "8", "6", "7", "7", "8", "8", "9", "5", "6", "7", "6", "7", "8", "7", "8", "7", "8", "9", "9", "8" ]
[ "nonn", "tabf" ]
6
1
3
[ "A000120", "A002494", "A076184", "A382191" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T09:46:30
oeisdata/seq/A382/A382191.seq
48cb6f468d665ec1e860b2fa746e0e6b
A382192
Number of components of the graph with code A076184(n).
[ "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabf" ]
5
1
6
[ "A002494", "A076184", "A382192", "A382193" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T09:46:59
oeisdata/seq/A382/A382192.seq
0468e36d5da7ecf0fe4a7ac9368d0421
A382193
List of connected graphs, encoded as in A076184.
[ "0", "1", "3", "7", "11", "13", "15", "30", "31", "63", "75", "77", "79", "86", "87", "94", "95", "117", "119", "127", "222", "223", "235", "236", "237", "239", "254", "255", "507", "511", "1023", "1099", "1101", "1103", "1109", "1110", "1111", "1118", "1119", "1141", "1143", "1151", "1182", "1183", "1187", "1191", "1195", "1196", "1197", "1198", "1199", "1214" ]
[ "nonn", "tabf" ]
7
1
3
[ "A001349", "A076184", "A382192", "A382193" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T11:14:36
oeisdata/seq/A382/A382193.seq
c1ea7c73aabdcd3c1313ec3b2ee9e6e7
A382194
List of connected graphs that are squares, encoded as in A076184.
[ "0", "1", "7", "31", "63", "239", "255", "511", "1023", "3455", "3887", "3951", "3967", "4095", "7679", "7903", "7935", "8191", "16350", "16351", "16383", "32767", "104063", "104447", "106287", "106351", "111587", "111599", "112511", "112623", "112639", "127791", "127855", "127871", "128879", "128895", "129023", "131071", "237567" ]
[ "nonn", "tabf" ]
15
1
3
[ "A076184", "A382180", "A382193", "A382194", "A382195", "A382283" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-22T12:00:48
oeisdata/seq/A382/A382194.seq
41de2ea2891cf3c63967e5d1e087d79a
A382195
a(n) is the code (in the encoding given by A076184) of the square of the graph with code A076184(n).
[ "0", "1", "7", "7", "63", "12", "31", "63", "63", "63", "63", "1023", "116", "255", "1023", "239", "511", "511", "1023", "116", "255", "511", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "1023", "32767", "1972", "4095", "32767", "3873", "7903", "3951", "8191", "8191", "32767", "3873", "7903", "8191", "32767" ]
[ "nonn", "tabf", "base" ]
12
1
3
[ "A002494", "A076184", "A382194", "A382195" ]
null
Pontus von Brömssen, Mar 18 2025
2025-03-21T11:14:02
oeisdata/seq/A382/A382195.seq
4e8f90a9a7a37049965c4552e0713afc
A382196
Expansion of (1 + 9 * Sum_{k>=0} x^(3^k))^(1/3).
[ "1", "3", "-9", "48", "-288", "1917", "-13563", "99927", "-758079", "5879757", "-46401705", "371337021", "-3005974710", "24568145019", "-202442064183", "1679864383800", "-14024716370064", "117715927282470", "-992725129013121", "8407191323492226", "-71467963130581758", "609605555349330009" ]
[ "sign", "easy" ]
9
0
2
[ "A223142", "A223143", "A298308", "A382190", "A382196" ]
null
Seiichi Manyama, Mar 18 2025
2025-03-18T21:45:30
oeisdata/seq/A382/A382196.seq
fe4622ffaf3038a48559b4370ca23215
A382197
Decimal expansion of 24^(1/6).
[ "1", "6", "9", "8", "3", "8", "1", "3", "2", "9", "5", "6", "4", "9", "5", "2", "7", "8", "4", "9", "1", "2", "5", "6", "4", "5", "2", "4", "6", "5", "9", "7", "4", "9", "3", "6", "0", "2", "0", "3", "5", "0", "0", "0", "9", "0", "3", "3", "5", "9", "7", "1", "4", "4", "8", "9", "0", "4", "1", "0", "6", "1", "6", "1", "9", "6", "9", "5", "4", "9", "3", "2", "0", "1", "3", "8", "0", "8", "9", "0", "0", "9", "2", "7", "8", "1", "3", "6", "7", "0", "0", "3", "4", "1", "9", "8", "8", "0", "2", "1" ]
[ "nonn", "cons", "easy" ]
7
1
2
[ "A002193", "A010480", "A010596", "A011020", "A011109", "A246708", "A382197" ]
null
Stefano Spezia, Mar 18 2025
2025-03-19T10:03:30
oeisdata/seq/A382/A382197.seq
5ed60622f792823288a303897da58eaf
A382198
Smallest integer k with n distinct digits, such that for each digit of k, 2*k*(digit) + 1 is prime.
[ "3", "14", "153", "2169", "48165", "125769", "327174495" ]
[ "nonn", "base", "fini", "full" ]
11
1
1
[ "A382127", "A382179", "A382198", "A382199" ]
null
Michel Marcus, Mar 18 2025
2025-03-18T16:23:14
oeisdata/seq/A382/A382198.seq
60187c9f9dc569ca8f25d1ebf815e5fc
A382199
Primes p such that for each digit of p, 2*p*(digit) + 1 is prime.
[ "3", "11", "131", "173", "491", "797", "947", "1931", "3583", "4391", "6173", "7937", "32323", "49919", "64499", "79997", "83383", "149111", "232333", "296269", "366161", "477947", "611333", "616169", "616961", "635563", "667673", "969179", "1111991", "1779779", "2232523", "2662669", "2922229", "3444341", "5333353", "5599999", "6853663", "6919691", "6929929" ]
[ "nonn", "base" ]
7
1
1
[ "A382127", "A382179", "A382198", "A382199" ]
null
Michel Marcus, Mar 18 2025
2025-03-18T13:47:16
oeisdata/seq/A382/A382199.seq
af2c200ed3c4a7e28c7e5f2873fdafcb
A382200
Numbers that can be written as a product of distinct squarefree numbers.
[ "1", "2", "3", "5", "6", "7", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84" ]
[ "nonn", "changed" ]
14
1
2
[ "A000720", "A001055", "A001222", "A005117", "A045778", "A050320", "A050326", "A050342", "A050345", "A089259", "A116539", "A270995", "A279785", "A292432", "A292444", "A293243", "A293511", "A300383", "A302494", "A317141", "A358914", "A381441", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382201", "A382214", "A382216" ]
null
Gus Wiseman, Mar 21 2025
2025-04-21T17:00:45
oeisdata/seq/A382/A382200.seq
a0ddd391097d223c8e08b18d8847226c
A382201
MM-numbers of sets of sets with distinct sums.
[ "1", "2", "3", "5", "6", "10", "11", "13", "15", "17", "22", "26", "29", "30", "31", "33", "34", "39", "41", "43", "47", "51", "55", "58", "59", "62", "65", "66", "67", "73", "78", "79", "82", "83", "85", "86", "87", "93", "94", "101", "102", "109", "110", "113", "118", "123", "127", "129", "130", "134", "137", "139", "141", "145", "146", "149", "155", "157", "158", "163", "165" ]
[ "nonn" ]
8
1
2
[ "A000720", "A001055", "A003963", "A005117", "A007716", "A045778", "A050320", "A050326", "A055396", "A056239", "A061395", "A112798", "A275780", "A279785", "A293511", "A302242", "A302478", "A302494", "A302497", "A319899", "A321455", "A321469", "A326519", "A326533", "A326534", "A326535", "A326537", "A368100", "A368101", "A381633", "A381635", "A381718", "A382080", "A382201", "A382215" ]
null
Gus Wiseman, Mar 21 2025
2025-03-23T08:40:28
oeisdata/seq/A382/A382201.seq
e23c4777c31e1280405651b7a3e346ff
A382202
Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums.
[ "0", "0", "1", "1", "3", "5", "9", "16", "27", "48", "78", "133" ]
[ "nonn", "more" ]
8
0
5
[ "A000110", "A000670", "A001055", "A007716", "A019536", "A034691", "A035310", "A045778", "A050320", "A050326", "A050342", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A318360", "A318361", "A321469", "A326517", "A326518", "A326519", "A333217", "A358914", "A381633", "A381718", "A381806", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382429", "A382430", "A382458", "A382459", "A382460" ]
null
Gus Wiseman, Mar 29 2025
2025-03-30T20:24:25
oeisdata/seq/A382/A382202.seq
3dc887bb8415b9de7ecd866f68157e92
A382203
Number of normal multiset partitions of weight n into constant multisets with distinct sums.
[ "1", "1", "2", "4", "9", "19", "37", "76", "159", "326", "671", "1376", "2815", "5759", "11774", "24083", "49249", "100632", "205490", "419420", "855799", "1745889", "3561867", "7268240", "14836127", "30295633", "61888616" ]
[ "nonn", "more" ]
13
0
3
[ "A000670", "A001055", "A007716", "A019536", "A035310", "A045778", "A055887", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A275780", "A279785", "A279786", "A304969", "A317532", "A317583", "A321469", "A326517", "A326518", "A326519", "A326535", "A333217", "A381633", "A381635", "A381636", "A381718", "A381806", "A381870", "A382203", "A382204", "A382216", "A382428", "A382429" ]
null
Gus Wiseman, Mar 26 2025
2025-04-04T23:42:07
oeisdata/seq/A382/A382203.seq
2847e1d4592ab325641cde5cdb15778f
A382204
Number of normal multiset partitions of weight n into constant blocks with a common sum.
[ "1", "1", "2", "3", "4", "4", "7", "5", "8", "8", "10", "8", "15", "9", "14", "15", "17", "13", "22", "14", "25", "21", "23", "19", "34", "24", "29", "28", "37", "27", "45", "29", "44", "38", "43", "43", "59", "40", "51", "48", "69", "48", "71", "52", "73", "69", "72", "61", "93", "72", "91", "77", "99", "78", "105", "95", "119", "95", "113", "96", "146", "107", "126", "123", "151", "130" ]
[ "nonn" ]
28
0
3
[ "A000670", "A001055", "A007716", "A019536", "A034691", "A034729", "A035310", "A045778", "A055887", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A279789", "A296119", "A304969", "A317532", "A317583", "A318360", "A321469", "A326518", "A326520", "A326535", "A333217", "A356945", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381995", "A382203", "A382204", "A382216", "A382429" ]
null
Gus Wiseman, Mar 26 2025
2025-04-05T12:01:55
oeisdata/seq/A382/A382204.seq
4887a7bdff44390ff04775779161d6b3
A382205
Number of minimum connected dominating sets in the n-halved cube graph.
[ "1", "2", "4", "24", "240", "1440", "80640" ]
[ "nonn", "more" ]
4
1
2
null
null
Eric W. Weisstein, Mar 18 2025
2025-03-18T21:44:25
oeisdata/seq/A382/A382205.seq
d6ae27413d40cb900798dd74b291017b
A382206
Number of minimum connected dominating sets in the n X n king graph.
[ "1", "4", "1", "21", "1", "21", "843", "720", "556841", "99357", "458", "32", "3600", "30580044", "826720", "4" ]
[ "nonn", "more" ]
25
1
2
[ "A289180", "A347554", "A370428", "A381730", "A382206" ]
null
Eric W. Weisstein, Mar 18 2025
2025-03-31T15:20:41
oeisdata/seq/A382/A382206.seq
d2009128af68d6269bbfeb02a758f9c7
A382207
Number of minimum connected dominating sets in the n X n knight graph.
[ "1", "0", "0", "64", "4", "18", "78", "184", "648", "344" ]
[ "nonn", "more" ]
16
1
4
[ "A382047", "A382207" ]
null
Eric W. Weisstein, Mar 18 2025
2025-03-21T07:00:27
oeisdata/seq/A382/A382207.seq
02c2b248ecf9f989c3ac2e9d95482e13
A382208
Numbers k for which pi(bigomega(k)) = omega(k).
[ "1", "4", "9", "12", "18", "20", "24", "25", "28", "36", "40", "44", "45", "49", "50", "52", "54", "56", "63", "68", "75", "76", "88", "92", "98", "99", "100", "104", "116", "117", "120", "121", "124", "135", "136", "147", "148", "152", "153", "164", "168", "169", "171", "172", "175", "180", "184", "188", "189", "196", "207", "212", "225", "232", "236", "240", "242", "244", "245" ]
[ "nonn" ]
22
1
2
[ "A000720", "A001221", "A001222", "A001248", "A046386", "A054753", "A065036", "A085986", "A162143", "A179644", "A179693", "A179700", "A179704", "A382208" ]
null
Felix Huber, Mar 30 2025
2025-04-05T15:27:00
oeisdata/seq/A382/A382208.seq
7e179f09919867a163e8ec89551392f1
A382209
Numbers k such that 10+k and 10*k are perfect squares.
[ "90", "136890", "197402490", "284654260890", "410471246808090", "591899253243012090", "853518312705176632890", "1230772815021611461622490", "1774773545742851022483004890", "2559222222188376152809031436090", "3690396669622092669499600847844090", "5321549438372835441042271613559748890" ]
[ "nonn", "easy", "new" ]
85
1
1
[ "A005667", "A008843", "A075796", "A081071", "A097315", "A158490", "A173127", "A245226", "A382209" ]
null
Emilio Martín, Mar 18 2025
2025-04-24T17:33:22
oeisdata/seq/A382/A382209.seq
194db66caf1339483b37abda327c7488
A382210
Irregular triangle read by rows: T(n,k) = k^2 - k + (A003173(n) + 1)/4 with 1 <= k < (A003173(n) + 1)/4.
[ "2", "3", "5", "5", "7", "11", "17", "11", "13", "17", "23", "31", "41", "53", "67", "83", "101", "17", "19", "23", "29", "37", "47", "59", "73", "89", "107", "127", "149", "173", "199", "227", "257", "41", "43", "47", "53", "61", "71", "83", "97", "113", "131", "151", "173", "197", "223", "251", "281", "313", "347", "383", "421", "461", "503", "547", "593", "641", "691", "743", "797", "853", "911", "971", "1033", "1097", "1163", "1231", "1301", "1373", "1447", "1523", "1601" ]
[ "nonn", "easy", "fini", "full", "tabf" ]
7
4
1
[ "A003173", "A048058", "A302445", "A382210" ]
null
Stefano Spezia, Mar 18 2025
2025-03-18T21:41:15
oeisdata/seq/A382/A382210.seq
bc20c258b3e67f7310123e6034e9c41b
A382211
Prime of the form p^q + q^r + r^p, for primes p, q and r.
[ "61", "181", "2557", "98057", "338323", "8389141", "48829699", "536871757", "1162268353", "2147484613", "2199023257237", "27368747340087430811", "196525143636054676607", "4656612873077421210401", "239072435917782732706099", "1978419655679387077928203", "9671406556917033397656301" ]
[ "nonn" ]
17
1
1
[ "A123207", "A382211" ]
null
Karst Koymans, Mar 18 2025
2025-03-25T23:17:55
oeisdata/seq/A382/A382211.seq
e5a4a2160298774af2f06f07bf9b0968
A382212
Number of labeled Eulerian oriented graphs with n nodes without isolated vertices.
[ "0", "0", "2", "6", "168", "6700", "726360", "202827786" ]
[ "nonn", "more" ]
8
1
3
[ "A007081", "A382212" ]
null
Bert Dobbelaere, Mar 18 2025
2025-03-19T09:04:17
oeisdata/seq/A382/A382212.seq
279f8ee5b3962c58244d097b45a49cbe
A382213
Largest squarefree number dividing the numerator of harmonic number H(n).
[ "1", "3", "11", "5", "137", "7", "33", "761", "7129", "671", "83711", "6617", "1145993", "1171733", "1195757", "143327", "42142223", "751279", "275295799", "55835135", "18858053", "830139", "444316699", "1347822955", "34052522467", "34395742267", "312536252003", "10876020307", "214582477009", "300151059037", "290774257297357" ]
[ "nonn", "new" ]
46
1
2
[ "A001008", "A002805", "A007913", "A333196", "A382213", "A382329" ]
null
Ali Sada, Mar 22 2025
2025-04-24T13:20:47
oeisdata/seq/A382/A382213.seq
fd677b64c0cb78979f3762583120619e
A382214
Number of normal multisets of size n that can be partitioned into a set of sets.
[ "1", "1", "1", "3", "5", "11", "23", "48", "101", "210", "436", "894" ]
[ "nonn", "more" ]
15
0
4
[ "A000110", "A000670", "A001055", "A007716", "A019536", "A034691", "A035310", "A045778", "A050320", "A050326", "A050342", "A055932", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A317532", "A318360", "A318361", "A326517", "A326519", "A333217", "A358914", "A381633", "A381718", "A381990", "A381992", "A381996", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382458", "A382459", "A382460" ]
null
Gus Wiseman, Mar 29 2025
2025-03-30T20:24:20
oeisdata/seq/A382/A382214.seq
ffcfe6cf9dea1397905a5ea83c8a00c4
A382215
MM-numbers of multiset partitions into constant blocks with a common sum.
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "16", "17", "19", "23", "25", "27", "31", "32", "35", "41", "49", "53", "59", "64", "67", "81", "83", "97", "103", "109", "121", "125", "127", "128", "131", "157", "175", "179", "191", "209", "211", "227", "241", "243", "245", "256", "277", "283", "289", "311", "331", "343", "353", "361", "367", "391", "401", "419", "431", "461" ]
[ "nonn" ]
17
1
2
[ "A000688", "A000720", "A000961", "A001055", "A001221", "A001222", "A050361", "A055396", "A056239", "A061395", "A112798", "A118914", "A124010", "A279789", "A302242", "A302492", "A302496", "A302601", "A321455", "A326534", "A368100", "A381633", "A381635", "A381636", "A381715", "A381716", "A381871", "A381995", "A382080", "A382201", "A382204", "A382215", "A382304", "A382426" ]
null
Gus Wiseman, Mar 21 2025
2025-04-03T03:36:21
oeisdata/seq/A382/A382215.seq
e782f4f1d10221e849f08e1203553d9b
A382216
Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums.
[ "1", "1", "1", "3", "5", "11", "23", "48", "101", "208", "434" ]
[ "nonn", "more" ]
10
0
4
[ "A000110", "A000670", "A007716", "A034691", "A035310", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A275780", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A317532", "A318360", "A318361", "A326518", "A326519", "A358914", "A381633", "A381718", "A381806", "A381990", "A381992", "A381996", "A382075", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382429", "A382430", "A382458", "A382459", "A382460", "A382523" ]
null
Gus Wiseman, Mar 29 2025
2025-03-31T21:55:23
oeisdata/seq/A382/A382216.seq
42185d610813508feb728c19c75e549c
A382217
a(n) is the least k > 0 such that the factorial base expansion of n starts with that of k.
[ "1", "1", "1", "4", "5", "1", "1", "1", "1", "1", "1", "4", "4", "5", "5", "16", "17", "18", "19", "20", "21", "22", "23", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "5", "16", "16", "17", "17", "64", "65", "66", "67", "68", "69", "70", "71", "18", "18", "19", "19", "76", "77", "20" ]
[ "nonn", "base" ]
9
1
4
[ "A000030", "A265334", "A382184", "A382217", "A382218" ]
null
Rémy Sigrist, Mar 19 2025
2025-03-20T09:29:17
oeisdata/seq/A382/A382217.seq
f3e6bc67492b1fcc6af1c871c9373203
A382218
Fixed points of A382217.
[ "1", "4", "5", "16", "17", "18", "19", "20", "21", "22", "23", "64", "65", "66", "67", "68", "69", "70", "71", "76", "77", "82", "83", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100", "101", "102", "103", "104", "105", "106", "107", "108", "109", "110", "111", "112", "113", "114", "115", "116", "117", "118", "119", "304", "305", "306", "307", "308" ]
[ "nonn", "base" ]
7
1
2
[ "A111537", "A382217", "A382218" ]
null
Rémy Sigrist, Mar 19 2025
2025-03-20T09:29:12
oeisdata/seq/A382/A382218.seq
b84df084f5b8cd4fd15b05ca9ce1f386
A382219
Product of the largest and smallest exponents in the prime factorization of n.
[ "1", "1", "1", "4", "1", "1", "1", "9", "4", "1", "1", "2", "1", "1", "1", "16", "1", "2", "1", "2", "1", "1", "1", "3", "4", "1", "9", "2", "1", "1", "1", "25", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "4", "4", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "36", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "4", "16", "1", "1", "2", "1", "1", "1", "3", "1", "2" ]
[ "nonn" ]
12
1
4
[ "A005361", "A033150", "A051903", "A051904", "A052485", "A062977", "A066048", "A304233", "A333352", "A382219" ]
null
Ilya Gutkovskiy, Mar 19 2025
2025-03-28T08:00:20
oeisdata/seq/A382/A382219.seq
aad67a8de93078b99a1587f3f8153378
A382220
Numbers k such that every primitive root mod k is prime.
[ "3", "4", "5", "6", "7", "9", "10", "14", "18", "22", "54" ]
[ "nonn", "more" ]
17
1
1
[ "A033948", "A046147", "A382220", "A382224" ]
null
Miles Englezou, Mar 18 2025
2025-03-21T10:12:21
oeisdata/seq/A382/A382220.seq
d8c409eebe213530b7c2556f5e72a27d
A382221
Products of primitive roots when n is 2, 4, p^k, or 2p^k (with p an odd prime), for all other n the value is defined to be 1.
[ "1", "1", "2", "3", "6", "5", "15", "1", "10", "21", "672", "1", "924", "15", "1", "1", "11642400", "55", "163800", "1", "1", "29393", "109681110000", "1", "64411776", "21945", "708400", "1", "5590307923200", "1", "970377408", "1", "1", "644812245", "1", "1", "134088514560000", "11756745", "1", "1", "138960660963091968000", "1" ]
[ "nonn", "new" ]
42
1
3
[ "A033948", "A121380", "A123475", "A180634", "A382221" ]
null
Darío Clavijo, Mar 27 2025
2025-04-18T20:52:09
oeisdata/seq/A382/A382221.seq
0016a6172de034a0be40a121a5683582
A382222
Smallest k such that A073734(k) = n, where A073734 is the GCD of consecutive terms of the EKG sequence A064413.
[ "2", "3", "5", "8", "10", "968", "14", "17", "149", "579", "20", "11068", "28", "2126", "2406", "3070", "33", "58836", "37", "2935", "7468", "20029", "43", "50835", "321", "1065", "2220", "60390", "57", "403831", "61", "20143", "29156", "13453", "32294", "18829", "67", "2117", "56683", "65867", "74", "10242", "81", "82455", "80410", "24112", "89", "868283", "41341", "36370" ]
[ "nonn" ]
13
1
1
[ "A064413", "A064740", "A064955", "A073734", "A073735", "A382222", "A382271" ]
null
Scott R. Shannon, Mar 19 2025
2025-03-23T08:40:50
oeisdata/seq/A382/A382222.seq
bf4abcfa46c2da27be08a2d1f54cfc3e
A382223
Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u<v and c(u)<c(v), n>=0, k>=0.
[ "1", "0", "1", "0", "1", "1", "0", "1", "2", "1", "0", "1", "5", "3", "1", "0", "1", "16", "12", "4", "1", "0", "1", "67", "66", "22", "5", "1", "0", "1", "374", "513", "172", "35", "6", "1", "0", "1", "2825", "5769", "1969", "355", "51", "7", "1", "0", "1", "29212", "95706", "33856", "5380", "636", "70", "8", "1", "0", "1", "417199", "2379348", "893188", "125090", "12006", "1036", "92", "9", "1" ]
[ "nonn", "tabl" ]
65
0
9
[ "A005329", "A006116", "A289539", "A382223", "A382363" ]
null
Geoffrey Critzer, Mar 23 2025
2025-03-25T12:57:57
oeisdata/seq/A382/A382223.seq
aa388eb2fec2c76eb09ce8476794c458
A382224
Numbers k such that every element with maximal order mod k is prime.
[ "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "16", "18", "20", "22", "24", "28", "30", "36", "42", "54", "60", "78" ]
[ "nonn", "more" ]
28
1
1
[ "A002322", "A382220", "A382224" ]
null
Miles Englezou, Mar 19 2025
2025-03-23T17:05:14
oeisdata/seq/A382/A382224.seq
a5ca3d8b32d54eb421e206118697ad20
A382225
Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k).
[ "1", "1", "1", "1", "3", "1", "1", "6", "7", "1", "1", "10", "25", "13", "1", "1", "15", "65", "73", "21", "1", "1", "21", "140", "273", "171", "31", "1", "1", "28", "266", "798", "871", "346", "43", "1", "1", "36", "462", "1974", "3321", "2306", "631", "57", "1", "1", "45", "750", "4326", "10377", "11126", "5335", "1065", "73", "1", "1", "55", "1155", "8646", "28017", "42878", "31795", "11145", "1693", "91", "1" ]
[ "nonn", "tabl" ]
37
0
5
[ "A000012", "A000217", "A001296", "A002061", "A007318", "A024718", "A107963", "A184173", "A382225" ]
null
Vladimir Kruchinin, Mar 19 2025
2025-03-22T17:39:39
oeisdata/seq/A382/A382225.seq
4beb18dd0b7144b7ab700d7b440747da
A382226
Smallest prime in a sequence of n consecutive primes which add to a perfect cube.
[ "3", "439", "4812191", "41051", "1753", "75869", "24359", "1674289", "17509", "6221", "771653", "29863", "6899", "35353", "1073239", "4001", "18959", "1613741", "1033", "12077759", "172433", "1548149", "364079", "199", "4580399", "373", "3847", "411396253", "41863", "1371031", "11491", "135911", "45707", "308149", "364909", "176537", "2089", "32569961", "13619", "625861" ]
[ "nonn" ]
16
2
1
[ "A132955", "A382226", "A382227", "A382228" ]
null
David Dewan, Mar 19 2025
2025-03-25T10:16:30
oeisdata/seq/A382/A382226.seq
30b37bc0e884c0879fdcc38a3381dd0d
A382227
The smallest perfect cube which is a sum of n consecutive primes.
[ "8", "1331", "19248832", "205379", "10648", "531441", "195112", "15069223", "175616", "68921", "9261000", "389017", "97336", "531441", "17173512", "68921", "343000", "30664297", "21952", "253636137", "3796416", "35611289", "8741816", "6859", "119095488", "12167", "110592", "11930499125", "1259712", "42508549", "373248", "4492125", "1560896", "10793861" ]
[ "nonn" ]
16
2
1
[ "A132956", "A382226", "A382227", "A382228" ]
null
David Dewan, Mar 19 2025
2025-03-25T10:14:39
oeisdata/seq/A382/A382227.seq
d4c7b26c2f94cba17cd77aabf4d994d4
A382228
Smallest k such that k^3 is the sum of n consecutive primes.
[ "2", "11", "268", "59", "22", "81", "58", "247", "56", "41", "210", "73", "46", "81", "258", "41", "70", "313", "28", "633", "156", "329", "206", "19", "492", "23", "48", "2285", "108", "349", "72", "165", "116", "221", "236", "187", "44", "1083", "82", "295", "34", "347", "54", "35", "548", "23", "32", "2357", "1170", "37", "632", "813", "1590", "277", "1972", "177" ]
[ "nonn" ]
20
2
1
[ "A000578", "A132957", "A382226", "A382227", "A382228" ]
null
David Dewan, Mar 19 2025
2025-03-25T10:23:02
oeisdata/seq/A382/A382228.seq
f1a1fe9ee23bc11fba62203d6b8ca376
A382229
a(0) = 1; thereafter a(n) is the next larger number that compared to the previous term differs by +-1 in the number of prime factors counted with multiplicity.
[ "1", "2", "4", "5", "6", "7", "9", "11", "14", "17", "21", "23", "25", "27", "33", "37", "38", "41", "46", "47", "49", "50", "51", "52", "54", "63", "65", "66", "69", "70", "74", "75", "77", "78", "81", "92", "93", "97", "106", "107", "111", "113", "115", "116", "118", "124", "126", "130", "132", "138", "140", "147", "150", "153", "155", "157", "158", "163", "166", "167", "169", "170", "177", "179", "183", "186" ]
[ "nonn" ]
19
0
2
[ "A001222", "A071192", "A382229" ]
null
Gordon Hamilton, Mar 19 2025
2025-03-23T14:01:45
oeisdata/seq/A382/A382229.seq
936a3f0018e52abfcd5c0dfc35f0211e
A382230
a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k).
[ "1", "3", "9", "46", "171", "591", "2033", "6714", "21606", "68308", "212370", "651234", "1974113", "5924277", "17623671", "52025858", "152539077", "444530073", "1288396257", "3715833732", "10668907932", "30507914696", "86912853588", "246755125332", "698353551105", "1970673504951", "5545952371509", "15568330002486" ]
[ "nonn", "easy", "changed" ]
32
0
2
[ "A034839", "A108479", "A377145", "A381421", "A382230", "A382470", "A382471", "A382472", "A382473", "A382474" ]
null
Seiichi Manyama, Mar 28 2025
2025-04-22T11:05:40
oeisdata/seq/A382/A382230.seq
71d93dbf234e1c4be8fc46c7ca583030
A382231
Octagonal numbers that are the product of three distinct primes.
[ "645", "1045", "1281", "2465", "2821", "3201", "3605", "7701", "8965", "12545", "15841", "17633", "18565", "20501", "23585", "24661", "25761", "26885", "30401", "34133", "36741", "45141", "51221", "52801", "57685", "59361", "62785", "66305", "68101", "71765", "73633", "89441", "95765", "100101", "116033", "120801", "123221", "125665", "138245" ]
[ "nonn" ]
16
1
1
[ "A000567", "A007304", "A259677", "A382231" ]
null
Massimo Kofler, Mar 19 2025
2025-03-31T21:26:48
oeisdata/seq/A382/A382231.seq
ab078a0a66d2d88933cf0b6b61cf6fd0
A382232
Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial.
[ "1", "1", "1", "1", "1", "3", "3", "1", "1", "9", "26", "26", "9", "1", "1", "23", "165", "387", "387", "165", "23", "1", "1", "53", "860", "4292", "9194", "9194", "4292", "860", "53", "1", "1", "115", "3967", "38885", "160778", "314654", "314654", "160778", "38885", "3967", "115", "1", "1", "241", "17022", "307454", "2291375", "8041695", "14743812", "14743812", "8041695", "2291375", "307454", "17022", "241", "1" ]
[ "nonn", "tabf", "changed" ]
22
0
6
[ "A048617", "A125300", "A165889", "A173018", "A382232" ]
null
Seiichi Manyama, Mar 19 2025
2025-04-25T20:40:30
oeisdata/seq/A382/A382232.seq
013dabaf9fec220127b5909221519840
A382233
Dimensions of the homogeneous component of degree n of the free unital Jordan algebra on 3 generators.
[ "1", "3", "6", "18", "45", "135", "378", "1134", "3324", "9981", "29733", "89280", "267273" ]
[ "nonn", "hard", "more" ]
28
0
2
[ "A001776", "A032120", "A382233" ]
null
Vladimir Dotsenko, Mar 29 2025
2025-04-02T23:20:18
oeisdata/seq/A382/A382233.seq
b63f8716742216b822bc4c354b0057f8
A382234
Decimal expansion of the multiple prime zeta value primezetamult(2, 2).
[ "0", "6", "3", "7", "6", "7", "2", "9", "4", "5", "8", "4", "7", "7", "6", "5", "4", "3", "2", "8", "0", "1", "3", "1", "6", "2", "9", "4", "8", "0", "7", "1", "9", "3", "8", "3", "6", "1", "2", "8", "7", "8", "2", "1", "6", "2", "9", "0", "0", "3", "7", "0", "7", "3", "6", "5", "9", "2", "1", "0", "9", "6", "7", "9", "4", "8", "6", "7", "7", "2", "3", "2", "3", "2", "2", "1", "9", "6", "1", "4", "7", "3", "5", "9", "3", "0", "1", "9", "3", "7", "5", "6", "3", "2", "1", "6", "8", "4", "8", "7", "1", "5", "2", "0", "9", "2" ]
[ "cons", "nonn" ]
19
0
2
[ "A197110", "A382234", "A382235", "A382236" ]
null
Artur Jasinski, Mar 20 2025
2025-04-01T07:29:45
oeisdata/seq/A382/A382234.seq
2515ba5c61eebad4f470691523b85e56
A382235
Decimal expansion of the multiple prime zeta value primezetamult(3, 3).
[ "0", "0", "6", "7", "3", "5", "9", "4", "6", "6", "2", "2", "1", "3", "5", "4", "4", "6", "7", "2", "4", "5", "6", "2", "2", "8", "2", "5", "8", "6", "7", "7", "6", "8", "0", "1", "4", "1", "9", "3", "4", "6", "2", "3", "6", "6", "0", "5", "8", "0", "4", "2", "1", "2", "1", "1", "2", "4", "6", "4", "2", "8", "8", "9", "3", "9", "6", "2", "5", "8", "1", "3", "4", "5", "0", "2", "1", "3", "6", "9", "2", "5", "9", "5", "9", "1", "7", "1", "9", "4", "2", "8", "8", "1", "9", "4", "7", "5", "0", "2", "4", "0", "0", "8", "1", "0", "1" ]
[ "nonn", "cons" ]
9
0
3
[ "A258987", "A382234", "A382235", "A382236" ]
null
Artur Jasinski, Mar 31 2025
2025-04-01T07:33:43
oeisdata/seq/A382/A382235.seq
79da0757e6dbe74d0a3dedabb17a2bdb
A382236
Decimal expansion of the multiple prime zeta value primezetamult(2, 2, 2).
[ "0", "0", "3", "6", "9", "6", "2", "4", "4", "1", "6", "3", "4", "5", "2", "8", "3", "5", "3", "7", "8", "3", "9", "5", "5", "3", "4", "6", "3", "2", "3", "9", "4", "6", "6", "8", "1", "1", "5", "5", "9", "1", "5", "3", "9", "7", "1", "3", "0", "3", "0", "4", "2", "7", "2", "4", "9", "7", "4", "7", "2", "6", "2", "2", "4", "6", "7", "6", "2", "4", "6", "4", "9", "3", "4", "6", "9", "2", "3", "7", "4", "9", "5", "7", "0", "1", "6", "9", "6", "4", "3", "7", "1", "1", "3", "9", "1", "7", "2", "9", "2", "8", "5", "2", "4", "3", "0" ]
[ "nonn", "cons" ]
7
1
3
[ "A381653", "A382234", "A382235", "A382236" ]
null
Artur Jasinski, Apr 01 2025
2025-04-06T21:47:14
oeisdata/seq/A382/A382236.seq
441f62476c0484a17d1b289c168dfa77
A382237
Numbers that are not divisible by the sum of any subset of their digits.
[ "23", "29", "34", "37", "38", "43", "46", "47", "49", "53", "56", "57", "58", "59", "67", "68", "69", "73", "74", "76", "78", "79", "83", "86", "87", "89", "94", "97", "98", "203", "223", "227", "229", "233", "239", "249", "253", "257", "263", "267", "269", "277", "283", "293", "299", "307", "323", "329", "334", "337", "338", "346", "347", "349", "353", "356", "358", "359", "367", "373", "376", "377", "379", "380", "383", "386", "388", "389", "394", "397", "398", "403" ]
[ "nonn", "base" ]
27
1
1
[ "A005349", "A038772", "A065877", "A082943", "A228017", "A382237", "A382239" ]
null
Sergio Pimentel, Mar 19 2025
2025-04-02T10:25:49
oeisdata/seq/A382/A382237.seq
51bcd81b7cdf2de9b3df2c3b3d5b51d7
A382238
a(n) is the smallest prime that begins a sequence of 2n + 1 consecutive primes where all even-indexed terms are balanced primes.
[ "3", "7817", "40039", "296242861", "9387217537", "2136447593347" ]
[ "nonn", "more" ]
17
1
1
[ "A006562", "A382238" ]
null
Jean-Marc Rebert, Mar 19 2025
2025-03-30T22:00:30
oeisdata/seq/A382/A382238.seq
0e2c8f314906870a7f8a178386a10a99
A382239
Numbers not divisible by any of their digits nor by the sum of their digits. Digit 0 is allowed (and does not divide anything).
[ "23", "29", "34", "37", "38", "43", "46", "47", "49", "53", "56", "57", "58", "59", "67", "68", "69", "73", "74", "76", "78", "79", "83", "86", "87", "89", "94", "97", "98", "203", "223", "227", "229", "233", "239", "249", "253", "257", "259", "263", "267", "269", "277", "283", "289", "293", "299", "307", "323", "329", "334", "337", "338", "343", "346", "347", "349", "353", "356", "358", "359", "367", "373", "374", "376" ]
[ "nonn", "base" ]
24
1
1
[ "A038772", "A052383", "A082943", "A382237", "A382239" ]
null
Robert Israel, Mar 19 2025
2025-04-01T17:53:01
oeisdata/seq/A382/A382239.seq
60ef5707785cb9f9e70de41631acea98
A382240
a(n) = Sum_{k=0..n} 3^((n+k-1)*(n-k)/2) * n! / (n-k)!.
[ "1", "2", "11", "168", "7233", "889014", "314965899", "323989244676", "972969439627809", "8566667168429128842", "221877626825222187484203", "16949442370817602102051560384", "3827091229259231090623800852526113", "2558686452439976557585601153755243553406", "5072634396431144733070212976874036427346208619" ]
[ "nonn" ]
6
0
2
[ "A379614", "A382240" ]
null
Vaclav Kotesovec, Mar 19 2025
2025-03-20T10:16:47
oeisdata/seq/A382/A382240.seq
e6c8cb999e49b211477a7345e26ca3af
A382241
Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into at most k parts with 0 <= k <= n.
[ "1", "0", "4", "0", "10", "20", "0", "20", "60", "80", "0", "35", "170", "270", "305", "0", "56", "396", "816", "1016", "1072", "0", "84", "868", "2238", "3188", "3538", "3622", "0", "120", "1716", "5616", "9196", "10996", "11556", "11676", "0", "165", "3235", "13140", "24975", "32400", "35445", "36285", "36450", "0", "220", "5720", "28900", "63680", "90700", "104060", "108820", "110020", "110240" ]
[ "nonn", "tabl" ]
14
0
3
[ "A000292", "A026820", "A255050", "A381891", "A382045", "A382241" ]
null
Peter Dolland, Mar 19 2025
2025-03-26T15:27:50
oeisdata/seq/A382/A382241.seq
45dd85edc7cb49605f62868568ca2178
A382242
Decimal expansion of Gamma(1/4)^2/(8*sqrt(2*Pi)).
[ "6", "5", "5", "5", "1", "4", "3", "8", "8", "5", "7", "3", "0", "2", "9", "9", "5", "2", "6", "1", "6", "2", "0", "9", "8", "9", "7", "4", "7", "2", "7", "7", "9", "8", "5", "3", "4", "2", "0", "6", "8", "8", "7", "3", "7", "8", "5", "7", "9", "0", "5", "7", "9", "0", "7", "0", "4", "2", "0", "5", "4", "2", "5", "9", "5", "0", "1", "9", "7", "6", "4", "6", "7", "6", "7", "6", "0", "3", "5", "6", "2", "5", "5", "7", "5", "7", "3", "8", "8", "3", "2", "4", "0", "3", "5", "7", "2", "7", "3", "3", "6", "1", "5", "3", "3", "9", "3", "8", "1", "6", "7", "9", "4", "5", "8" ]
[ "nonn", "cons" ]
14
0
1
[ "A005408", "A005843", "A034937", "A068466", "A231863", "A382242" ]
null
R. J. Mathar, Mar 19 2025
2025-03-20T09:42:54
oeisdata/seq/A382/A382242.seq
12613af8ea29312537d6f3bd636e290a
A382243
Decimal expansion of the infinite product of ((k+1/2)/(k+1))^Jacobi(-1,k), k>=0.
[ "3", "6", "3", "5", "7", "7", "5", "5", "1", "7", "2", "6", "9", "5", "8", "1", "3", "2", "2", "0", "6", "7", "3", "9", "6", "5", "6", "6", "2", "7", "4", "2", "4", "7", "8", "8", "7", "5", "4", "7", "5", "8", "7", "8", "9", "9", "8", "4", "9", "5", "3", "2", "0", "0", "7", "4", "0", "3", "8", "0", "2", "7", "6", "4", "9", "6", "7", "0", "4", "2", "5", "3", "8", "9", "2", "6", "3", "4", "4", "7", "4", "8", "0", "9", "0", "7", "1", "9", "2", "9", "4", "2", "1", "5", "2", "0", "7", "7", "5", "9", "6", "5", "8", "7", "6", "4", "1", "9", "8", "2", "6", "0", "1", "1", "1" ]
[ "nonn", "cons" ]
18
0
1
[ "A034947", "A382243" ]
null
R. J. Mathar, Mar 19 2025
2025-03-20T10:40:52
oeisdata/seq/A382/A382243.seq
60fc402f8d895b799bec373f30a8fbcc
A382244
Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, n*a(n) is a triangular number (A000217).
[ "0", "1", "3", "2", "7", "9", "6", "4", "15", "5", "12", "21", "10", "25", "27", "8", "31", "33", "35", "37", "39", "11", "24", "45", "22", "13", "30", "14", "42", "57", "26", "16", "63", "17", "67", "18", "56", "19", "75", "20", "52", "81", "28", "85", "87", "23", "51", "93", "95", "97", "99", "46", "40", "105", "60", "90", "36", "29", "66", "117", "54", "121", "69", "32", "127", "84", "58" ]
[ "nonn" ]
9
0
3
[ "A000217", "A061782", "A382244" ]
null
Rémy Sigrist, Mar 19 2025
2025-03-20T09:28:48
oeisdata/seq/A382/A382244.seq
fd77b544b84cc6f31c428fece421b0f7
A382245
Lexicographically earliest sequence of distinct nonnegative integers such that the product of two consecutive terms is always a triangular number (A000217).
[ "0", "1", "3", "2", "5", "9", "4", "7", "13", "6", "11", "21", "10", "12", "23", "45", "14", "15", "8", "17", "33", "16", "31", "61", "30", "26", "51", "25", "49", "24", "22", "43", "85", "42", "28", "55", "18", "35", "44", "87", "19", "37", "73", "36", "56", "111", "98", "195", "62", "69", "34", "39", "20", "41", "81", "40", "52", "103", "205", "66", "58", "115", "57", "29", "59", "117" ]
[ "nonn" ]
11
0
3
[ "A000217", "A026741", "A077220", "A213005", "A382244", "A382245" ]
null
Rémy Sigrist, Mar 19 2025
2025-03-21T02:31:20
oeisdata/seq/A382/A382245.seq
c3511327b2effd97c64313aaf70d3602
A382246
Smallest number k such that k^n - 6 is prime.
[ "8", "3", "2", "5", "5", "5", "19", "85", "7", "5", "19", "275", "23", "43", "53", "455", "65", "23", "23", "175", "7", "65", "47", "295", "7", "143", "49", "115", "23", "355", "185", "305", "7", "55", "319", "85", "113", "25", "329", "505", "25", "187", "205", "25", "295", "437", "17", "2285", "7", "583", "35", "1375", "5", "7", "35", "895", "235", "277", "197", "695", "203", "145", "43", "35", "437", "215" ]
[ "nonn" ]
23
1
1
[ "A028879", "A239414", "A380905", "A382246" ]
null
Jakub Buczak, Mar 19 2025
2025-03-29T18:50:05
oeisdata/seq/A382/A382246.seq
15961bd3bae4b80f09b70b1bcd69aada
A382247
Number of fixed points of solid partitions under twice the 'time-lapse' operation.
[ "1", "0", "2", "2", "3", "4", "7", "12", "16", "22", "32", "50", "68", "96", "134", "195", "261", "364", "497", "701", "941", "1288", "1738" ]
[ "nonn", "hard", "more" ]
7
1
3
[ "A000293", "A094504", "A094508", "A096272", "A096573", "A096574", "A096575", "A096576", "A096578", "A096579", "A096580", "A096581", "A119266", "A382247" ]
null
Wouter Meeussen, Mar 19 2025
2025-03-20T12:04:24
oeisdata/seq/A382/A382247.seq
00010e93f43c16577e53dbfdb298e017
A382248
Smallest number k that is neither squarefree nor a prime power such that k is coprime to n.
[ "12", "45", "20", "45", "12", "175", "12", "45", "20", "63", "12", "175", "12", "45", "28", "45", "12", "175", "12", "63", "20", "45", "12", "175", "12", "45", "20", "45", "12", "539", "12", "45", "20", "45", "12", "175", "12", "45", "20", "63", "12", "275", "12", "45", "28", "45", "12", "175", "12", "63", "20", "45", "12", "175", "12", "45", "20", "45", "12", "539", "12", "45", "20" ]
[ "nonn", "easy" ]
39
1
1
[ "A002110", "A007947", "A053669", "A126706", "A380539", "A382248" ]
null
Michael De Vlieger, Mar 31 2025
2025-04-05T10:58:44
oeisdata/seq/A382/A382248.seq
abb6518aecb5592d4a6ca89bf88f8c14