sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-28 00:58:08
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382149 | Primes p such that the elliptic curve X_0^{+}(p) has genus 2. | [
"67",
"73",
"103",
"107",
"167",
"191"
] | [
"nonn",
"fini",
"full"
] | 5 | 1 | 1 | [
"A382149",
"A382150"
] | null | N. J. A. Sloane, Mar 22 2025 | 2025-03-22T13:32:46 | oeisdata/seq/A382/A382149.seq | f4a7f323661b5ef2a668cbe8e8c365f0 |
A382150 | Primes p such that the elliptic curve X_0^{+}(p) has genus 3. | [
"97",
"109",
"113",
"127",
"139",
"149",
"151",
"179",
"239"
] | [
"nonn",
"fini",
"full"
] | 7 | 1 | 1 | [
"A382149",
"A382150"
] | null | N. J. A. Sloane, Mar 22 2025 | 2025-03-22T13:33:54 | oeisdata/seq/A382/A382150.seq | 17f8eb384b27f9265fd39b19f6e44b5c |
A382151 | Primes p such that some elliptic curve over Q admits a Q-rational p-isogeny. | [
"2",
"3",
"5",
"7",
"11",
"13",
"17",
"19",
"37",
"43",
"67",
"163"
] | [
"nonn",
"fini",
"full"
] | 6 | 1 | 1 | [
"A382151",
"A382152"
] | null | N. J. A. Sloane, Mar 22 2025 | 2025-03-22T13:45:45 | oeisdata/seq/A382/A382151.seq | e6ce7b08c98c110e912a07a3a3064076 |
A382152 | Numbers k such that there is an elliptic curve defined over Q with a Q-rational cyclic isogeny of degree k. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"21",
"25",
"27",
"37",
"43",
"67",
"163"
] | [
"nonn",
"fini",
"full"
] | 7 | 1 | 2 | [
"A382151",
"A382152"
] | null | N. J. A. Sloane, Mar 22 2025 | 2025-03-22T13:55:53 | oeisdata/seq/A382/A382152.seq | 76021c83863deaac4079b1dc0e5293f4 |
A382153 | Numbers k such that there is an exceptional k-isogeny arising from the rational points on an elliptic curve X_0^{+}(k) of genus at most 6. | [
"73",
"91",
"103",
"125",
"137",
"191",
"311"
] | [
"nonn",
"fini",
"full"
] | 7 | 1 | 1 | null | null | N. J. A. Sloane, Mar 22 2025 | 2025-03-22T14:17:24 | oeisdata/seq/A382/A382153.seq | aaf778167f5b3485c48577e98482e73f |
A382154 | a(0) = 1; thereafter a(n) = 2*n if n even or 4*n if n odd. | [
"1",
"4",
"4",
"12",
"8",
"20",
"12",
"28",
"16",
"36",
"20",
"44",
"24",
"52",
"28",
"60",
"32",
"68",
"36",
"76",
"40",
"84",
"44",
"92",
"48",
"100",
"52",
"108",
"56",
"116",
"60",
"124",
"64",
"132",
"68",
"140",
"72",
"148",
"76",
"156",
"80",
"164",
"84",
"172",
"88",
"180",
"92",
"188",
"96",
"196",
"100",
"204",
"104",
"212",
"108",
"220",
"112",
"228",
"116",
"236",
"120",
"244",
"124",
"252",
"128",
"260",
"132",
"268",
"136",
"276",
"140",
"284",
"144",
"292"
] | [
"nonn"
] | 40 | 0 | 2 | [
"A319384",
"A382154",
"A382155",
"A382156"
] | null | N. J. A. Sloane, Mar 23 2025 | 2025-03-24T13:51:53 | oeisdata/seq/A382/A382154.seq | 87ff024c3e8ac096f6b6fd2f7a6b3ede |
A382155 | a(n) = (n+1)! if n <= 2; thereafter a(n) = 4*n if n even or 2*n if n odd. | [
"1",
"2",
"6",
"6",
"16",
"10",
"24",
"14",
"32",
"18",
"40",
"22",
"48",
"26",
"56",
"30",
"64",
"34",
"72",
"38",
"80",
"42",
"88",
"46",
"96",
"50",
"104",
"54",
"112",
"58",
"120",
"62",
"128",
"66",
"136",
"70",
"144",
"74",
"152",
"78",
"160",
"82",
"168",
"86",
"176",
"90",
"184",
"94",
"192",
"98",
"200",
"102",
"208",
"106",
"216",
"110",
"224",
"114",
"232",
"118",
"240",
"122",
"248",
"126",
"256",
"130",
"264",
"134",
"272",
"138",
"280",
"142",
"288",
"146",
"296"
] | [
"nonn"
] | 35 | 0 | 2 | [
"A319384",
"A382154",
"A382155",
"A382156"
] | null | N. J. A. Sloane, Mar 23 2025 | 2025-03-24T11:53:50 | oeisdata/seq/A382/A382155.seq | 27eee300a4c9a684c66bc0d3a0001d13 |
A382156 | Partial sums of A382155. | [
"1",
"3",
"9",
"15",
"31",
"41",
"65",
"79",
"111",
"129",
"169",
"191",
"239",
"265",
"321",
"351",
"415",
"449",
"521",
"559",
"639",
"681",
"769",
"815",
"911",
"961",
"1065",
"1119",
"1231",
"1289",
"1409",
"1471",
"1599",
"1665",
"1801",
"1871",
"2015",
"2089",
"2241",
"2319",
"2479",
"2561",
"2729",
"2815",
"2991",
"3081",
"3265",
"3359",
"3551",
"3649",
"3849",
"3951",
"4159",
"4265",
"4481",
"4591",
"4815",
"4929",
"5161",
"5279",
"5519"
] | [
"nonn"
] | 11 | 0 | 2 | [
"A319384",
"A382154",
"A382155",
"A382156"
] | null | N. J. A. Sloane, Mar 23 2025. | 2025-03-24T09:24:16 | oeisdata/seq/A382/A382156.seq | 5912cc35b29a2aeac883f8821fa8ceb2 |
A382157 | Number of n-node digraphs without loops, not necessarily connected, which are squares. | [
"1",
"1",
"3",
"9",
"46",
"473",
"13763",
"1121383"
] | [
"nonn",
"more"
] | 10 | 0 | 3 | [
"A382157",
"A382158",
"A382159",
"A382180"
] | null | N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025. | 2025-03-24T19:25:22 | oeisdata/seq/A382/A382157.seq | 5babe6f5c73704ef7da47359a693a9b4 |
A382158 | Number of n-node oriented graphs (no loops or cycles of length 2), not necessarily connected, which are squares. | [
"1",
"1",
"2",
"6",
"26",
"209",
"4115",
"206205",
"24982238"
] | [
"nonn",
"more"
] | 9 | 0 | 3 | [
"A382157",
"A382158",
"A382159",
"A382180"
] | null | N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025. | 2025-03-24T19:25:44 | oeisdata/seq/A382/A382158.seq | 2bde67181a629c61e3037881caaf6b12 |
A382159 | Number of n-node acyclic digraphs, not necessarily connected, which are squares. | [
"1",
"1",
"2",
"5",
"17",
"81",
"600",
"7182",
"142425",
"4664203",
"4071974770"
] | [
"nonn",
"more"
] | 15 | 0 | 3 | [
"A382157",
"A382158",
"A382159",
"A382180"
] | null | N. J. A. Sloane, Mar 24 2025, based on an email from Brendan McKay, Mar 18 2025. | 2025-03-24T19:26:04 | oeisdata/seq/A382/A382159.seq | 9a92ae8b84da80a39eae589e021cf323 |
A382160 | Kaprekar numbers according to the definition in A006886 that are not in A053816. | [
"4879",
"5292",
"38962",
"627615",
"5479453",
"8161912",
"243902440",
"665188470",
"867208672",
"909090909",
"2646002646",
"7359343993",
"8975672343",
"19481019481",
"65098401732",
"71428071429",
"74074074075",
"74761738129",
"81433418067",
"81933418567",
"90909090910",
"93555093555",
"98268434902",
"218400870420"
] | [
"nonn",
"base"
] | 15 | 1 | 1 | [
"A006886",
"A053816",
"A382160"
] | null | N. J. A. Sloane, Mar 25 2025 | 2025-03-26T16:17:47 | oeisdata/seq/A382/A382160.seq | e305c7970459de79560545ff7d41ed1a |
A382161 | "Repunit" Kaprekar numbers. | [
"1",
"1111111111",
"1111111111111111111",
"1111111111111111111111111111",
"1111111111111111111111111111111111111",
"1111111111111111111111111111111111111111111111"
] | [
"nonn",
"base",
"more"
] | 10 | 1 | 2 | [
"A006886",
"A145875",
"A382161"
] | null | N. J. A. Sloane, Mar 25 2025 | 2025-03-26T08:27:13 | oeisdata/seq/A382/A382161.seq | db0b223b4958b41be980d704598effaf |
A382162 | Number of pairs (i,j), 1 <= i < j <= n such that A019444(i) < A019444(j). | [
"0",
"1",
"2",
"5",
"9",
"12",
"18",
"22",
"30",
"39",
"45",
"56",
"68",
"76",
"90",
"99",
"115",
"132",
"143",
"162",
"174",
"195",
"217",
"231",
"255",
"280",
"296",
"323",
"340",
"369",
"399",
"418",
"450",
"483",
"504",
"539",
"561",
"598",
"636",
"660",
"700",
"725",
"767",
"810",
"837",
"882",
"928",
"957",
"1005",
"1035",
"1085",
"1136",
"1168",
"1221",
"1254",
"1309",
"1365",
"1400",
"1458",
"1517",
"1554",
"1615",
"1653",
"1716",
"1780",
"1820"
] | [
"nonn"
] | 8 | 1 | 3 | [
"A019444",
"A382162"
] | null | N. J. A. Sloane, Mar 31 2025 | 2025-04-01T03:29:01 | oeisdata/seq/A382/A382162.seq | 7cf0d59d482b3a967ff565c53d68aad2 |
A382163 | Palindromic Kaprekar numbers. | [
"1",
"9",
"55",
"99",
"999",
"7777",
"9999",
"22222",
"99999",
"999999",
"4444444",
"9999999",
"88888888",
"99999999",
"909090909",
"999999999",
"1111111111",
"9999999999",
"55555555555",
"99999999999",
"999999999999",
"7777777777777",
"9999999999999",
"22222222222222",
"99999999999999",
"999999999999999",
"4444444444444444",
"9999999999999999",
"88888888888888888"
] | [
"nonn",
"base"
] | 19 | 1 | 2 | [
"A002113",
"A006886",
"A382163",
"A382164"
] | null | N. J. A. Sloane, Mar 26 2025. | 2025-03-26T16:17:38 | oeisdata/seq/A382/A382163.seq | ea55c398dd94738c3a5ba337e6702789 |
A382164 | Palindromic Kaprekar numbers that are not repdigit Kaprekar numbers. | [
"909090909",
"9090909090909090909090909090909",
"81188118811881188118811881188118",
"545545545545545545545545545545545",
"277227722772277227722772277227722772",
"505050505050505050505050505050505050505",
"4040404040404040404040404040404040404040404040404"
] | [
"nonn",
"base"
] | 9 | 1 | 1 | [
"A006886",
"A145875",
"A382163",
"A382164"
] | null | N. J. A. Sloane, Mar 26 2025 | 2025-03-26T08:28:40 | oeisdata/seq/A382/A382164.seq | 45056ec7cc9a39b3f74717018920d30d |
A382165 | Kaprekar numbers (A006886) that are divisible by the sum of their digits. | [
"1",
"9",
"45",
"999",
"2223",
"4950",
"5050",
"5292",
"7272",
"142857",
"148149",
"187110",
"356643",
"466830",
"499500",
"500500",
"538461",
"627615",
"648648",
"681318",
"791505",
"818181",
"961038",
"994708",
"5555556",
"11111112",
"16590564",
"30884184",
"36363636",
"49995000",
"50005000",
"55474452",
"74747475",
"234567901",
"432432432",
"665188470",
"999999999",
"2020202020",
"3846956652",
"4132841328",
"4999950000",
"5000050000"
] | [
"nonn",
"base"
] | 10 | 1 | 2 | [
"A005349",
"A006886",
"A382165"
] | null | N. J. A. Sloane, Mar 26 2025 | 2025-03-26T16:17:33 | oeisdata/seq/A382/A382165.seq | e0c8f16ba6f7a30e1db4b8345e813ab5 |
A382166 | Self-numbers (A003052) that are cubes. | [
"1",
"64",
"512",
"1728",
"35937",
"50653",
"195112",
"287496",
"300763",
"314432",
"681472",
"804357",
"884736",
"1000000",
"2248091",
"2744000",
"3241792",
"4173281",
"4913000",
"5929741",
"6434856",
"6859000",
"10077696",
"10360232",
"12167000",
"13481272",
"15813251",
"18399744",
"19902511",
"22188041",
"27270901",
"29791000",
"36264691",
"37933056",
"47045881"
] | [
"nonn",
"base"
] | 9 | 1 | 2 | [
"A000578",
"A003052",
"A171671",
"A382166"
] | null | N. J. A. Sloane, Mar 26 2025 | 2025-03-26T17:49:17 | oeisdata/seq/A382/A382166.seq | f77a8eedead3cfc0e82d10c92b32cc60 |
A382167 | Repdigit self-numbers that are not in A337208. | [
"3",
"5",
"7",
"9",
"222",
"88888",
"666666",
"7777777",
"44444444",
"555555555",
"3333333333",
"777777777777",
"999999999999",
"44444444444444",
"222222222222222",
"5555555555555555",
"333333333333333333",
"8888888888888888888",
"666666666666666666666",
"9999999999999999999999",
"77777777777777777777777",
"4444444444444444444444444"
] | [
"nonn",
"base"
] | 5 | 1 | 1 | [
"A003052",
"A337208",
"A382167"
] | null | N. J. A. Sloane, Mar 26 2025 | 2025-03-26T09:12:41 | oeisdata/seq/A382/A382167.seq | 57e0528134905db17a920a5dd247f98a |
A382168 | Number of triples (i,j,k), 1 <= i < j < k <= n such that A019444(i) < A019444(k) < A019444(j). | [
"0",
"0",
"1",
"1",
"1",
"7",
"7",
"17",
"17",
"17",
"38",
"38",
"38",
"74",
"74",
"119",
"119",
"119",
"185",
"185",
"263",
"263",
"263",
"368",
"368",
"368",
"504",
"504",
"657",
"657",
"657",
"847",
"847",
"847",
"1078",
"1078",
"1331",
"1331",
"1331",
"1631",
"1631",
"1956",
"1956",
"1956",
"2334",
"2334",
"2334",
"2769",
"2769",
"3234",
"3234",
"3234",
"3762",
"3762",
"4323",
"4323",
"4323",
"4953",
"4953",
"4953",
"5656",
"5656",
"6397",
"6397",
"6397"
] | [
"nonn"
] | 9 | 1 | 6 | [
"A000108",
"A019444",
"A382162",
"A382168",
"A382169"
] | null | N. J. A. Sloane, Mar 31 2025 | 2025-03-31T22:30:30 | oeisdata/seq/A382/A382168.seq | 593cddc8a1caa170f664b84b88cc74ee |
A382169 | A382168 with duplicates removed. | [
"0",
"1",
"7",
"17",
"38",
"74",
"119",
"185",
"263",
"368",
"504",
"657",
"847",
"1078",
"1331",
"1631",
"1956",
"2334",
"2769",
"3234",
"3762",
"4323",
"4953",
"5656",
"6397",
"7217",
"8120",
"9066",
"10101",
"11182",
"12358",
"13633",
"14959",
"16390",
"17930",
"19526",
"21237",
"23007",
"24898",
"26914",
"28994",
"31205",
"33483",
"35898"
] | [
"nonn"
] | 12 | 1 | 3 | [
"A000217",
"A019444",
"A382168",
"A382169"
] | null | N. J. A. Sloane, Mar 31 2025 | 2025-04-01T19:33:07 | oeisdata/seq/A382/A382169.seq | 1c2d54dff58b81ed26f7cb28aef6f152 |
A382170 | a(0) = 0; for n >= 1, one-eighth of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(5^n). | [
"0",
"1",
"4",
"13",
"80",
"401",
"1924",
"9773",
"48960",
"243841",
"1220644",
"6105133",
"30514640",
"152585681",
"762958564",
"3814670093",
"19073445120",
"95367649921",
"476836927684",
"2384185160653",
"11920931368400",
"59604643100561",
"298023215160004",
"1490116145192813",
"7450580588892480",
"37252902871641601",
"186264515189207524"
] | [
"nonn",
"easy"
] | 14 | 0 | 3 | [
"A382170",
"A382171"
] | null | Jianing Song, Mar 17 2025 | 2025-03-18T03:08:20 | oeisdata/seq/A382/A382170.seq | 4e0049bc2ed62fe8ffd01b0c0b3c0439 |
A382171 | a(0) = 0; for n >= 1, one quarter of the number of points on the elliptic curve y^2 = x^3 - x defined over GF(3^n). | [
"0",
"1",
"4",
"7",
"16",
"61",
"196",
"547",
"1600",
"4921",
"14884",
"44287",
"132496",
"398581",
"1196836",
"3587227",
"10758400",
"32285041",
"96864964",
"290565367",
"871666576",
"2615088301",
"7845353476",
"23535794707",
"70607118400",
"211822152361",
"635467254244",
"1906399371247",
"5719195722256",
"17157594341221",
"51472790198116"
] | [
"nonn",
"easy"
] | 16 | 0 | 3 | [
"A382170",
"A382171"
] | null | Jianing Song, Mar 17 2025 | 2025-03-18T03:08:04 | oeisdata/seq/A382/A382171.seq | a36e8ab039afad6e0110c83eed36f5da |
A382172 | Irregular triangle read by rows in which row n contains the digits of the period of 1/n when expanded in golden ratio base. | [
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0"
] | [
"nonn",
"tabf",
"easy",
"base"
] | 9 | 1 | null | [
"A001175",
"A001622",
"A055778",
"A173856",
"A173857",
"A173858",
"A173859",
"A173860",
"A173861",
"A173864",
"A294168",
"A354948",
"A382172",
"A382173",
"A382174",
"A382175",
"A382176"
] | null | Amiram Eldar, Mar 17 2025 | 2025-03-19T09:04:04 | oeisdata/seq/A382/A382172.seq | 147babb374a1bb3c9a592991250b700e |
A382173 | a(n) is the sum of row n of A382172. | [
"0",
"1",
"2",
"1",
"6",
"7",
"4",
"2",
"6",
"16",
"1",
"5",
"8",
"14",
"10",
"5",
"10",
"6",
"3",
"15",
"2",
"7",
"13",
"4",
"26",
"24",
"19",
"9",
"1",
"31",
"6",
"10",
"8",
"10",
"20",
"4",
"22",
"2",
"13",
"14",
"11",
"11",
"24",
"5",
"31",
"13",
"8",
"4",
"30",
"80",
"17",
"20",
"30",
"18",
"2",
"11",
"17",
"9",
"14",
"30",
"16",
"5",
"10",
"25",
"36",
"29",
"38",
"6",
"9",
"63",
"16",
"2",
"40",
"64"
] | [
"nonn",
"easy",
"base"
] | 7 | 1 | 3 | [
"A000032",
"A002878",
"A007733",
"A055778",
"A093960",
"A276350",
"A382172",
"A382173",
"A382174",
"A382175",
"A382176"
] | null | Amiram Eldar, Mar 17 2025 | 2025-03-19T09:03:57 | oeisdata/seq/A382/A382173.seq | 7b91c5f38f6bde981ed55b832486bafb |
A382174 | Numbers k such that A382173(k) >= k. | [
"5",
"6",
"10",
"14",
"25",
"30",
"50",
"125",
"150",
"250",
"625",
"750",
"1250",
"3125",
"3750",
"6250",
"15625",
"18750",
"31250",
"78125"
] | [
"nonn",
"base",
"more"
] | 5 | 1 | 1 | [
"A382172",
"A382173",
"A382174",
"A382175",
"A382176"
] | null | Amiram Eldar, Mar 17 2025 | 2025-03-19T09:03:51 | oeisdata/seq/A382/A382174.seq | 5dd7643a78e0c6cfeb64f29a2370a747 |
A382175 | Indices of records in A382173. | [
"1",
"2",
"3",
"5",
"6",
"10",
"25",
"30",
"50",
"98",
"125",
"150",
"194",
"206",
"243",
"250",
"490",
"554",
"566",
"625",
"750",
"1030",
"1046",
"1094",
"1154",
"1214",
"1226",
"1250",
"2450",
"2738",
"2846",
"2894",
"2906",
"3086",
"3125",
"3750",
"4802",
"5534",
"5594",
"5606",
"5666",
"5714",
"5770",
"5774",
"5834",
"5906",
"5990",
"6070",
"6074",
"6130"
] | [
"nonn",
"base"
] | 8 | 1 | 2 | [
"A001175",
"A326612",
"A382172",
"A382173",
"A382174",
"A382175",
"A382176"
] | null | Amiram Eldar, Mar 17 2025 | 2025-03-19T09:03:45 | oeisdata/seq/A382/A382175.seq | d5f50416a988d2bf7e81d98b3d32dafe |
A382176 | Numbers k such that the period of 1/k when expanded in golden ratio base is palindromic. | [
"1",
"2",
"36",
"38",
"644",
"646",
"682",
"11556",
"11558",
"11592",
"12198",
"12238"
] | [
"nonn",
"base",
"more"
] | 5 | 1 | 2 | [
"A330722",
"A362781",
"A373085",
"A382172",
"A382173",
"A382174",
"A382175",
"A382176"
] | null | Amiram Eldar, Mar 17 2025 | 2025-03-19T09:03:40 | oeisdata/seq/A382/A382176.seq | f635009e3762b9133365fa517ab0f515 |
A382177 | a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n while the remaining digits are zeros. | [
"2",
"2",
"3",
"10",
"3",
"312",
"4",
"18",
"18",
"96",
"96",
"600",
"4",
"6168960",
"6120",
"18",
"18",
"11017036800",
"4",
"56229997824000",
"114",
"760",
"68947200",
"18",
"5",
"14544",
"141120",
"192",
"13320",
"9092075324665919034015350784000000",
"28",
"520412336961032355840000",
"27",
"1400",
"199584000",
"116496",
"180"
] | [
"nonn",
"base"
] | 8 | 0 | 1 | [
"A153880",
"A382177",
"A382178"
] | null | Rémy Sigrist, Mar 17 2025 | 2025-03-20T09:29:36 | oeisdata/seq/A382/A382177.seq | 6eeecbb636fac53c03ed015bdccd28ea |
A382178 | a(n) is the least k > 1 such that the factorial base expansion of k*n starts with that of n. | [
"2",
"2",
"3",
"3",
"3",
"3",
"4",
"18",
"18",
"17",
"17",
"16",
"4",
"19",
"19",
"18",
"18",
"101",
"4",
"115",
"114",
"110",
"110",
"18",
"5",
"203",
"199",
"192",
"189",
"183",
"28",
"187",
"27",
"179",
"177",
"1341",
"180",
"176",
"26",
"170",
"168",
"165",
"1320",
"168",
"1277",
"1251",
"162",
"159",
"5",
"1649",
"204",
"1598",
"1579",
"1551",
"200",
"197",
"195"
] | [
"nonn",
"base"
] | 8 | 0 | 1 | [
"A153880",
"A382177",
"A382178"
] | null | Rémy Sigrist, Mar 17 2025 | 2025-03-20T09:29:28 | oeisdata/seq/A382/A382178.seq | 9f98cbbcfe7dcafc7ac5f2c90903e22e |
A382179 | Numbers k such that for each digit of k, 2*k*(digit) + 1 is prime. | [
"1",
"3",
"6",
"9",
"11",
"14",
"15",
"22",
"24",
"25",
"27",
"28",
"33",
"44",
"54",
"63",
"75",
"78",
"81",
"88",
"99",
"111",
"119",
"131",
"141",
"153",
"168",
"173",
"219",
"249",
"252",
"255",
"279",
"282",
"322",
"325",
"333",
"357",
"363",
"414",
"441",
"459",
"474",
"491",
"538",
"553",
"558",
"565",
"611",
"666",
"674",
"699",
"794",
"797",
"828",
"831",
"832",
"858",
"895",
"924",
"947",
"955"
] | [
"nonn",
"base"
] | 43 | 1 | 2 | [
"A000040",
"A382127",
"A382179",
"A382198",
"A382199"
] | null | Jakub Buczak, Mar 17 2025 | 2025-03-30T08:17:02 | oeisdata/seq/A382/A382179.seq | bd03067077b2912d5b500b8de8e72d6a |
A382180 | Number of unlabeled connected graphs with n vertices which are squares. | [
"1",
"1",
"1",
"1",
"2",
"4",
"13",
"42",
"206",
"1310",
"12622",
"180700",
"3925282"
] | [
"nonn",
"more"
] | 23 | 0 | 5 | [
"A000055",
"A001349",
"A382180",
"A382181",
"A382194"
] | null | Brendan McKay and Sean A. Irvine, Mar 17 2025 | 2025-03-24T14:00:32 | oeisdata/seq/A382/A382180.seq | e8317bd9731e2ab6e208a6123cbe039e |
A382181 | Number of unlabeled graphs with n vertices (including disconnected graphs) which are squares. | [
"1",
"1",
"2",
"3",
"6",
"11",
"28",
"77",
"307",
"1688",
"14620",
"197050",
"4137271"
] | [
"nonn",
"more"
] | 13 | 0 | 3 | [
"A382180",
"A382181"
] | null | Brendan McKay and Sean A. Irvine, Mar 17 2025 | 2025-03-18T21:40:11 | oeisdata/seq/A382/A382181.seq | 80e139cbac52eef46725f06a19ce8a17 |
A382182 | Lexicographically earliest increasing sequence starting with a(0) = 1 such that the polynomial which interpolates the first k values has degree k-1 and only integer coefficients. | [
"1",
"2",
"5",
"16",
"17",
"86",
"1237",
"1940",
"25601",
"617482",
"1386821",
"25329272",
"815052625",
"2379750686",
"55319082197",
"2225093600956",
"7995962217857",
"225701855249810",
"10894058270134021",
"46488524334434912",
"1543800689908468241",
"86934584995669200742",
"429553964850178236245",
"16404426130967383104356"
] | [
"nonn"
] | 20 | 0 | 2 | [
"A000522",
"A182386",
"A382182"
] | null | Thomas Scheuerle, Mar 17 2025 | 2025-03-19T10:18:17 | oeisdata/seq/A382/A382182.seq | 2df4a0865d33ac81495893fa54e385bd |
A382183 | Binary sequence linking A105774 and A382113. | [
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1"
] | [
"nonn"
] | 10 | 1 | null | [
"A105774",
"A382113",
"A382183"
] | null | Jeffrey Shallit, Mar 17 2025 | 2025-03-19T10:20:57 | oeisdata/seq/A382/A382183.seq | 1a66e5b1c5f4207b02c39ed958d422c7 |
A382184 | a(n) is the least k >= 0 such that the factorial base expansion of n starts with that of k while the remaining digits are zeros. | [
"0",
"1",
"1",
"3",
"4",
"5",
"1",
"7",
"3",
"9",
"10",
"11",
"4",
"13",
"5",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"1",
"25",
"7",
"27",
"28",
"29",
"3",
"31",
"9",
"33",
"34",
"35",
"10",
"37",
"11",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"4",
"49",
"13",
"51",
"52",
"53",
"5",
"55",
"15",
"57",
"58",
"59",
"16",
"61",
"17",
"63",
"64",
"65",
"66",
"67",
"68",
"69"
] | [
"nonn",
"base"
] | 9 | 0 | 4 | [
"A000265",
"A004151",
"A153880",
"A273670",
"A382177",
"A382184",
"A382217"
] | null | Rémy Sigrist, Mar 17 2025 | 2025-03-20T09:29:22 | oeisdata/seq/A382/A382184.seq | 7a7d0c32be1c3a88f6eb3963ac79c827 |
A382185 | a(n) is the n-th tribonacci number modulo the n-th prime. | [
"0",
"1",
"1",
"2",
"4",
"7",
"13",
"5",
"21",
"23",
"25",
"15",
"12",
"24",
"13",
"9",
"45",
"56",
"16",
"35",
"20",
"71",
"47",
"9",
"40",
"80",
"18",
"46",
"75",
"101",
"55",
"48",
"65",
"36",
"142",
"34",
"91",
"0",
"43",
"147",
"118",
"41",
"175",
"24",
"131",
"152",
"189",
"213",
"116",
"201",
"116",
"66",
"73",
"9",
"0",
"53",
"210",
"239",
"167",
"171",
"87",
"262",
"251",
"111",
"115",
"69",
"284",
"186",
"211",
"321",
"331",
"135"
] | [
"nonn",
"look",
"easy",
"changed"
] | 23 | 1 | 4 | [
"A000040",
"A000073",
"A072123",
"A382185"
] | null | Michael Figelius, Mar 17 2025 | 2025-04-15T16:37:50 | oeisdata/seq/A382/A382185.seq | a11651b1b2d315e86400ceab2f481601 |
A382186 | Prime numbers that are the sum of the m-th prime and the m-th semiprime for some m. | [
"17",
"41",
"71",
"131",
"281",
"331",
"353",
"397",
"449",
"487",
"563",
"953",
"1279",
"1289",
"1409",
"1627",
"2621",
"2999",
"3533",
"3631",
"3697",
"3989",
"4057",
"4133",
"4523",
"4603",
"4733",
"4919",
"5273",
"5591",
"5641",
"6211",
"6247",
"6269",
"6299",
"6469",
"6803",
"7753",
"7879",
"7937",
"8353",
"8543",
"8971",
"8999",
"9041",
"9181",
"9413",
"9479",
"9787",
"9887",
"9941",
"10487"
] | [
"nonn"
] | 12 | 1 | 1 | [
"A000040",
"A001358",
"A092108",
"A133796",
"A382186"
] | null | Zak Seidov and Robert Israel, Mar 18 2025 | 2025-03-20T13:59:08 | oeisdata/seq/A382/A382186.seq | bd21ba2f73a59ffbbe33fe18caf2b99e |
A382187 | Expansion of 1/(1 - 4 * Sum_{k>=0} x^(2^k))^(1/2). | [
"1",
"2",
"8",
"32",
"138",
"604",
"2696",
"12176",
"55512",
"254888",
"1177064",
"5461040",
"25435296",
"118856272",
"556962928",
"2616287392",
"12315914698",
"58084552572",
"274395134600",
"1298187523792",
"6150051540460",
"29170558879736",
"138512004786624",
"658362443599296",
"3132140164624680"
] | [
"nonn",
"easy"
] | 8 | 0 | 2 | [
"A023359",
"A223142",
"A382187",
"A382188"
] | null | Seiichi Manyama, Mar 18 2025 | 2025-03-18T16:24:02 | oeisdata/seq/A382/A382187.seq | 2d746cfb8511e3caebbb0487afa0577e |
A382188 | Expansion of 1/(1 - 9 * Sum_{k>=0} x^(2^k))^(1/3). | [
"1",
"3",
"21",
"162",
"1344",
"11565",
"102033",
"916002",
"8330331",
"76515363",
"708379137",
"6600436794",
"61829064882",
"581783753232",
"5495344743924",
"52079440119336",
"494985533135250",
"4716537209764020",
"45043670723519952",
"431041661857081656",
"4132290587464466820",
"39680088682182010749"
] | [
"nonn",
"easy"
] | 8 | 0 | 2 | [
"A023359",
"A382187",
"A382188"
] | null | Seiichi Manyama, Mar 18 2025 | 2025-03-18T21:44:16 | oeisdata/seq/A382/A382188.seq | 4bc90bb24ac8fbcd99a1bdd1b2b356d2 |
A382189 | Expansion of 1/(1 - 4 * Sum_{k>=0} x^(3^k))^(1/2). | [
"1",
"2",
"6",
"22",
"82",
"312",
"1210",
"4752",
"18834",
"75186",
"301868",
"1217664",
"4930918",
"20033432",
"81621456",
"333357656",
"1364395770",
"5594799576",
"22980090870",
"94529049296",
"389367825444",
"1605758772136",
"6629456308464",
"27397510466856",
"113329594803078",
"469183242566016",
"1943927996932656"
] | [
"nonn",
"easy"
] | 7 | 0 | 2 | [
"A078932",
"A382189",
"A382190"
] | null | Seiichi Manyama, Mar 18 2025 | 2025-03-18T21:44:10 | oeisdata/seq/A382/A382189.seq | 608b83e1f1c260b28b4208f035837fa3 |
A382190 | Expansion of 1/(1 - 9 * Sum_{k>=0} x^(3^k))^(1/3). | [
"1",
"3",
"18",
"129",
"981",
"7749",
"62766",
"517401",
"4320864",
"36446565",
"309876444",
"2651681826",
"22812645339",
"197144727876",
"1710267824304",
"14886242261595",
"129946357148661",
"1137235357935279",
"9975129925544568",
"87672540348112779",
"771962724133452441",
"6808329943495097076"
] | [
"nonn",
"easy"
] | 9 | 0 | 2 | [
"A078932",
"A382189",
"A382190",
"A382196"
] | null | Seiichi Manyama, Mar 18 2025 | 2025-03-18T16:23:45 | oeisdata/seq/A382/A382190.seq | b4da2589a4be1898cdd601add2ae256e |
A382191 | Number of edges of the graph with code A076184(n). | [
"0",
"1",
"2",
"3",
"3",
"2",
"3",
"4",
"4",
"5",
"6",
"4",
"3",
"4",
"5",
"4",
"5",
"5",
"6",
"4",
"5",
"6",
"7",
"6",
"7",
"6",
"5",
"6",
"7",
"7",
"8",
"8",
"9",
"10",
"5",
"4",
"5",
"6",
"4",
"5",
"5",
"6",
"6",
"7",
"5",
"6",
"7",
"8",
"6",
"7",
"3",
"4",
"5",
"6",
"5",
"6",
"5",
"6",
"6",
"7",
"7",
"8",
"7",
"8",
"7",
"6",
"7",
"8",
"6",
"7",
"7",
"8",
"8",
"9",
"5",
"6",
"7",
"6",
"7",
"8",
"7",
"8",
"7",
"8",
"9",
"9",
"8"
] | [
"nonn",
"tabf"
] | 6 | 1 | 3 | [
"A000120",
"A002494",
"A076184",
"A382191"
] | null | Pontus von Brömssen, Mar 18 2025 | 2025-03-21T09:46:30 | oeisdata/seq/A382/A382191.seq | 48cb6f468d665ec1e860b2fa746e0e6b |
A382192 | Number of components of the graph with code A076184(n). | [
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"tabf"
] | 5 | 1 | 6 | [
"A002494",
"A076184",
"A382192",
"A382193"
] | null | Pontus von Brömssen, Mar 18 2025 | 2025-03-21T09:46:59 | oeisdata/seq/A382/A382192.seq | 0468e36d5da7ecf0fe4a7ac9368d0421 |
A382193 | List of connected graphs, encoded as in A076184. | [
"0",
"1",
"3",
"7",
"11",
"13",
"15",
"30",
"31",
"63",
"75",
"77",
"79",
"86",
"87",
"94",
"95",
"117",
"119",
"127",
"222",
"223",
"235",
"236",
"237",
"239",
"254",
"255",
"507",
"511",
"1023",
"1099",
"1101",
"1103",
"1109",
"1110",
"1111",
"1118",
"1119",
"1141",
"1143",
"1151",
"1182",
"1183",
"1187",
"1191",
"1195",
"1196",
"1197",
"1198",
"1199",
"1214"
] | [
"nonn",
"tabf"
] | 7 | 1 | 3 | [
"A001349",
"A076184",
"A382192",
"A382193"
] | null | Pontus von Brömssen, Mar 18 2025 | 2025-03-21T11:14:36 | oeisdata/seq/A382/A382193.seq | c1ea7c73aabdcd3c1313ec3b2ee9e6e7 |
A382194 | List of connected graphs that are squares, encoded as in A076184. | [
"0",
"1",
"7",
"31",
"63",
"239",
"255",
"511",
"1023",
"3455",
"3887",
"3951",
"3967",
"4095",
"7679",
"7903",
"7935",
"8191",
"16350",
"16351",
"16383",
"32767",
"104063",
"104447",
"106287",
"106351",
"111587",
"111599",
"112511",
"112623",
"112639",
"127791",
"127855",
"127871",
"128879",
"128895",
"129023",
"131071",
"237567"
] | [
"nonn",
"tabf"
] | 15 | 1 | 3 | [
"A076184",
"A382180",
"A382193",
"A382194",
"A382195",
"A382283"
] | null | Pontus von Brömssen, Mar 18 2025 | 2025-03-22T12:00:48 | oeisdata/seq/A382/A382194.seq | 41de2ea2891cf3c63967e5d1e087d79a |
A382195 | a(n) is the code (in the encoding given by A076184) of the square of the graph with code A076184(n). | [
"0",
"1",
"7",
"7",
"63",
"12",
"31",
"63",
"63",
"63",
"63",
"1023",
"116",
"255",
"1023",
"239",
"511",
"511",
"1023",
"116",
"255",
"511",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"1023",
"32767",
"1972",
"4095",
"32767",
"3873",
"7903",
"3951",
"8191",
"8191",
"32767",
"3873",
"7903",
"8191",
"32767"
] | [
"nonn",
"tabf",
"base"
] | 12 | 1 | 3 | [
"A002494",
"A076184",
"A382194",
"A382195"
] | null | Pontus von Brömssen, Mar 18 2025 | 2025-03-21T11:14:02 | oeisdata/seq/A382/A382195.seq | 4e8f90a9a7a37049965c4552e0713afc |
A382196 | Expansion of (1 + 9 * Sum_{k>=0} x^(3^k))^(1/3). | [
"1",
"3",
"-9",
"48",
"-288",
"1917",
"-13563",
"99927",
"-758079",
"5879757",
"-46401705",
"371337021",
"-3005974710",
"24568145019",
"-202442064183",
"1679864383800",
"-14024716370064",
"117715927282470",
"-992725129013121",
"8407191323492226",
"-71467963130581758",
"609605555349330009"
] | [
"sign",
"easy"
] | 9 | 0 | 2 | [
"A223142",
"A223143",
"A298308",
"A382190",
"A382196"
] | null | Seiichi Manyama, Mar 18 2025 | 2025-03-18T21:45:30 | oeisdata/seq/A382/A382196.seq | fe4622ffaf3038a48559b4370ca23215 |
A382197 | Decimal expansion of 24^(1/6). | [
"1",
"6",
"9",
"8",
"3",
"8",
"1",
"3",
"2",
"9",
"5",
"6",
"4",
"9",
"5",
"2",
"7",
"8",
"4",
"9",
"1",
"2",
"5",
"6",
"4",
"5",
"2",
"4",
"6",
"5",
"9",
"7",
"4",
"9",
"3",
"6",
"0",
"2",
"0",
"3",
"5",
"0",
"0",
"0",
"9",
"0",
"3",
"3",
"5",
"9",
"7",
"1",
"4",
"4",
"8",
"9",
"0",
"4",
"1",
"0",
"6",
"1",
"6",
"1",
"9",
"6",
"9",
"5",
"4",
"9",
"3",
"2",
"0",
"1",
"3",
"8",
"0",
"8",
"9",
"0",
"0",
"9",
"2",
"7",
"8",
"1",
"3",
"6",
"7",
"0",
"0",
"3",
"4",
"1",
"9",
"8",
"8",
"0",
"2",
"1"
] | [
"nonn",
"cons",
"easy"
] | 7 | 1 | 2 | [
"A002193",
"A010480",
"A010596",
"A011020",
"A011109",
"A246708",
"A382197"
] | null | Stefano Spezia, Mar 18 2025 | 2025-03-19T10:03:30 | oeisdata/seq/A382/A382197.seq | 5ed60622f792823288a303897da58eaf |
A382198 | Smallest integer k with n distinct digits, such that for each digit of k, 2*k*(digit) + 1 is prime. | [
"3",
"14",
"153",
"2169",
"48165",
"125769",
"327174495"
] | [
"nonn",
"base",
"fini",
"full"
] | 11 | 1 | 1 | [
"A382127",
"A382179",
"A382198",
"A382199"
] | null | Michel Marcus, Mar 18 2025 | 2025-03-18T16:23:14 | oeisdata/seq/A382/A382198.seq | 60187c9f9dc569ca8f25d1ebf815e5fc |
A382199 | Primes p such that for each digit of p, 2*p*(digit) + 1 is prime. | [
"3",
"11",
"131",
"173",
"491",
"797",
"947",
"1931",
"3583",
"4391",
"6173",
"7937",
"32323",
"49919",
"64499",
"79997",
"83383",
"149111",
"232333",
"296269",
"366161",
"477947",
"611333",
"616169",
"616961",
"635563",
"667673",
"969179",
"1111991",
"1779779",
"2232523",
"2662669",
"2922229",
"3444341",
"5333353",
"5599999",
"6853663",
"6919691",
"6929929"
] | [
"nonn",
"base"
] | 7 | 1 | 1 | [
"A382127",
"A382179",
"A382198",
"A382199"
] | null | Michel Marcus, Mar 18 2025 | 2025-03-18T13:47:16 | oeisdata/seq/A382/A382199.seq | af2c200ed3c4a7e28c7e5f2873fdafcb |
A382200 | Numbers that can be written as a product of distinct squarefree numbers. | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"82",
"83",
"84"
] | [
"nonn",
"changed"
] | 14 | 1 | 2 | [
"A000720",
"A001055",
"A001222",
"A005117",
"A045778",
"A050320",
"A050326",
"A050342",
"A050345",
"A089259",
"A116539",
"A270995",
"A279785",
"A292432",
"A292444",
"A293243",
"A293511",
"A300383",
"A302494",
"A317141",
"A358914",
"A381441",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382201",
"A382214",
"A382216"
] | null | Gus Wiseman, Mar 21 2025 | 2025-04-21T17:00:45 | oeisdata/seq/A382/A382200.seq | a0ddd391097d223c8e08b18d8847226c |
A382201 | MM-numbers of sets of sets with distinct sums. | [
"1",
"2",
"3",
"5",
"6",
"10",
"11",
"13",
"15",
"17",
"22",
"26",
"29",
"30",
"31",
"33",
"34",
"39",
"41",
"43",
"47",
"51",
"55",
"58",
"59",
"62",
"65",
"66",
"67",
"73",
"78",
"79",
"82",
"83",
"85",
"86",
"87",
"93",
"94",
"101",
"102",
"109",
"110",
"113",
"118",
"123",
"127",
"129",
"130",
"134",
"137",
"139",
"141",
"145",
"146",
"149",
"155",
"157",
"158",
"163",
"165"
] | [
"nonn"
] | 8 | 1 | 2 | [
"A000720",
"A001055",
"A003963",
"A005117",
"A007716",
"A045778",
"A050320",
"A050326",
"A055396",
"A056239",
"A061395",
"A112798",
"A275780",
"A279785",
"A293511",
"A302242",
"A302478",
"A302494",
"A302497",
"A319899",
"A321455",
"A321469",
"A326519",
"A326533",
"A326534",
"A326535",
"A326537",
"A368100",
"A368101",
"A381633",
"A381635",
"A381718",
"A382080",
"A382201",
"A382215"
] | null | Gus Wiseman, Mar 21 2025 | 2025-03-23T08:40:28 | oeisdata/seq/A382/A382201.seq | e23c4777c31e1280405651b7a3e346ff |
A382202 | Number of normal multisets of size n that cannot be partitioned into a set of sets with distinct sums. | [
"0",
"0",
"1",
"1",
"3",
"5",
"9",
"16",
"27",
"48",
"78",
"133"
] | [
"nonn",
"more"
] | 8 | 0 | 5 | [
"A000110",
"A000670",
"A001055",
"A007716",
"A019536",
"A034691",
"A035310",
"A045778",
"A050320",
"A050326",
"A050342",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A296119",
"A296120",
"A318360",
"A318361",
"A321469",
"A326517",
"A326518",
"A326519",
"A333217",
"A358914",
"A381633",
"A381718",
"A381806",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382428",
"A382429",
"A382430",
"A382458",
"A382459",
"A382460"
] | null | Gus Wiseman, Mar 29 2025 | 2025-03-30T20:24:25 | oeisdata/seq/A382/A382202.seq | 3dc887bb8415b9de7ecd866f68157e92 |
A382203 | Number of normal multiset partitions of weight n into constant multisets with distinct sums. | [
"1",
"1",
"2",
"4",
"9",
"19",
"37",
"76",
"159",
"326",
"671",
"1376",
"2815",
"5759",
"11774",
"24083",
"49249",
"100632",
"205490",
"419420",
"855799",
"1745889",
"3561867",
"7268240",
"14836127",
"30295633",
"61888616"
] | [
"nonn",
"more"
] | 13 | 0 | 3 | [
"A000670",
"A001055",
"A007716",
"A019536",
"A035310",
"A045778",
"A055887",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A275780",
"A279785",
"A279786",
"A304969",
"A317532",
"A317583",
"A321469",
"A326517",
"A326518",
"A326519",
"A326535",
"A333217",
"A381633",
"A381635",
"A381636",
"A381718",
"A381806",
"A381870",
"A382203",
"A382204",
"A382216",
"A382428",
"A382429"
] | null | Gus Wiseman, Mar 26 2025 | 2025-04-04T23:42:07 | oeisdata/seq/A382/A382203.seq | 2847e1d4592ab325641cde5cdb15778f |
A382204 | Number of normal multiset partitions of weight n into constant blocks with a common sum. | [
"1",
"1",
"2",
"3",
"4",
"4",
"7",
"5",
"8",
"8",
"10",
"8",
"15",
"9",
"14",
"15",
"17",
"13",
"22",
"14",
"25",
"21",
"23",
"19",
"34",
"24",
"29",
"28",
"37",
"27",
"45",
"29",
"44",
"38",
"43",
"43",
"59",
"40",
"51",
"48",
"69",
"48",
"71",
"52",
"73",
"69",
"72",
"61",
"93",
"72",
"91",
"77",
"99",
"78",
"105",
"95",
"119",
"95",
"113",
"96",
"146",
"107",
"126",
"123",
"151",
"130"
] | [
"nonn"
] | 28 | 0 | 3 | [
"A000670",
"A001055",
"A007716",
"A019536",
"A034691",
"A034729",
"A035310",
"A045778",
"A055887",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A279785",
"A279789",
"A296119",
"A304969",
"A317532",
"A317583",
"A318360",
"A321469",
"A326518",
"A326520",
"A326535",
"A333217",
"A356945",
"A381635",
"A381636",
"A381716",
"A381718",
"A381806",
"A381870",
"A381995",
"A382203",
"A382204",
"A382216",
"A382429"
] | null | Gus Wiseman, Mar 26 2025 | 2025-04-05T12:01:55 | oeisdata/seq/A382/A382204.seq | 4887a7bdff44390ff04775779161d6b3 |
A382205 | Number of minimum connected dominating sets in the n-halved cube graph. | [
"1",
"2",
"4",
"24",
"240",
"1440",
"80640"
] | [
"nonn",
"more"
] | 4 | 1 | 2 | null | null | Eric W. Weisstein, Mar 18 2025 | 2025-03-18T21:44:25 | oeisdata/seq/A382/A382205.seq | d6ae27413d40cb900798dd74b291017b |
A382206 | Number of minimum connected dominating sets in the n X n king graph. | [
"1",
"4",
"1",
"21",
"1",
"21",
"843",
"720",
"556841",
"99357",
"458",
"32",
"3600",
"30580044",
"826720",
"4"
] | [
"nonn",
"more"
] | 25 | 1 | 2 | [
"A289180",
"A347554",
"A370428",
"A381730",
"A382206"
] | null | Eric W. Weisstein, Mar 18 2025 | 2025-03-31T15:20:41 | oeisdata/seq/A382/A382206.seq | d2009128af68d6269bbfeb02a758f9c7 |
A382207 | Number of minimum connected dominating sets in the n X n knight graph. | [
"1",
"0",
"0",
"64",
"4",
"18",
"78",
"184",
"648",
"344"
] | [
"nonn",
"more"
] | 16 | 1 | 4 | [
"A382047",
"A382207"
] | null | Eric W. Weisstein, Mar 18 2025 | 2025-03-21T07:00:27 | oeisdata/seq/A382/A382207.seq | 02c2b248ecf9f989c3ac2e9d95482e13 |
A382208 | Numbers k for which pi(bigomega(k)) = omega(k). | [
"1",
"4",
"9",
"12",
"18",
"20",
"24",
"25",
"28",
"36",
"40",
"44",
"45",
"49",
"50",
"52",
"54",
"56",
"63",
"68",
"75",
"76",
"88",
"92",
"98",
"99",
"100",
"104",
"116",
"117",
"120",
"121",
"124",
"135",
"136",
"147",
"148",
"152",
"153",
"164",
"168",
"169",
"171",
"172",
"175",
"180",
"184",
"188",
"189",
"196",
"207",
"212",
"225",
"232",
"236",
"240",
"242",
"244",
"245"
] | [
"nonn"
] | 22 | 1 | 2 | [
"A000720",
"A001221",
"A001222",
"A001248",
"A046386",
"A054753",
"A065036",
"A085986",
"A162143",
"A179644",
"A179693",
"A179700",
"A179704",
"A382208"
] | null | Felix Huber, Mar 30 2025 | 2025-04-05T15:27:00 | oeisdata/seq/A382/A382208.seq | 7e179f09919867a163e8ec89551392f1 |
A382209 | Numbers k such that 10+k and 10*k are perfect squares. | [
"90",
"136890",
"197402490",
"284654260890",
"410471246808090",
"591899253243012090",
"853518312705176632890",
"1230772815021611461622490",
"1774773545742851022483004890",
"2559222222188376152809031436090",
"3690396669622092669499600847844090",
"5321549438372835441042271613559748890"
] | [
"nonn",
"easy",
"new"
] | 85 | 1 | 1 | [
"A005667",
"A008843",
"A075796",
"A081071",
"A097315",
"A158490",
"A173127",
"A245226",
"A382209"
] | null | Emilio Martín, Mar 18 2025 | 2025-04-24T17:33:22 | oeisdata/seq/A382/A382209.seq | 194db66caf1339483b37abda327c7488 |
A382210 | Irregular triangle read by rows: T(n,k) = k^2 - k + (A003173(n) + 1)/4 with 1 <= k < (A003173(n) + 1)/4. | [
"2",
"3",
"5",
"5",
"7",
"11",
"17",
"11",
"13",
"17",
"23",
"31",
"41",
"53",
"67",
"83",
"101",
"17",
"19",
"23",
"29",
"37",
"47",
"59",
"73",
"89",
"107",
"127",
"149",
"173",
"199",
"227",
"257",
"41",
"43",
"47",
"53",
"61",
"71",
"83",
"97",
"113",
"131",
"151",
"173",
"197",
"223",
"251",
"281",
"313",
"347",
"383",
"421",
"461",
"503",
"547",
"593",
"641",
"691",
"743",
"797",
"853",
"911",
"971",
"1033",
"1097",
"1163",
"1231",
"1301",
"1373",
"1447",
"1523",
"1601"
] | [
"nonn",
"easy",
"fini",
"full",
"tabf"
] | 7 | 4 | 1 | [
"A003173",
"A048058",
"A302445",
"A382210"
] | null | Stefano Spezia, Mar 18 2025 | 2025-03-18T21:41:15 | oeisdata/seq/A382/A382210.seq | bc20c258b3e67f7310123e6034e9c41b |
A382211 | Prime of the form p^q + q^r + r^p, for primes p, q and r. | [
"61",
"181",
"2557",
"98057",
"338323",
"8389141",
"48829699",
"536871757",
"1162268353",
"2147484613",
"2199023257237",
"27368747340087430811",
"196525143636054676607",
"4656612873077421210401",
"239072435917782732706099",
"1978419655679387077928203",
"9671406556917033397656301"
] | [
"nonn"
] | 17 | 1 | 1 | [
"A123207",
"A382211"
] | null | Karst Koymans, Mar 18 2025 | 2025-03-25T23:17:55 | oeisdata/seq/A382/A382211.seq | e5a4a2160298774af2f06f07bf9b0968 |
A382212 | Number of labeled Eulerian oriented graphs with n nodes without isolated vertices. | [
"0",
"0",
"2",
"6",
"168",
"6700",
"726360",
"202827786"
] | [
"nonn",
"more"
] | 8 | 1 | 3 | [
"A007081",
"A382212"
] | null | Bert Dobbelaere, Mar 18 2025 | 2025-03-19T09:04:17 | oeisdata/seq/A382/A382212.seq | 279f8ee5b3962c58244d097b45a49cbe |
A382213 | Largest squarefree number dividing the numerator of harmonic number H(n). | [
"1",
"3",
"11",
"5",
"137",
"7",
"33",
"761",
"7129",
"671",
"83711",
"6617",
"1145993",
"1171733",
"1195757",
"143327",
"42142223",
"751279",
"275295799",
"55835135",
"18858053",
"830139",
"444316699",
"1347822955",
"34052522467",
"34395742267",
"312536252003",
"10876020307",
"214582477009",
"300151059037",
"290774257297357"
] | [
"nonn",
"new"
] | 46 | 1 | 2 | [
"A001008",
"A002805",
"A007913",
"A333196",
"A382213",
"A382329"
] | null | Ali Sada, Mar 22 2025 | 2025-04-24T13:20:47 | oeisdata/seq/A382/A382213.seq | fd677b64c0cb78979f3762583120619e |
A382214 | Number of normal multisets of size n that can be partitioned into a set of sets. | [
"1",
"1",
"1",
"3",
"5",
"11",
"23",
"48",
"101",
"210",
"436",
"894"
] | [
"nonn",
"more"
] | 15 | 0 | 4 | [
"A000110",
"A000670",
"A001055",
"A007716",
"A019536",
"A034691",
"A035310",
"A045778",
"A050320",
"A050326",
"A050342",
"A055932",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A279785",
"A292432",
"A292444",
"A293243",
"A296119",
"A296120",
"A317532",
"A318360",
"A318361",
"A326517",
"A326519",
"A333217",
"A358914",
"A381633",
"A381718",
"A381990",
"A381992",
"A381996",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382428",
"A382458",
"A382459",
"A382460"
] | null | Gus Wiseman, Mar 29 2025 | 2025-03-30T20:24:20 | oeisdata/seq/A382/A382214.seq | ffcfe6cf9dea1397905a5ea83c8a00c4 |
A382215 | MM-numbers of multiset partitions into constant blocks with a common sum. | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"16",
"17",
"19",
"23",
"25",
"27",
"31",
"32",
"35",
"41",
"49",
"53",
"59",
"64",
"67",
"81",
"83",
"97",
"103",
"109",
"121",
"125",
"127",
"128",
"131",
"157",
"175",
"179",
"191",
"209",
"211",
"227",
"241",
"243",
"245",
"256",
"277",
"283",
"289",
"311",
"331",
"343",
"353",
"361",
"367",
"391",
"401",
"419",
"431",
"461"
] | [
"nonn"
] | 17 | 1 | 2 | [
"A000688",
"A000720",
"A000961",
"A001055",
"A001221",
"A001222",
"A050361",
"A055396",
"A056239",
"A061395",
"A112798",
"A118914",
"A124010",
"A279789",
"A302242",
"A302492",
"A302496",
"A302601",
"A321455",
"A326534",
"A368100",
"A381633",
"A381635",
"A381636",
"A381715",
"A381716",
"A381871",
"A381995",
"A382080",
"A382201",
"A382204",
"A382215",
"A382304",
"A382426"
] | null | Gus Wiseman, Mar 21 2025 | 2025-04-03T03:36:21 | oeisdata/seq/A382/A382215.seq | e782f4f1d10221e849f08e1203553d9b |
A382216 | Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums. | [
"1",
"1",
"1",
"3",
"5",
"11",
"23",
"48",
"101",
"208",
"434"
] | [
"nonn",
"more"
] | 10 | 0 | 4 | [
"A000110",
"A000670",
"A007716",
"A034691",
"A035310",
"A050320",
"A050326",
"A050342",
"A089259",
"A116539",
"A116540",
"A255903",
"A255906",
"A270995",
"A275780",
"A279785",
"A292432",
"A292444",
"A293243",
"A296119",
"A296120",
"A317532",
"A318360",
"A318361",
"A326518",
"A326519",
"A358914",
"A381633",
"A381718",
"A381806",
"A381990",
"A381992",
"A381996",
"A382075",
"A382077",
"A382078",
"A382200",
"A382202",
"A382214",
"A382216",
"A382429",
"A382430",
"A382458",
"A382459",
"A382460",
"A382523"
] | null | Gus Wiseman, Mar 29 2025 | 2025-03-31T21:55:23 | oeisdata/seq/A382/A382216.seq | 42185d610813508feb728c19c75e549c |
A382217 | a(n) is the least k > 0 such that the factorial base expansion of n starts with that of k. | [
"1",
"1",
"1",
"4",
"5",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"4",
"5",
"5",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"16",
"16",
"17",
"17",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"18",
"18",
"19",
"19",
"76",
"77",
"20"
] | [
"nonn",
"base"
] | 9 | 1 | 4 | [
"A000030",
"A265334",
"A382184",
"A382217",
"A382218"
] | null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:29:17 | oeisdata/seq/A382/A382217.seq | f3e6bc67492b1fcc6af1c871c9373203 |
A382218 | Fixed points of A382217. | [
"1",
"4",
"5",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"76",
"77",
"82",
"83",
"88",
"89",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"97",
"98",
"99",
"100",
"101",
"102",
"103",
"104",
"105",
"106",
"107",
"108",
"109",
"110",
"111",
"112",
"113",
"114",
"115",
"116",
"117",
"118",
"119",
"304",
"305",
"306",
"307",
"308"
] | [
"nonn",
"base"
] | 7 | 1 | 2 | [
"A111537",
"A382217",
"A382218"
] | null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:29:12 | oeisdata/seq/A382/A382218.seq | b84df084f5b8cd4fd15b05ca9ce1f386 |
A382219 | Product of the largest and smallest exponents in the prime factorization of n. | [
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"9",
"4",
"1",
"1",
"2",
"1",
"1",
"1",
"16",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"4",
"1",
"9",
"2",
"1",
"1",
"1",
"25",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"4",
"4",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"36",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"4",
"16",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2"
] | [
"nonn"
] | 12 | 1 | 4 | [
"A005361",
"A033150",
"A051903",
"A051904",
"A052485",
"A062977",
"A066048",
"A304233",
"A333352",
"A382219"
] | null | Ilya Gutkovskiy, Mar 19 2025 | 2025-03-28T08:00:20 | oeisdata/seq/A382/A382219.seq | aad67a8de93078b99a1587f3f8153378 |
A382220 | Numbers k such that every primitive root mod k is prime. | [
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"14",
"18",
"22",
"54"
] | [
"nonn",
"more"
] | 17 | 1 | 1 | [
"A033948",
"A046147",
"A382220",
"A382224"
] | null | Miles Englezou, Mar 18 2025 | 2025-03-21T10:12:21 | oeisdata/seq/A382/A382220.seq | d8c409eebe213530b7c2556f5e72a27d |
A382221 | Products of primitive roots when n is 2, 4, p^k, or 2p^k (with p an odd prime), for all other n the value is defined to be 1. | [
"1",
"1",
"2",
"3",
"6",
"5",
"15",
"1",
"10",
"21",
"672",
"1",
"924",
"15",
"1",
"1",
"11642400",
"55",
"163800",
"1",
"1",
"29393",
"109681110000",
"1",
"64411776",
"21945",
"708400",
"1",
"5590307923200",
"1",
"970377408",
"1",
"1",
"644812245",
"1",
"1",
"134088514560000",
"11756745",
"1",
"1",
"138960660963091968000",
"1"
] | [
"nonn",
"new"
] | 42 | 1 | 3 | [
"A033948",
"A121380",
"A123475",
"A180634",
"A382221"
] | null | Darío Clavijo, Mar 27 2025 | 2025-04-18T20:52:09 | oeisdata/seq/A382/A382221.seq | 0016a6172de034a0be40a121a5683582 |
A382222 | Smallest k such that A073734(k) = n, where A073734 is the GCD of consecutive terms of the EKG sequence A064413. | [
"2",
"3",
"5",
"8",
"10",
"968",
"14",
"17",
"149",
"579",
"20",
"11068",
"28",
"2126",
"2406",
"3070",
"33",
"58836",
"37",
"2935",
"7468",
"20029",
"43",
"50835",
"321",
"1065",
"2220",
"60390",
"57",
"403831",
"61",
"20143",
"29156",
"13453",
"32294",
"18829",
"67",
"2117",
"56683",
"65867",
"74",
"10242",
"81",
"82455",
"80410",
"24112",
"89",
"868283",
"41341",
"36370"
] | [
"nonn"
] | 13 | 1 | 1 | [
"A064413",
"A064740",
"A064955",
"A073734",
"A073735",
"A382222",
"A382271"
] | null | Scott R. Shannon, Mar 19 2025 | 2025-03-23T08:40:50 | oeisdata/seq/A382/A382222.seq | bf4abcfa46c2da27be08a2d1f54cfc3e |
A382223 | Rectangular array read by antidiagonals: T(n,k) is the number of labeled digraphs on [n] along with a (coloring) function c:[n] -> [k] with the property that for all u,v in [n], u->v implies u<v and c(u)<c(v), n>=0, k>=0. | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"5",
"3",
"1",
"0",
"1",
"16",
"12",
"4",
"1",
"0",
"1",
"67",
"66",
"22",
"5",
"1",
"0",
"1",
"374",
"513",
"172",
"35",
"6",
"1",
"0",
"1",
"2825",
"5769",
"1969",
"355",
"51",
"7",
"1",
"0",
"1",
"29212",
"95706",
"33856",
"5380",
"636",
"70",
"8",
"1",
"0",
"1",
"417199",
"2379348",
"893188",
"125090",
"12006",
"1036",
"92",
"9",
"1"
] | [
"nonn",
"tabl"
] | 65 | 0 | 9 | [
"A005329",
"A006116",
"A289539",
"A382223",
"A382363"
] | null | Geoffrey Critzer, Mar 23 2025 | 2025-03-25T12:57:57 | oeisdata/seq/A382/A382223.seq | aa388eb2fec2c76eb09ce8476794c458 |
A382224 | Numbers k such that every element with maximal order mod k is prime. | [
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"28",
"30",
"36",
"42",
"54",
"60",
"78"
] | [
"nonn",
"more"
] | 28 | 1 | 1 | [
"A002322",
"A382220",
"A382224"
] | null | Miles Englezou, Mar 19 2025 | 2025-03-23T17:05:14 | oeisdata/seq/A382/A382224.seq | a5ca3d8b32d54eb421e206118697ad20 |
A382225 | Triangle read by rows: T(n,k) = Sum_{i=k..n} C(i-1,i-k)*C(i,k). | [
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"6",
"7",
"1",
"1",
"10",
"25",
"13",
"1",
"1",
"15",
"65",
"73",
"21",
"1",
"1",
"21",
"140",
"273",
"171",
"31",
"1",
"1",
"28",
"266",
"798",
"871",
"346",
"43",
"1",
"1",
"36",
"462",
"1974",
"3321",
"2306",
"631",
"57",
"1",
"1",
"45",
"750",
"4326",
"10377",
"11126",
"5335",
"1065",
"73",
"1",
"1",
"55",
"1155",
"8646",
"28017",
"42878",
"31795",
"11145",
"1693",
"91",
"1"
] | [
"nonn",
"tabl"
] | 37 | 0 | 5 | [
"A000012",
"A000217",
"A001296",
"A002061",
"A007318",
"A024718",
"A107963",
"A184173",
"A382225"
] | null | Vladimir Kruchinin, Mar 19 2025 | 2025-03-22T17:39:39 | oeisdata/seq/A382/A382225.seq | 4beb18dd0b7144b7ab700d7b440747da |
A382226 | Smallest prime in a sequence of n consecutive primes which add to a perfect cube. | [
"3",
"439",
"4812191",
"41051",
"1753",
"75869",
"24359",
"1674289",
"17509",
"6221",
"771653",
"29863",
"6899",
"35353",
"1073239",
"4001",
"18959",
"1613741",
"1033",
"12077759",
"172433",
"1548149",
"364079",
"199",
"4580399",
"373",
"3847",
"411396253",
"41863",
"1371031",
"11491",
"135911",
"45707",
"308149",
"364909",
"176537",
"2089",
"32569961",
"13619",
"625861"
] | [
"nonn"
] | 16 | 2 | 1 | [
"A132955",
"A382226",
"A382227",
"A382228"
] | null | David Dewan, Mar 19 2025 | 2025-03-25T10:16:30 | oeisdata/seq/A382/A382226.seq | 30b37bc0e884c0879fdcc38a3381dd0d |
A382227 | The smallest perfect cube which is a sum of n consecutive primes. | [
"8",
"1331",
"19248832",
"205379",
"10648",
"531441",
"195112",
"15069223",
"175616",
"68921",
"9261000",
"389017",
"97336",
"531441",
"17173512",
"68921",
"343000",
"30664297",
"21952",
"253636137",
"3796416",
"35611289",
"8741816",
"6859",
"119095488",
"12167",
"110592",
"11930499125",
"1259712",
"42508549",
"373248",
"4492125",
"1560896",
"10793861"
] | [
"nonn"
] | 16 | 2 | 1 | [
"A132956",
"A382226",
"A382227",
"A382228"
] | null | David Dewan, Mar 19 2025 | 2025-03-25T10:14:39 | oeisdata/seq/A382/A382227.seq | d4c7b26c2f94cba17cd77aabf4d994d4 |
A382228 | Smallest k such that k^3 is the sum of n consecutive primes. | [
"2",
"11",
"268",
"59",
"22",
"81",
"58",
"247",
"56",
"41",
"210",
"73",
"46",
"81",
"258",
"41",
"70",
"313",
"28",
"633",
"156",
"329",
"206",
"19",
"492",
"23",
"48",
"2285",
"108",
"349",
"72",
"165",
"116",
"221",
"236",
"187",
"44",
"1083",
"82",
"295",
"34",
"347",
"54",
"35",
"548",
"23",
"32",
"2357",
"1170",
"37",
"632",
"813",
"1590",
"277",
"1972",
"177"
] | [
"nonn"
] | 20 | 2 | 1 | [
"A000578",
"A132957",
"A382226",
"A382227",
"A382228"
] | null | David Dewan, Mar 19 2025 | 2025-03-25T10:23:02 | oeisdata/seq/A382/A382228.seq | f1a1fe9ee23bc11fba62203d6b8ca376 |
A382229 | a(0) = 1; thereafter a(n) is the next larger number that compared to the previous term differs by +-1 in the number of prime factors counted with multiplicity. | [
"1",
"2",
"4",
"5",
"6",
"7",
"9",
"11",
"14",
"17",
"21",
"23",
"25",
"27",
"33",
"37",
"38",
"41",
"46",
"47",
"49",
"50",
"51",
"52",
"54",
"63",
"65",
"66",
"69",
"70",
"74",
"75",
"77",
"78",
"81",
"92",
"93",
"97",
"106",
"107",
"111",
"113",
"115",
"116",
"118",
"124",
"126",
"130",
"132",
"138",
"140",
"147",
"150",
"153",
"155",
"157",
"158",
"163",
"166",
"167",
"169",
"170",
"177",
"179",
"183",
"186"
] | [
"nonn"
] | 19 | 0 | 2 | [
"A001222",
"A071192",
"A382229"
] | null | Gordon Hamilton, Mar 19 2025 | 2025-03-23T14:01:45 | oeisdata/seq/A382/A382229.seq | 936a3f0018e52abfcd5c0dfc35f0211e |
A382230 | a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,2*n-2*k). | [
"1",
"3",
"9",
"46",
"171",
"591",
"2033",
"6714",
"21606",
"68308",
"212370",
"651234",
"1974113",
"5924277",
"17623671",
"52025858",
"152539077",
"444530073",
"1288396257",
"3715833732",
"10668907932",
"30507914696",
"86912853588",
"246755125332",
"698353551105",
"1970673504951",
"5545952371509",
"15568330002486"
] | [
"nonn",
"easy",
"changed"
] | 32 | 0 | 2 | [
"A034839",
"A108479",
"A377145",
"A381421",
"A382230",
"A382470",
"A382471",
"A382472",
"A382473",
"A382474"
] | null | Seiichi Manyama, Mar 28 2025 | 2025-04-22T11:05:40 | oeisdata/seq/A382/A382230.seq | 71d93dbf234e1c4be8fc46c7ca583030 |
A382231 | Octagonal numbers that are the product of three distinct primes. | [
"645",
"1045",
"1281",
"2465",
"2821",
"3201",
"3605",
"7701",
"8965",
"12545",
"15841",
"17633",
"18565",
"20501",
"23585",
"24661",
"25761",
"26885",
"30401",
"34133",
"36741",
"45141",
"51221",
"52801",
"57685",
"59361",
"62785",
"66305",
"68101",
"71765",
"73633",
"89441",
"95765",
"100101",
"116033",
"120801",
"123221",
"125665",
"138245"
] | [
"nonn"
] | 16 | 1 | 1 | [
"A000567",
"A007304",
"A259677",
"A382231"
] | null | Massimo Kofler, Mar 19 2025 | 2025-03-31T21:26:48 | oeisdata/seq/A382/A382231.seq | ab078a0a66d2d88933cf0b6b61cf6fd0 |
A382232 | Irregular triangle read by rows: T(n,k) = [x^k] (1+x) * A_n(x)^2, where A_n(x) is the n-th Eulerian polynomial. | [
"1",
"1",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"9",
"26",
"26",
"9",
"1",
"1",
"23",
"165",
"387",
"387",
"165",
"23",
"1",
"1",
"53",
"860",
"4292",
"9194",
"9194",
"4292",
"860",
"53",
"1",
"1",
"115",
"3967",
"38885",
"160778",
"314654",
"314654",
"160778",
"38885",
"3967",
"115",
"1",
"1",
"241",
"17022",
"307454",
"2291375",
"8041695",
"14743812",
"14743812",
"8041695",
"2291375",
"307454",
"17022",
"241",
"1"
] | [
"nonn",
"tabf",
"changed"
] | 22 | 0 | 6 | [
"A048617",
"A125300",
"A165889",
"A173018",
"A382232"
] | null | Seiichi Manyama, Mar 19 2025 | 2025-04-25T20:40:30 | oeisdata/seq/A382/A382232.seq | 013dabaf9fec220127b5909221519840 |
A382233 | Dimensions of the homogeneous component of degree n of the free unital Jordan algebra on 3 generators. | [
"1",
"3",
"6",
"18",
"45",
"135",
"378",
"1134",
"3324",
"9981",
"29733",
"89280",
"267273"
] | [
"nonn",
"hard",
"more"
] | 28 | 0 | 2 | [
"A001776",
"A032120",
"A382233"
] | null | Vladimir Dotsenko, Mar 29 2025 | 2025-04-02T23:20:18 | oeisdata/seq/A382/A382233.seq | b63f8716742216b822bc4c354b0057f8 |
A382234 | Decimal expansion of the multiple prime zeta value primezetamult(2, 2). | [
"0",
"6",
"3",
"7",
"6",
"7",
"2",
"9",
"4",
"5",
"8",
"4",
"7",
"7",
"6",
"5",
"4",
"3",
"2",
"8",
"0",
"1",
"3",
"1",
"6",
"2",
"9",
"4",
"8",
"0",
"7",
"1",
"9",
"3",
"8",
"3",
"6",
"1",
"2",
"8",
"7",
"8",
"2",
"1",
"6",
"2",
"9",
"0",
"0",
"3",
"7",
"0",
"7",
"3",
"6",
"5",
"9",
"2",
"1",
"0",
"9",
"6",
"7",
"9",
"4",
"8",
"6",
"7",
"7",
"2",
"3",
"2",
"3",
"2",
"2",
"1",
"9",
"6",
"1",
"4",
"7",
"3",
"5",
"9",
"3",
"0",
"1",
"9",
"3",
"7",
"5",
"6",
"3",
"2",
"1",
"6",
"8",
"4",
"8",
"7",
"1",
"5",
"2",
"0",
"9",
"2"
] | [
"cons",
"nonn"
] | 19 | 0 | 2 | [
"A197110",
"A382234",
"A382235",
"A382236"
] | null | Artur Jasinski, Mar 20 2025 | 2025-04-01T07:29:45 | oeisdata/seq/A382/A382234.seq | 2515ba5c61eebad4f470691523b85e56 |
A382235 | Decimal expansion of the multiple prime zeta value primezetamult(3, 3). | [
"0",
"0",
"6",
"7",
"3",
"5",
"9",
"4",
"6",
"6",
"2",
"2",
"1",
"3",
"5",
"4",
"4",
"6",
"7",
"2",
"4",
"5",
"6",
"2",
"2",
"8",
"2",
"5",
"8",
"6",
"7",
"7",
"6",
"8",
"0",
"1",
"4",
"1",
"9",
"3",
"4",
"6",
"2",
"3",
"6",
"6",
"0",
"5",
"8",
"0",
"4",
"2",
"1",
"2",
"1",
"1",
"2",
"4",
"6",
"4",
"2",
"8",
"8",
"9",
"3",
"9",
"6",
"2",
"5",
"8",
"1",
"3",
"4",
"5",
"0",
"2",
"1",
"3",
"6",
"9",
"2",
"5",
"9",
"5",
"9",
"1",
"7",
"1",
"9",
"4",
"2",
"8",
"8",
"1",
"9",
"4",
"7",
"5",
"0",
"2",
"4",
"0",
"0",
"8",
"1",
"0",
"1"
] | [
"nonn",
"cons"
] | 9 | 0 | 3 | [
"A258987",
"A382234",
"A382235",
"A382236"
] | null | Artur Jasinski, Mar 31 2025 | 2025-04-01T07:33:43 | oeisdata/seq/A382/A382235.seq | 79da0757e6dbe74d0a3dedabb17a2bdb |
A382236 | Decimal expansion of the multiple prime zeta value primezetamult(2, 2, 2). | [
"0",
"0",
"3",
"6",
"9",
"6",
"2",
"4",
"4",
"1",
"6",
"3",
"4",
"5",
"2",
"8",
"3",
"5",
"3",
"7",
"8",
"3",
"9",
"5",
"5",
"3",
"4",
"6",
"3",
"2",
"3",
"9",
"4",
"6",
"6",
"8",
"1",
"1",
"5",
"5",
"9",
"1",
"5",
"3",
"9",
"7",
"1",
"3",
"0",
"3",
"0",
"4",
"2",
"7",
"2",
"4",
"9",
"7",
"4",
"7",
"2",
"6",
"2",
"2",
"4",
"6",
"7",
"6",
"2",
"4",
"6",
"4",
"9",
"3",
"4",
"6",
"9",
"2",
"3",
"7",
"4",
"9",
"5",
"7",
"0",
"1",
"6",
"9",
"6",
"4",
"3",
"7",
"1",
"1",
"3",
"9",
"1",
"7",
"2",
"9",
"2",
"8",
"5",
"2",
"4",
"3",
"0"
] | [
"nonn",
"cons"
] | 7 | 1 | 3 | [
"A381653",
"A382234",
"A382235",
"A382236"
] | null | Artur Jasinski, Apr 01 2025 | 2025-04-06T21:47:14 | oeisdata/seq/A382/A382236.seq | 441f62476c0484a17d1b289c168dfa77 |
A382237 | Numbers that are not divisible by the sum of any subset of their digits. | [
"23",
"29",
"34",
"37",
"38",
"43",
"46",
"47",
"49",
"53",
"56",
"57",
"58",
"59",
"67",
"68",
"69",
"73",
"74",
"76",
"78",
"79",
"83",
"86",
"87",
"89",
"94",
"97",
"98",
"203",
"223",
"227",
"229",
"233",
"239",
"249",
"253",
"257",
"263",
"267",
"269",
"277",
"283",
"293",
"299",
"307",
"323",
"329",
"334",
"337",
"338",
"346",
"347",
"349",
"353",
"356",
"358",
"359",
"367",
"373",
"376",
"377",
"379",
"380",
"383",
"386",
"388",
"389",
"394",
"397",
"398",
"403"
] | [
"nonn",
"base"
] | 27 | 1 | 1 | [
"A005349",
"A038772",
"A065877",
"A082943",
"A228017",
"A382237",
"A382239"
] | null | Sergio Pimentel, Mar 19 2025 | 2025-04-02T10:25:49 | oeisdata/seq/A382/A382237.seq | 51bcd81b7cdf2de9b3df2c3b3d5b51d7 |
A382238 | a(n) is the smallest prime that begins a sequence of 2n + 1 consecutive primes where all even-indexed terms are balanced primes. | [
"3",
"7817",
"40039",
"296242861",
"9387217537",
"2136447593347"
] | [
"nonn",
"more"
] | 17 | 1 | 1 | [
"A006562",
"A382238"
] | null | Jean-Marc Rebert, Mar 19 2025 | 2025-03-30T22:00:30 | oeisdata/seq/A382/A382238.seq | 0e2c8f314906870a7f8a178386a10a99 |
A382239 | Numbers not divisible by any of their digits nor by the sum of their digits. Digit 0 is allowed (and does not divide anything). | [
"23",
"29",
"34",
"37",
"38",
"43",
"46",
"47",
"49",
"53",
"56",
"57",
"58",
"59",
"67",
"68",
"69",
"73",
"74",
"76",
"78",
"79",
"83",
"86",
"87",
"89",
"94",
"97",
"98",
"203",
"223",
"227",
"229",
"233",
"239",
"249",
"253",
"257",
"259",
"263",
"267",
"269",
"277",
"283",
"289",
"293",
"299",
"307",
"323",
"329",
"334",
"337",
"338",
"343",
"346",
"347",
"349",
"353",
"356",
"358",
"359",
"367",
"373",
"374",
"376"
] | [
"nonn",
"base"
] | 24 | 1 | 1 | [
"A038772",
"A052383",
"A082943",
"A382237",
"A382239"
] | null | Robert Israel, Mar 19 2025 | 2025-04-01T17:53:01 | oeisdata/seq/A382/A382239.seq | 60ef5707785cb9f9e70de41631acea98 |
A382240 | a(n) = Sum_{k=0..n} 3^((n+k-1)*(n-k)/2) * n! / (n-k)!. | [
"1",
"2",
"11",
"168",
"7233",
"889014",
"314965899",
"323989244676",
"972969439627809",
"8566667168429128842",
"221877626825222187484203",
"16949442370817602102051560384",
"3827091229259231090623800852526113",
"2558686452439976557585601153755243553406",
"5072634396431144733070212976874036427346208619"
] | [
"nonn"
] | 6 | 0 | 2 | [
"A379614",
"A382240"
] | null | Vaclav Kotesovec, Mar 19 2025 | 2025-03-20T10:16:47 | oeisdata/seq/A382/A382240.seq | e6c8cb999e49b211477a7345e26ca3af |
A382241 | Triangle read by rows: T(n,k) is the number of partitions of a 4-colored set of n objects into at most k parts with 0 <= k <= n. | [
"1",
"0",
"4",
"0",
"10",
"20",
"0",
"20",
"60",
"80",
"0",
"35",
"170",
"270",
"305",
"0",
"56",
"396",
"816",
"1016",
"1072",
"0",
"84",
"868",
"2238",
"3188",
"3538",
"3622",
"0",
"120",
"1716",
"5616",
"9196",
"10996",
"11556",
"11676",
"0",
"165",
"3235",
"13140",
"24975",
"32400",
"35445",
"36285",
"36450",
"0",
"220",
"5720",
"28900",
"63680",
"90700",
"104060",
"108820",
"110020",
"110240"
] | [
"nonn",
"tabl"
] | 14 | 0 | 3 | [
"A000292",
"A026820",
"A255050",
"A381891",
"A382045",
"A382241"
] | null | Peter Dolland, Mar 19 2025 | 2025-03-26T15:27:50 | oeisdata/seq/A382/A382241.seq | 45dd85edc7cb49605f62868568ca2178 |
A382242 | Decimal expansion of Gamma(1/4)^2/(8*sqrt(2*Pi)). | [
"6",
"5",
"5",
"5",
"1",
"4",
"3",
"8",
"8",
"5",
"7",
"3",
"0",
"2",
"9",
"9",
"5",
"2",
"6",
"1",
"6",
"2",
"0",
"9",
"8",
"9",
"7",
"4",
"7",
"2",
"7",
"7",
"9",
"8",
"5",
"3",
"4",
"2",
"0",
"6",
"8",
"8",
"7",
"3",
"7",
"8",
"5",
"7",
"9",
"0",
"5",
"7",
"9",
"0",
"7",
"0",
"4",
"2",
"0",
"5",
"4",
"2",
"5",
"9",
"5",
"0",
"1",
"9",
"7",
"6",
"4",
"6",
"7",
"6",
"7",
"6",
"0",
"3",
"5",
"6",
"2",
"5",
"5",
"7",
"5",
"7",
"3",
"8",
"8",
"3",
"2",
"4",
"0",
"3",
"5",
"7",
"2",
"7",
"3",
"3",
"6",
"1",
"5",
"3",
"3",
"9",
"3",
"8",
"1",
"6",
"7",
"9",
"4",
"5",
"8"
] | [
"nonn",
"cons"
] | 14 | 0 | 1 | [
"A005408",
"A005843",
"A034937",
"A068466",
"A231863",
"A382242"
] | null | R. J. Mathar, Mar 19 2025 | 2025-03-20T09:42:54 | oeisdata/seq/A382/A382242.seq | 12613af8ea29312537d6f3bd636e290a |
A382243 | Decimal expansion of the infinite product of ((k+1/2)/(k+1))^Jacobi(-1,k), k>=0. | [
"3",
"6",
"3",
"5",
"7",
"7",
"5",
"5",
"1",
"7",
"2",
"6",
"9",
"5",
"8",
"1",
"3",
"2",
"2",
"0",
"6",
"7",
"3",
"9",
"6",
"5",
"6",
"6",
"2",
"7",
"4",
"2",
"4",
"7",
"8",
"8",
"7",
"5",
"4",
"7",
"5",
"8",
"7",
"8",
"9",
"9",
"8",
"4",
"9",
"5",
"3",
"2",
"0",
"0",
"7",
"4",
"0",
"3",
"8",
"0",
"2",
"7",
"6",
"4",
"9",
"6",
"7",
"0",
"4",
"2",
"5",
"3",
"8",
"9",
"2",
"6",
"3",
"4",
"4",
"7",
"4",
"8",
"0",
"9",
"0",
"7",
"1",
"9",
"2",
"9",
"4",
"2",
"1",
"5",
"2",
"0",
"7",
"7",
"5",
"9",
"6",
"5",
"8",
"7",
"6",
"4",
"1",
"9",
"8",
"2",
"6",
"0",
"1",
"1",
"1"
] | [
"nonn",
"cons"
] | 18 | 0 | 1 | [
"A034947",
"A382243"
] | null | R. J. Mathar, Mar 19 2025 | 2025-03-20T10:40:52 | oeisdata/seq/A382/A382243.seq | 60fc402f8d895b799bec373f30a8fbcc |
A382244 | Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, n*a(n) is a triangular number (A000217). | [
"0",
"1",
"3",
"2",
"7",
"9",
"6",
"4",
"15",
"5",
"12",
"21",
"10",
"25",
"27",
"8",
"31",
"33",
"35",
"37",
"39",
"11",
"24",
"45",
"22",
"13",
"30",
"14",
"42",
"57",
"26",
"16",
"63",
"17",
"67",
"18",
"56",
"19",
"75",
"20",
"52",
"81",
"28",
"85",
"87",
"23",
"51",
"93",
"95",
"97",
"99",
"46",
"40",
"105",
"60",
"90",
"36",
"29",
"66",
"117",
"54",
"121",
"69",
"32",
"127",
"84",
"58"
] | [
"nonn"
] | 9 | 0 | 3 | [
"A000217",
"A061782",
"A382244"
] | null | Rémy Sigrist, Mar 19 2025 | 2025-03-20T09:28:48 | oeisdata/seq/A382/A382244.seq | fd77b544b84cc6f31c428fece421b0f7 |
A382245 | Lexicographically earliest sequence of distinct nonnegative integers such that the product of two consecutive terms is always a triangular number (A000217). | [
"0",
"1",
"3",
"2",
"5",
"9",
"4",
"7",
"13",
"6",
"11",
"21",
"10",
"12",
"23",
"45",
"14",
"15",
"8",
"17",
"33",
"16",
"31",
"61",
"30",
"26",
"51",
"25",
"49",
"24",
"22",
"43",
"85",
"42",
"28",
"55",
"18",
"35",
"44",
"87",
"19",
"37",
"73",
"36",
"56",
"111",
"98",
"195",
"62",
"69",
"34",
"39",
"20",
"41",
"81",
"40",
"52",
"103",
"205",
"66",
"58",
"115",
"57",
"29",
"59",
"117"
] | [
"nonn"
] | 11 | 0 | 3 | [
"A000217",
"A026741",
"A077220",
"A213005",
"A382244",
"A382245"
] | null | Rémy Sigrist, Mar 19 2025 | 2025-03-21T02:31:20 | oeisdata/seq/A382/A382245.seq | c3511327b2effd97c64313aaf70d3602 |
A382246 | Smallest number k such that k^n - 6 is prime. | [
"8",
"3",
"2",
"5",
"5",
"5",
"19",
"85",
"7",
"5",
"19",
"275",
"23",
"43",
"53",
"455",
"65",
"23",
"23",
"175",
"7",
"65",
"47",
"295",
"7",
"143",
"49",
"115",
"23",
"355",
"185",
"305",
"7",
"55",
"319",
"85",
"113",
"25",
"329",
"505",
"25",
"187",
"205",
"25",
"295",
"437",
"17",
"2285",
"7",
"583",
"35",
"1375",
"5",
"7",
"35",
"895",
"235",
"277",
"197",
"695",
"203",
"145",
"43",
"35",
"437",
"215"
] | [
"nonn"
] | 23 | 1 | 1 | [
"A028879",
"A239414",
"A380905",
"A382246"
] | null | Jakub Buczak, Mar 19 2025 | 2025-03-29T18:50:05 | oeisdata/seq/A382/A382246.seq | 15961bd3bae4b80f09b70b1bcd69aada |
A382247 | Number of fixed points of solid partitions under twice the 'time-lapse' operation. | [
"1",
"0",
"2",
"2",
"3",
"4",
"7",
"12",
"16",
"22",
"32",
"50",
"68",
"96",
"134",
"195",
"261",
"364",
"497",
"701",
"941",
"1288",
"1738"
] | [
"nonn",
"hard",
"more"
] | 7 | 1 | 3 | [
"A000293",
"A094504",
"A094508",
"A096272",
"A096573",
"A096574",
"A096575",
"A096576",
"A096578",
"A096579",
"A096580",
"A096581",
"A119266",
"A382247"
] | null | Wouter Meeussen, Mar 19 2025 | 2025-03-20T12:04:24 | oeisdata/seq/A382/A382247.seq | 00010e93f43c16577e53dbfdb298e017 |
A382248 | Smallest number k that is neither squarefree nor a prime power such that k is coprime to n. | [
"12",
"45",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"63",
"12",
"175",
"12",
"45",
"28",
"45",
"12",
"175",
"12",
"63",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"45",
"12",
"539",
"12",
"45",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"63",
"12",
"275",
"12",
"45",
"28",
"45",
"12",
"175",
"12",
"63",
"20",
"45",
"12",
"175",
"12",
"45",
"20",
"45",
"12",
"539",
"12",
"45",
"20"
] | [
"nonn",
"easy"
] | 39 | 1 | 1 | [
"A002110",
"A007947",
"A053669",
"A126706",
"A380539",
"A382248"
] | null | Michael De Vlieger, Mar 31 2025 | 2025-04-05T10:58:44 | oeisdata/seq/A382/A382248.seq | abb6518aecb5592d4a6ca89bf88f8c14 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.