sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A381915
Expansion of (1/x) * Series_Reversion( x * (1-x)^2 / B(x) ), where B(x) is the g.f. of A002293.
[ "1", "3", "18", "145", "1378", "14515", "163700", "1936414", "23716654", "298216851", "3827542585", "49938733635", "660366743580", "8830549084588", "119205253249287", "1622258295003714", "22232669093660250", "306569446979862205", "4250285556933578693", "59210418891925845529", "828417259759216617257" ]
[ "nonn" ]
13
0
2
[ "A002293", "A381879", "A381912", "A381914", "A381915", "A381916" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-10T09:42:57
oeisdata/seq/A381/A381915.seq
52697b5357989f1d1684a075c211eb92
A381916
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A002293.
[ "1", "4", "29", "270", "2897", "34051", "426199", "5582619", "75660075", "1052748518", "14956346820", "216088986290", "3165555750458", "46912569559556", "702072705679590", "10595488626535181", "161071258091631337", "2464201011094137000", "37911236702465987337", "586166246311185676045", "9103432675706477369934" ]
[ "nonn" ]
12
0
2
[ "A002293", "A381880", "A381913", "A381914", "A381915", "A381916" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-10T09:43:02
oeisdata/seq/A381/A381916.seq
dde0505b2ac43e19183b6e95d903396e
A381917
Kaprekar numbers that are the concatenation of two equal numbers.
[ "55", "99", "5050", "7272", "7777", "9999", "500500", "648648", "851851", "999999", "13641364", "24752475", "25252525", "36363636", "50005000", "61116111", "88888888", "99999999", "1111111111", "3888938889", "4132841328", "5000050000", "5243952439", "9756097560", "9999999999", "159341159341", "175676175676", "233415233415" ]
[ "base", "nonn" ]
23
1
1
[ "A006886", "A020338", "A092118", "A381917" ]
null
Shyam Sunder Gupta, Mar 10 2025
2025-03-18T15:16:12
oeisdata/seq/A381/A381917.seq
1d7eecb7f99dffc77ce03b8d6e57f712
A381918
Kaprekar numbers that are the concatenation of two consecutive numbers.
[ "45", "2223", "2728", "4950", "148149", "351352", "499500", "11111112", "38883889", "49995000", "63636364", "74747475", "75247525", "86358636", "4756047561", "4999950000", "5867158672", "6111061111", "8888888889", "9132791328", "104247104248", "164983164984", "178321178322", "195156195157", "230769230770", "269230269231" ]
[ "base", "nonn" ]
20
1
1
[ "A001704", "A006886", "A030466", "A381918" ]
null
Shyam Sunder Gupta, Mar 10 2025
2025-03-18T15:25:48
oeisdata/seq/A381/A381918.seq
0ed7a1ea13587c0ae070e7a7e6988cdc
A381919
Pentagonal numbers which are products of four distinct primes.
[ "210", "330", "2262", "3290", "4030", "4510", "4845", "5370", "6902", "7315", "8855", "10542", "13490", "15555", "15862", "16485", "18095", "18426", "19437", "21182", "23002", "24130", "28497", "29330", "30602", "31465", "36426", "44290", "46905", "49595", "50142", "54626", "60501", "67310", "67947", "72490", "77862", "79235", "83426", "84135" ]
[ "nonn" ]
11
1
1
[ "A000326", "A046386", "A245365", "A381650", "A381919" ]
null
Massimo Kofler, Mar 10 2025
2025-03-16T22:18:59
oeisdata/seq/A381/A381919.seq
b2f507384b1b6d4a65e802d56a6b28c4
A381920
Hexagonal numbers that are products of exactly four distinct primes.
[ "1326", "1770", "2145", "2415", "3003", "3486", "4186", "5565", "6670", "7626", "8385", "8646", "9730", "13695", "17205", "17578", "24531", "25878", "27730", "28203", "35245", "35778", "37401", "42486", "47278", "47895", "51681", "59685", "60378", "63190", "63903", "66795", "72010", "74305", "75855", "81406", "84666", "87153", "91378", "95703" ]
[ "nonn" ]
9
1
1
[ "A000384", "A046386", "A129521", "A380007", "A381920" ]
null
Massimo Kofler, Mar 10 2025
2025-03-16T22:14:39
oeisdata/seq/A381/A381920.seq
adb0addc16c04ff641155ba418b1326d
A381921
Factorial numbers whose Hamming weight is also a factorial number.
[ "1", "2", "6", "24", "5040", "40320", "362880", "1982608315404440064116146708361898137544773690227268628106279599612729753600000000000000", "126886932185884164103433389335161480802865516174545192198801894375214704230400000000000000" ]
[ "nonn", "base" ]
15
1
2
[ "A000120", "A000142", "A381921", "A381922" ]
null
Ctibor O. Zizka, Mar 10 2025
2025-03-12T08:09:10
oeisdata/seq/A381/A381921.seq
f5f1a323d64fbbfbbb4b31df6a0dc436
A381922
Numbers k>0 such that the Hamming weight of k! is a factorial.
[ "1", "2", "3", "4", "7", "8", "9", "63", "64" ]
[ "nonn", "base", "more" ]
16
1
2
[ "A000120", "A000142", "A079584", "A381921", "A381922" ]
null
Ctibor O. Zizka, Mar 10 2025
2025-03-12T08:09:40
oeisdata/seq/A381/A381922.seq
519df8f42e7ee4fea21bdfed1a218d91
A381923
a(n) is the least k >= 2 such that (2^k - 1) mod (n*k - 1) = 0.
[ "2", "2", "12", "4", "24", "216", "792", "32", "144", "4410", "396", "108", "208", "1880", "3192", "16", "9240", "72", "24", "6048", "264", "2160", "1872", "270", "20916", "104", "5292", "940", "360", "1596", "756", "8", "132", "4620", "1260", "36", "1728", "12", "49500", "3024", "7560", "3168", "1440", "1080", "2688", "936", "1344", "1035", "44100", "28800" ]
[ "nonn" ]
20
1
1
[ "A000225", "A081856", "A087965", "A381923" ]
null
Ctibor O. Zizka, Mar 10 2025
2025-03-12T12:26:21
oeisdata/seq/A381/A381923.seq
33f27ac79f2f81994422b001397c836f
A381924
Multiplicative order of n mod prime(n).
[ "1", "2", "4", "3", "5", "12", "16", "6", "11", "28", "30", "9", "40", "21", "46", "13", "29", "60", "33", "7", "24", "13", "41", "88", "48", "100", "34", "106", "54", "7", "63", "26", "136", "23", "74", "75", "39", "9", "166", "86", "178", "5", "95", "192", "196", "99", "105", "222", "113", "228", "29", "34", "120", "250", "256", "262", "67", "270", "46", "8", "47", "292", "153", "155", "312" ]
[ "nonn" ]
23
1
2
[ "A014664", "A091185", "A226295", "A381924" ]
null
Giorgos Kalogeropoulos, Mar 12 2025
2025-03-26T19:15:05
oeisdata/seq/A381/A381924.seq
297839ae69eebe320625444cbb4498bb
A381925
Positive integers k which have at least one divisor d for which tau(k) = sigma(d).
[ "1", "4", "6", "15", "20", "21", "27", "33", "39", "42", "45", "50", "51", "56", "57", "60", "64", "69", "70", "72", "75", "84", "87", "90", "93", "96", "105", "108", "111", "123", "126", "129", "132", "141", "144", "150", "154", "156", "159", "175", "177", "180", "182", "183", "189", "198", "201", "204", "213", "219", "220", "228", "231", "234", "237", "238", "245", "249", "266" ]
[ "nonn" ]
25
1
2
[ "A000005", "A000203", "A000396", "A027750", "A381925", "A381926", "A381927" ]
null
Felix Huber, Mar 12 2025
2025-04-26T03:32:38
oeisdata/seq/A381/A381925.seq
57ab0de681422064bf586372eaf13e5d
A381926
Smallest divisor d of A381925(n) for which sigma(d) = tau(A381925(n)).
[ "1", "2", "3", "3", "5", "3", "3", "3", "3", "7", "5", "5", "3", "7", "3", "6", "4", "3", "7", "6", "5", "6", "3", "6", "3", "6", "7", "6", "3", "3", "6", "3", "6", "3", "8", "6", "7", "6", "3", "5", "3", "10", "7", "3", "7", "6", "3", "6", "3", "3", "11", "6", "7", "6", "3", "7", "5", "3", "7", "3", "7", "5", "6", "3", "6", "10", "3", "6", "11", "3", "3", "7", "5", "3", "3", "6", "6", "11", "7", "15", "6", "3", "7", "3", "7", "8" ]
[ "nonn" ]
11
1
2
[ "A000005", "A000203", "A000396", "A027750", "A381925", "A381926", "A381927" ]
null
Felix Huber, Mar 12 2025
2025-04-26T03:32:41
oeisdata/seq/A381/A381926.seq
00e8c8305da47bb3014aff692611db1d
A381927
Least positive integer k which has at least n divisors d for which tau(k) = sigma(d).
[ "1", "132", "33660", "658812", "14982660", "119861280" ]
[ "nonn", "more" ]
12
1
2
[ "A000005", "A000203", "A000396", "A027750", "A381925", "A381926", "A381927" ]
null
Felix Huber, Mar 12 2025
2025-04-26T03:32:47
oeisdata/seq/A381/A381927.seq
66260d0ec3aae02b8ba9282458c46049
A381928
Domination number of the n X n camel graph.
[ "1", "4", "9", "8", "8", "8", "9", "12", "16", "20", "25", "28", "31", "34", "40", "44", "50", "56", "61", "68" ]
[ "nonn", "more" ]
6
1
2
null
null
Eric W. Weisstein, Mar 10 2025
2025-03-10T11:02:40
oeisdata/seq/A381/A381928.seq
fabd897ef945fb1093909cc5e7c886e6
A381929
Ending positions of runs in the regular paperfolding sequence A034947.
[ "2", "3", "5", "7", "10", "12", "13", "15", "18", "19", "21", "24", "26", "28", "29", "31", "34", "35", "37", "39", "42", "44", "45", "48", "50", "51", "53", "56", "58", "60", "61", "63", "66", "67", "69", "71", "74", "76", "77", "79", "82", "83", "85", "88", "90", "92", "93", "96", "98", "99", "101", "103", "106", "108", "109", "112", "114", "115", "117", "120", "122", "124", "125" ]
[ "nonn" ]
8
1
1
[ "A034947", "A088431", "A371594", "A381929" ]
null
Jeffrey Shallit, Mar 10 2025
2025-03-11T22:06:58
oeisdata/seq/A381/A381929.seq
89385ed58f672d8e5d15c0533382a535
A381930
Irregular triangular array read by rows. T(n,k) is the number of length n words x on {0,1,2} such that I(x) + W_0(x)*W_1(x) + W_0(x)*W_2(x) + W_1(x)*W_2(x) = k where I(x) is the number of inversions in x and W_i(x) is the number of occurrences of the letter i in x for i={0,1,2}, n>=0, 0<=k<=floor(2n^2/3).
[ "1", "3", "3", "3", "3", "3", "0", "6", "7", "8", "2", "1", "3", "0", "0", "6", "9", "12", "18", "12", "12", "6", "3", "3", "0", "0", "0", "6", "6", "12", "15", "27", "27", "36", "33", "33", "21", "15", "6", "3", "3", "0", "0", "0", "0", "6", "6", "6", "12", "18", "27", "33", "52", "62", "77", "82", "86", "75", "68", "48", "35", "19", "11", "2", "1" ]
[ "nonn", "tabf" ]
17
0
2
[ "A000244", "A027472", "A056449", "A129529", "A342245", "A381899", "A381930" ]
null
Geoffrey Critzer, Mar 10 2025
2025-03-12T15:58:48
oeisdata/seq/A381/A381930.seq
1d2931fb578f1781bcf52caa126f1297
A381931
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*A381932(n, k)/T(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
[ "2", "4", "12", "8", "48", "48", "16", "144", "24", "180", "32", "1152", "1728", "5760", "8640", "64", "640", "3456", "5760", "17280", "6720", "128", "7680", "34560", "1152", "34560", "32256", "241920", "256", "26880", "82944", "414720", "41472", "580608", "107520", "1451520", "512", "430080", "645120", "622080", "4147200", "6967296", "21772800", "87091200", "43545600" ]
[ "nonn", "frac", "tabl" ]
23
1
1
[ "A052104", "A052105", "A052122", "A052123", "A144150", "A180609", "A184011", "A381931", "A381932" ]
null
Thomas Scheuerle, Mar 10 2025
2025-03-18T20:25:39
oeisdata/seq/A381/A381931.seq
1b54cf64d29acb9d364b8479bcec7a07
A381932
Triangular array T(n, k) read by rows: denominators of the coefficients for the iterated exponential F^{r}(x) = x + Sum_{n>=1} x^(n+1)*Sum_{k=1..n} r^(n+1-k)*T(n, k)/A381931(n, k) with F^{1}(x) = exp(x)-1 and F^{2}(x) = exp(exp(x)-1)-1.
[ "1", "1", "-1", "1", "-5", "1", "1", "-13", "1", "-1", "1", "-77", "89", "-91", "11", "1", "-29", "175", "-149", "91", "-1", "1", "-223", "1501", "-37", "391", "-43", "-11", "1", "-481", "2821", "-13943", "725", "-2357", "17", "29", "1", "-4609", "16099", "-19481", "91313", "-55649", "23137", "1727", "493", "1", "-4861", "89993", "-933293", "399637", "-1061231", "2035739", "-8189", "4897", "-2711" ]
[ "sign", "frac", "tabl" ]
9
1
5
[ "A052104", "A052105", "A052122", "A052123", "A064169", "A144150", "A180609", "A184011", "A381931", "A381932" ]
null
Thomas Scheuerle, Mar 12 2025
2025-03-18T20:25:49
oeisdata/seq/A381/A381932.seq
81c9a0fe148a5e65dc73f2aeed7259ea
A381933
a(n) is the number of occurrences of n in A350311.
[ "1", "1", "1", "2", "2", "2", "3", "3", "2", "4", "4", "3", "4", "5", "4", "5", "6", "4", "5", "7", "6", "5", "8", "7", "6", "8", "7", "5", "9", "9", "6", "9", "10", "8", "10", "11", "7", "10", "11", "8", "8", "12", "10", "10", "13", "10", "10", "14", "13", "9", "15", "14", "11", "14", "14", "10", "14", "15", "9", "12", "16", "13", "13", "18", "14", "14", "18", "15", "11", "19", "18", "13", "18", "19", "15" ]
[ "nonn", "base" ]
6
0
4
[ "A350311", "A381933" ]
null
Rémy Sigrist, Mar 10 2025
2025-03-11T08:23:54
oeisdata/seq/A381/A381933.seq
4763d26c29ad72a69116e44326058143
A381934
a(n) is the least k > 1 such that the binary expansions of n and n*k have the same number of nonleading zeros.
[ "2", "3", "3", "5", "3", "6", "5", "9", "3", "5", "6", "5", "5", "19", "9", "17", "3", "5", "5", "3", "6", "9", "5", "11", "5", "7", "19", "301", "9", "35", "17", "33", "3", "5", "5", "3", "5", "5", "3", "3", "6", "5", "9", "5", "5", "17", "11", "305", "5", "7", "7", "15", "19", "3", "301", "9", "9", "71", "35", "13", "17", "67", "33", "65", "3", "5", "5", "3", "5", "5", "3", "3", "5", "10", "5", "10", "3", "6" ]
[ "nonn", "base" ]
17
0
1
[ "A023416", "A292849", "A295827", "A352217", "A381934", "A381935" ]
null
Rémy Sigrist, Mar 10 2025
2025-03-30T20:27:37
oeisdata/seq/A381/A381934.seq
225bb59424be65af3dcf13aeaa21c288
A381935
For any n > 0, a(n) is the least nontrivial multiple of n whose binary expansion has the same number of nonleading zeros as that of n; a(0) = 0.
[ "0", "3", "6", "15", "12", "30", "30", "63", "24", "45", "60", "55", "60", "247", "126", "255", "48", "85", "90", "57", "120", "189", "110", "253", "120", "175", "494", "8127", "252", "1015", "510", "1023", "96", "165", "170", "105", "180", "185", "114", "117", "240", "205", "378", "215", "220", "765", "506", "14335", "240", "343", "350", "765", "988", "159", "16254" ]
[ "nonn", "base" ]
15
0
2
[ "A023416", "A161399", "A352217", "A381934", "A381935" ]
null
Rémy Sigrist, Mar 10 2025
2025-03-12T17:27:07
oeisdata/seq/A381/A381935.seq
bb3122fe4df3bacd8b88d5343680e08c
A381936
Number of primitive binary words of length n that avoid 11, start with 1 and end with 0.
[ "0", "1", "1", "1", "3", "3", "8", "11", "20", "30", "55", "83", "144", "224", "373", "597", "987", "1572", "2584", "4146", "6756", "10890", "17711", "28557", "46365", "74880", "121372", "196184", "317811", "513818", "832040", "1345659", "2178253", "3523590", "5702876", "9225784", "14930352", "24155232", "39088024", "63241794", "102334155", "165573148", "267914296" ]
[ "nonn" ]
31
1
5
[ "A000045", "A007436", "A008683", "A056267", "A113166", "A381936" ]
null
Aidan Diekmann, Mar 10 2025
2025-03-19T09:03:09
oeisdata/seq/A381/A381936.seq
a85d25752efbedada66ad7272e3f878c
A381937
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.
[ "1", "2", "6", "35", "240", "1805", "14386", "119365", "1020136", "8918423", "79380514", "716911887", "6553219720", "60513355786", "563648995020", "5289485238552", "49963186247220", "474655663418546", "4532279676629700", "43473774550929628", "418706702628897708", "4047555977981218963" ]
[ "nonn" ]
11
0
2
[ "A001764", "A025227", "A346646", "A365178", "A381787", "A381937", "A381940" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T07:53:44
oeisdata/seq/A381/A381937.seq
55d8ee871f4a98d43b7aea16222583b4
A381938
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A001764.
[ "1", "3", "9", "52", "380", "3066", "26304", "235314", "2170312", "20487963", "196988392", "1922327792", "18990571724", "189548947601", "1908604524752", "19364096602370", "197761735366804", "2031444188437719", "20974821788118024", "217561484977675026", "2265961977605950416", "23688432825547509283" ]
[ "nonn" ]
13
0
2
[ "A001764", "A366694", "A367640", "A381785", "A381938", "A381941" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T07:54:53
oeisdata/seq/A381/A381938.seq
c6315c2fb584bcff42535830de37f8a5
A381939
G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A001764.
[ "1", "4", "13", "74", "568", "4872", "44576", "425936", "4199616", "42404096", "436238592", "4556085248", "48179319808", "514825553408", "5550284218368", "60296483084288", "659417378381824", "7253858445852672", "80209754567786496", "891027699137609728", "9939286070426992640", "111286739309529858048" ]
[ "nonn" ]
14
0
2
[ "A001764", "A366695", "A367641", "A381860", "A381939", "A381942" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T07:56:10
oeisdata/seq/A381/A381939.seq
ea437277c99830e508126ddcc78d425a
A381940
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A002293.
[ "1", "2", "7", "51", "440", "4170", "41921", "438972", "4736281", "52286520", "587774685", "6705201456", "77426676892", "903251324476", "10629495065550", "126032922655030", "1504194199010435", "18056321542477095", "217859030049153565", "2640609137351540510", "32137554969392230950", "392580762083089376630" ]
[ "nonn" ]
13
0
2
[ "A002293", "A025227", "A346647", "A365184", "A381787", "A381937", "A381940" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T07:57:06
oeisdata/seq/A381/A381940.seq
ec65e78084106ebc1ce24c28e409536f
A381941
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A002293.
[ "1", "3", "10", "71", "644", "6461", "68971", "768054", "8820281", "103694479", "1241799996", "15095075897", "185769856443", "2310006893997", "28978952155943", "366315306556482", "4661272734504606", "59659914501348239", "767539555514812321", "9920124234695256009", "128744011085858468131", "1677087982747514335025" ]
[ "nonn" ]
12
0
2
[ "A002293", "A366694", "A367640", "A381938", "A381941" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T07:59:16
oeisdata/seq/A381/A381941.seq
64326d17b59d0d6ffbd3c4a67c5b2288
A381942
G.f. A(x) satisfies A(x) = (1 + x)^3 * B(x*A(x)), where B(x) is the g.f. of A002293.
[ "1", "4", "14", "96", "905", "9550", "107552", "1265372", "15364920", "191090255", "2421646300", "31157939594", "405932855044", "5344301858465", "70990458721140", "950263442420120", "12805328720666376", "173574888045493536", "2365049262321662145", "32374714068988416170", "445017678283209218750", "6140131349497715896244" ]
[ "nonn" ]
11
0
2
[ "A002293", "A366695", "A381860", "A381939", "A381942" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:00:14
oeisdata/seq/A381/A381942.seq
5f8158cdc9ac4cde3b1810407d9476a7
A381943
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A001764.
[ "1", "3", "11", "60", "425", "3426", "29619", "267738", "2497889", "23866056", "232325475", "2295889266", "22971682893", "232248775669", "2368969672183", "24348849065860", "251930963865061", "2621914660411919", "27428338267887815", "288258167672381602", "3042002859317810001", "32222429872821051817" ]
[ "nonn" ]
12
0
2
[ "A001764", "A086616", "A364592", "A381867", "A381943", "A381945" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:01:11
oeisdata/seq/A381/A381943.seq
0c1536fe1034f06db8ae57ff5792ea9b
A381944
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A001764.
[ "1", "4", "16", "89", "655", "5592", "51594", "499159", "4990821", "51140527", "534152690", "5665496618", "60854697427", "660601882734", "7235771990454", "79870211543625", "887569516968685", "9921579561050637", "111487286796322366", "1258604967618419118", "14268057344239960863", "162358119295068686098" ]
[ "nonn" ]
10
0
2
[ "A001764", "A162481", "A366034", "A381944", "A381947" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:02:15
oeisdata/seq/A381/A381944.seq
31527d4918c3b685b9d679f87b5eb0d9
A381945
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A002293.
[ "1", "3", "12", "79", "695", "6961", "74679", "837336", "9689234", "114822820", "1386402276", "16994276781", "210919650044", "2645218761934", "33470438908615", "426758782807956", "5477657372957314", "70720821402587371", "917801926609131194", "11966203939448781600", "156662012236067711036", "2058709975008385135863" ]
[ "nonn" ]
10
0
2
[ "A002293", "A086616", "A381867", "A381943", "A381945" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:03:18
oeisdata/seq/A381/A381945.seq
99e38452cead0ef3db2d4653581caab0
A381946
a(n) is the smallest positive integer k with at least one digit > 1 such that k*n contains all the distinct digits of n.
[ "12", "6", "12", "6", "3", "6", "21", "6", "21", "12", "12", "16", "24", "51", "7", "26", "42", "6", "48", "6", "6", "6", "14", "18", "5", "24", "26", "26", "32", "12", "23", "26", "4", "41", "9", "26", "19", "22", "24", "6", "4", "7", "8", "6", "9", "14", "31", "8", "6", "3", "3", "26", "25", "27", "3", "26", "65", "26", "5", "6", "24", "23", "22", "26", "21", "4", "25", "12", "14", "21", "17", "24", "19", "47", "5", "22", "14", "24", "25" ]
[ "nonn", "base" ]
17
1
1
[ "A381700", "A381946" ]
null
M. F. Hasler and Ali Sada, Mar 10 2025
2025-03-21T18:31:35
oeisdata/seq/A381/A381946.seq
431329a8d798dc888bf5d9d4847adeb4
A381947
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A002293.
[ "1", "4", "17", "111", "1001", "10507", "118986", "1411789", "17307078", "217422098", "2784080234", "36201950786", "476725871599", "6344524132503", "85198695369123", "1152990558752089", "15708685673520617", "215287198676732925", "2965962577091646604", "41052101428818066604", "570583013508324005560" ]
[ "nonn" ]
11
0
2
[ "A002293", "A162481", "A366034", "A381916", "A381944", "A381947" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:04:26
oeisdata/seq/A381/A381947.seq
70545083a92e2b0a277728f3612a64c8
A381948
Number of sequences in which the matches of a fully symmetric single-elimination tournament with 4^n players can be played if arbitrarily many matches can occur simultaneously and each match involves 4 players.
[ "1", "1", "75", "3016718788056802445", "940214577272785072764883853635996915471902343186386048409875362373502134253520788722829230121857323681047351543536731036815" ]
[ "nonn" ]
10
0
3
[ "A273725", "A379758", "A381865", "A381948" ]
null
Noah A Rosenberg, Mar 10 2025
2025-03-19T10:27:57
oeisdata/seq/A381/A381948.seq
4ccdab096b69861b57d3ff015071c5f2
A381949
a(n) is the smallest integer k greater than 1 and not a perfect power satisfying A373387(k^n) = n.
[ "2", "7", "55", "5", "95", "95", "385", "95", "1535", "1535", "6145", "1025", "24575", "24575", "98305", "4095", "393215", "393215", "1572865", "262145", "6291455", "6291455", "25165825", "6291455", "100663295", "100663295", "402653185", "67108865", "1610612735", "1610612735", "6442450945", "402653185", "25769803775", "25769803775" ]
[ "base", "hard", "nonn" ]
10
1
1
[ "A018247", "A091663", "A317905", "A373387", "A381460", "A381949" ]
null
Marco Ripà, Mar 10 2025
2025-03-18T17:36:14
oeisdata/seq/A381/A381949.seq
1128223d2833e89d8ef83fdae3de7eb4
A381950
Odd numbers whose prime factorization has an even maximum exponent.
[ "1", "9", "25", "45", "49", "63", "75", "81", "99", "117", "121", "147", "153", "169", "171", "175", "207", "225", "245", "261", "275", "279", "289", "315", "325", "333", "361", "363", "369", "387", "405", "423", "425", "441", "475", "477", "495", "507", "525", "529", "531", "539", "549", "567", "575", "585", "603", "605", "625", "637", "639", "657", "693", "711", "725" ]
[ "nonn", "easy" ]
10
1
2
[ "A005408", "A051903", "A368714", "A375039", "A381823", "A381950", "A381951", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:10
oeisdata/seq/A381/A381950.seq
f7decc5b37d613d98b5bafe13225f9c0
A381951
Nonsquarefree odd numbers whose prime factorization has an odd maximum exponent.
[ "27", "125", "135", "189", "243", "297", "343", "351", "375", "459", "513", "621", "675", "783", "837", "875", "945", "999", "1029", "1107", "1125", "1161", "1215", "1269", "1323", "1331", "1375", "1431", "1485", "1593", "1625", "1647", "1701", "1715", "1755", "1809", "1917", "1971", "2079", "2125", "2133", "2187", "2197", "2241", "2295", "2375", "2403", "2457" ]
[ "nonn", "easy" ]
7
1
1
[ "A005408", "A013929", "A051903", "A376142", "A381950", "A381951" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:16
oeisdata/seq/A381/A381951.seq
b8cd9ab365939aacf2bbb60432b48f2e
A381952
a(n) is the greatest common divisor of n and the maximum exponent in the prime factorization of n.
[ "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "3", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A051903", "A336064", "A368715", "A381952", "A381953" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:23
oeisdata/seq/A381/A381952.seq
7ed375ea550eaa193110373bc516a82d
A381953
Numbers k such that A381952(k) = 2.
[ "4", "12", "18", "20", "28", "36", "44", "50", "52", "60", "64", "68", "76", "84", "90", "92", "98", "100", "116", "124", "126", "132", "140", "148", "150", "156", "162", "164", "172", "180", "188", "196", "198", "204", "212", "220", "228", "234", "236", "242", "244", "252", "260", "268", "276", "284", "292", "294", "300", "306", "308", "316", "320", "332", "338", "340" ]
[ "nonn", "easy" ]
9
1
1
[ "A051903", "A368715", "A381952", "A381953" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:30
oeisdata/seq/A381/A381953.seq
4e0a37b2412dfbbb01e7784b548cf559
A381954
The maximum exponent in the prime factorization of n that is coprime to n, or 0 if no such exponent exists.
[ "0", "1", "1", "0", "1", "1", "1", "3", "2", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "0", "1", "1", "1", "1", "5", "1", "1", "1", "0", "1", "1", "1", "3", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "2", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
6
1
8
[ "A051903", "A381952", "A381954" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:40
oeisdata/seq/A381/A381954.seq
250fa92c1ce8ad21a0fa5cee1a66c71e
A381955
a(n) = A051903(n) mod 2.
[ "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
8
1
null
[ "A000035", "A051903", "A181183", "A295316", "A359473", "A368714", "A381955", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:46
oeisdata/seq/A381/A381955.seq
e30953d8022a49bde319998b1403cdd9
A381956
Numbers k such that k and the maximum exponent in the prime factorization of k have opposite parities.
[ "1", "2", "6", "8", "9", "10", "14", "22", "24", "25", "26", "30", "32", "34", "38", "40", "42", "45", "46", "49", "54", "56", "58", "62", "63", "66", "70", "72", "74", "75", "78", "81", "82", "86", "88", "94", "96", "99", "102", "104", "106", "108", "110", "114", "117", "118", "120", "121", "122", "128", "130", "134", "136", "138", "142", "146", "147", "152", "153", "154", "158", "160" ]
[ "nonn", "easy" ]
11
1
2
[ "A000035", "A039956", "A051903", "A381950", "A381955", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:52
oeisdata/seq/A381/A381956.seq
a44e945bd4f09f9964ce1deea6100552
A381957
If n = Sum 2^e(k), then a(n) = Sum 2^a(e(k)), with a(0) = 1.
[ "1", "2", "4", "6", "16", "18", "20", "22", "64", "66", "68", "70", "80", "82", "84", "86", "65536", "65538", "65540", "65542", "65552", "65554", "65556", "65558", "65600", "65602", "65604", "65606", "65616", "65618", "65620", "65622", "262144", "262146", "262148", "262150", "262160", "262162", "262164", "262166", "262208", "262210", "262212", "262214", "262224", "262226" ]
[ "nonn", "base" ]
11
0
2
[ "A029931", "A033922", "A073642", "A381957" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-18T15:48:03
oeisdata/seq/A381/A381957.seq
2755d8e4380496a3225bf8528ba3f6e3
A381958
Numerator of the sum of the reciprocals of the indices of distinct prime factors of n.
[ "0", "1", "1", "1", "1", "3", "1", "1", "1", "4", "1", "3", "1", "5", "5", "1", "1", "3", "1", "4", "3", "6", "1", "3", "1", "7", "1", "5", "1", "11", "1", "1", "7", "8", "7", "3", "1", "9", "2", "4", "1", "7", "1", "6", "5", "10", "1", "3", "1", "4", "9", "7", "1", "3", "8", "5", "5", "11", "1", "11", "1", "12", "3", "1", "1", "17", "1", "8", "11", "19", "1", "3", "1", "13", "5", "9", "9", "5", "1", "4", "1", "14", "1", "7", "10", "15", "3", "6", "1", "11", "5", "10", "13", "16", "11" ]
[ "nonn", "frac" ]
12
1
6
[ "A000720", "A028235", "A028236", "A066328", "A083345", "A318573", "A379141", "A381958", "A381959" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-19T15:30:15
oeisdata/seq/A381/A381958.seq
5ce6344acdb318d0717f039af2ba4fe2
A381959
Denominator of the sum of the reciprocals of the indices of distinct prime factors of n.
[ "1", "1", "2", "1", "3", "2", "4", "1", "2", "3", "5", "2", "6", "4", "6", "1", "7", "2", "8", "3", "4", "5", "9", "2", "3", "6", "2", "4", "10", "6", "11", "1", "10", "7", "12", "2", "12", "8", "3", "3", "13", "4", "14", "5", "6", "9", "15", "2", "4", "3", "14", "6", "16", "2", "15", "4", "8", "10", "17", "6", "18", "11", "4", "1", "2", "10", "19", "7", "18", "12", "20", "2", "21", "12", "6", "8", "20", "3", "22", "3", "2", "13", "23", "4", "21", "14", "5", "5", "24", "6", "12", "9", "22", "15", "24" ]
[ "nonn", "frac" ]
11
1
3
[ "A000720", "A007947", "A066328", "A083346", "A318574", "A381958", "A381959" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-19T15:30:21
oeisdata/seq/A381/A381959.seq
6dc0e80473086c6ce1b7d9801c2d602d
A381960
Centered heptagonal numbers which are semiprime.
[ "22", "106", "253", "386", "841", "1198", "1618", "2101", "2458", "3046", "3473", "4166", "4411", "5461", "6623", "6931", "7246", "7897", "8926", "9647", "10018", "12811", "13238", "14113", "15947", "16423", "17893", "19951", "22121", "22681", "24403", "24991", "26797", "27413", "30598", "31921", "32593", "33958", "38221", "40447", "41966", "43513" ]
[ "nonn" ]
9
1
1
[ "A001358", "A069099", "A360183", "A381960" ]
null
Massimo Kofler, Mar 11 2025
2025-03-18T15:56:11
oeisdata/seq/A381/A381960.seq
397dac3d5f3620625859ecadf6d494a4
A381961
Number of connected graphs with n vertices which have a planar square.
[ "1", "1", "1", "2", "6", "6", "14", "25", "60", "124", "302", "696", "1745", "4300", "11042", "28362", "74483", "196539", "525521", "1413635", "3835932", "10468384" ]
[ "nonn", "hard", "more" ]
30
0
4
[ "A381961", "A382180", "A382181", "A382284" ]
null
Sean A. Irvine, Mar 18 2025
2025-03-22T15:46:03
oeisdata/seq/A381/A381961.seq
e67903a0b89ee7159ea94d66066e1f54
A381962
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) <= 1, where f(x) is the Hamming weight of x (A000120).
[ "0", "1", "2", "1", "3", "2", "1", "4", "1", "5", "2", "1", "6", "2", "1", "7", "3", "2", "1", "8", "1", "9", "2", "1", "10", "2", "1", "11", "3", "2", "1", "12", "2", "1", "13", "3", "2", "1", "14", "3", "2", "1", "15", "4", "1", "16", "1", "17", "2", "1", "18", "2", "1", "19", "3", "2", "1", "20", "2", "1", "21", "3", "2", "1", "22", "3", "2", "1", "23", "4", "1", "24", "2", "1", "25", "3", "2", "1", "26", "3", "2", "1" ]
[ "nonn", "tabf", "base", "easy" ]
11
0
3
[ "A000120", "A078627", "A078677", "A180094", "A381962", "A381963", "A381965" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:19:40
oeisdata/seq/A381/A381962.seq
bacca641f97b39d070dccb48f1f7486c
A381963
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) < 10, where f(x) is the digital sum of x (A007953).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "11", "2", "12", "3", "13", "4", "14", "5", "15", "6", "16", "7", "17", "8", "18", "9", "19", "10", "1", "20", "2", "21", "3", "22", "4", "23", "5", "24", "6", "25", "7", "26", "8", "27", "9", "28", "10", "1", "29", "11", "2", "30", "3", "31", "4", "32", "5", "33", "6", "34", "7", "35", "8", "36", "9", "37", "10", "1", "38", "11", "2", "39", "12", "3" ]
[ "nonn", "tabf", "base", "easy" ]
9
0
3
[ "A007953", "A010888", "A031286", "A381962", "A381963", "A381964", "A381965" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:04
oeisdata/seq/A381/A381963.seq
bccfe19effea3da9fb0dbf7bf6b0a131
A381964
Row sums of A381963.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "13", "15", "17", "19", "21", "23", "25", "27", "30", "22", "24", "26", "28", "30", "32", "34", "36", "39", "42", "33", "35", "37", "39", "41", "43", "45", "48", "51", "54", "44", "46", "48", "50", "52", "54", "57", "60", "63", "66", "55", "57", "59", "61", "63", "66", "69", "72", "75", "78", "66", "68", "70", "72", "75", "78", "81", "84", "87", "90" ]
[ "nonn", "base", "easy" ]
8
0
3
[ "A031286", "A381963", "A381964" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:13
oeisdata/seq/A381/A381964.seq
3538863ee526018637f0b706c5e4968a
A381965
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) < 10, where f(x) is the multiplicative digital root of x (A031347).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "0", "11", "1", "12", "2", "13", "3", "14", "4", "15", "5", "16", "6", "17", "7", "18", "8", "19", "9", "20", "0", "21", "2", "22", "4", "23", "6", "24", "8", "25", "10", "0", "26", "12", "2", "27", "14", "4", "28", "16", "6", "29", "18", "8", "30", "0", "31", "3", "32", "6", "33", "9", "34", "12", "2", "35", "15", "5", "36", "18", "8", "37", "21", "2" ]
[ "nonn", "tabf", "base", "easy" ]
9
0
3
[ "A031346", "A031347", "A381962", "A381963", "A381965", "A381966" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:24
oeisdata/seq/A381/A381965.seq
b72c96c50ee323e92d9dc47d4c121d1a
A381966
Row sums of A381965.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "16", "18", "20", "22", "24", "26", "28", "20", "23", "26", "29", "32", "35", "40", "45", "50", "55", "30", "34", "38", "42", "48", "55", "62", "60", "70", "84", "40", "45", "50", "57", "66", "65", "78", "97", "86", "111", "50", "56", "62", "73", "74", "90", "86", "112", "98", "124", "60", "67", "76", "89", "96", "95", "128", "117" ]
[ "nonn", "base", "easy" ]
6
0
3
[ "A031346", "A381965", "A381966" ]
null
Paolo Xausa, Mar 12 2025
2025-03-14T21:20:31
oeisdata/seq/A381/A381966.seq
afdc17b924f07619915158c6c78653f0
A381967
Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the factorial base expansion of n*a(n) only contains distinct nonzero digits.
[ "0", "1", "2", "4", "3", "10", "6", "7", "9", "8", "5", "12", "11", "18", "14", "16", "15", "22", "13", "19", "23", "24", "17", "20", "21", "26", "25", "40", "39", "42", "32", "54", "30", "36", "48", "62", "33", "61", "51", "28", "27", "53", "29", "67", "49", "64", "47", "46", "34", "44", "58", "38", "55", "41", "31", "52", "57", "56", "50", "59", "60", "37", "35", "66", "45", "68", "63", "43" ]
[ "nonn", "base" ]
10
0
3
[ "A265349", "A381967" ]
null
Rémy Sigrist, Mar 12 2025
2025-03-14T09:01:13
oeisdata/seq/A381/A381967.seq
facb4fb9bc742708a679e6d8767acd00
A381968
a(a(n)) = A381662(n).
[ "1", "5", "3", "4", "2", "6", "14", "8", "12", "10", "11", "7", "13", "9", "15", "27", "17", "25", "19", "23", "21", "22", "16", "24", "18", "26", "20", "28", "44", "30", "42", "32", "40", "34", "38", "36", "37", "29", "39", "31", "41", "33", "43", "35", "45", "65", "47", "63", "49", "61", "51", "59", "53", "57", "55", "56", "46", "58", "48", "60", "50", "62", "52", "64", "54", "66" ]
[ "nonn", "tabf" ]
40
1
2
[ "A000027", "A000384", "A016813", "A056023", "A376214", "A378684", "A378762", "A379342", "A379343", "A380200", "A380245", "A380815", "A380817", "A381662", "A381663", "A381664", "A381968", "A382499", "A382679", "A382680", "A383419", "A383589", "A383590", "A383722", "A383723", "A383724" ]
null
Boris Putievskiy, Mar 12 2025
2025-06-15T18:15:24
oeisdata/seq/A381/A381968.seq
e84cde765ae9b1eeaacb6492b2c52c5e
A381969
Primes p with the property that PreviousPrime(p) is a substring of p^2.
[ "3701", "65442077", "8410957371097" ]
[ "nonn", "base", "bref", "more" ]
12
1
1
[ "A052073", "A381969" ]
null
Giorgos Kalogeropoulos, Mar 11 2025
2025-03-30T09:52:58
oeisdata/seq/A381/A381969.seq
96e45d40a04ddd881bf0e4598b725c72
A381970
Numbers k such that there are no primes of the form 2^(k-m)*3^m + 1 or 2^(k-m)*3^m - 1 for 0 <= m <= k.
[ "46", "74", "102", "118", "130", "142", "162", "165", "166", "186", "200", "234", "242", "252", "258", "306", "318", "358", "370", "374", "414", "462", "478", "494", "506", "518", "522", "538", "540", "550", "578", "594", "618", "630", "654", "662", "666", "672", "690", "738", "750", "768", "778", "780", "790", "802", "810", "826", "834", "858", "886", "902", "912", "938", "942", "958", "982", "990", "1002" ]
[ "nonn" ]
14
1
1
[ "A167506", "A381970" ]
null
Robert Israel, Mar 11 2025
2025-03-12T07:58:35
oeisdata/seq/A381/A381970.seq
90da4101fd8dd0f939952ace095f0ccf
A381971
Maximum number of diagonal transversals in a Brown's diagonal Latin square of order 2n.
[ "0", "4", "6", "120", "890" ]
[ "nonn", "more", "hard" ]
6
1
2
[ "A287648", "A339641", "A381971" ]
null
Eduard I. Vatutin, Mar 11 2025
2025-03-18T18:00:39
oeisdata/seq/A381/A381971.seq
048b36b0d1bb94deee238454378911e3
A381972
Numbers k>=3 such that k/A001414(k) > (k-1)/A001414(k-1).
[ "6", "8", "9", "12", "14", "15", "16", "18", "20", "24", "27", "30", "32", "35", "36", "38", "39", "40", "42", "44", "45", "48", "50", "52", "54", "56", "60", "62", "63", "64", "66", "68", "70", "72", "74", "75", "77", "78", "80", "81", "84", "87", "88", "90", "95", "96", "98", "100", "102", "104", "105", "108", "110", "112", "114", "117", "119", "120", "123", "124", "125", "126" ]
[ "nonn" ]
26
1
1
[ "A001414", "A082299", "A082343", "A082344", "A381249", "A381972" ]
null
Clark Kimberling, Mar 16 2025
2025-05-09T23:13:16
oeisdata/seq/A381/A381972.seq
c43f009813cdf975f77351d696944eae
A381973
Numbers m such that Sum_{k >= 0} floor(m/3^k) is prime.
[ "2", "4", "9", "12", "14", "17", "22", "28", "36", "41", "42", "46", "49", "61", "66", "69", "71", "73", "86", "89", "94", "101", "102", "107", "110", "113", "121", "129", "131", "134", "143", "151", "153", "155", "158", "169", "173", "177", "181", "187", "190", "211", "214", "223", "227", "235", "238", "250", "254", "257", "274", "281", "282", "289", "295", "301" ]
[ "nonn" ]
11
1
1
[ "A000040", "A028491", "A381973", "A381974" ]
null
Clark Kimberling, Apr 01 2025
2025-04-21T17:00:26
oeisdata/seq/A381/A381973.seq
eeea3072cb4e98338a5b43bfecc6be8c
A381974
Primes of the form Sum_{k >= 0} floor(m/3^k) for some number m.
[ "2", "5", "13", "17", "19", "23", "31", "41", "53", "59", "61", "67", "71", "89", "97", "101", "103", "107", "127", "131", "139", "149", "151", "157", "163", "167", "179", "191", "193", "197", "211", "223", "227", "229", "233", "251", "257", "263", "269", "277", "283", "313", "317", "331", "337", "349", "353", "373", "379", "383", "409", "419", "421", "431", "439" ]
[ "nonn" ]
9
1
1
[ "A000040", "A076481", "A381973", "A381974" ]
null
Clark Kimberling, Apr 01 2025
2025-04-21T17:00:36
oeisdata/seq/A381/A381974.seq
f713cbfa49910eb2cce7be1116596576
A381975
Number of ways for n competitors to rank in a competition in which each match has 4 possible outcomes in which each competitor gains 0, 1, 2 or 3 points.
[ "1", "1", "2", "9", "58", "459", "4370", "48999", "632884", "9254473", "151155362", "2727862751" ]
[ "nonn", "more", "changed" ]
38
0
3
[ "A000142", "A000312", "A000670", "A001470", "A381975" ]
null
SiYang Hu, May 06 2025
2025-07-01T08:28:36
oeisdata/seq/A381/A381975.seq
2306a3ae69811d90d116623ada3d107b
A381976
a(n) is the number of distinct solutions to the Partridge Puzzle of size n.
[ "1", "0", "0", "0", "0", "0", "0", "2332", "216285" ]
[ "nonn", "more" ]
13
1
8
[ "A369891", "A381976" ]
null
Danila Potapov, Mar 11 2025
2025-03-21T11:25:27
oeisdata/seq/A381/A381976.seq
b9e0ff6ffa06652764d67429726658b4
A381977
Number of edge intersections in the divisibility circle graph of n (base 10).
[ "0", "0", "0", "0", "0", "3", "3", "5", "0", "0", "0", "12", "18", "19", "21", "27", "35", "36", "57", "20", "45", "25", "71", "75", "65", "88", "90", "110", "137", "81", "120", "135", "42", "162", "150", "180", "204", "215", "252", "165", "230", "252", "282", "208", "270", "315", "341", "357", "402", "290", "375", "400", "440", "441", "340", "481", "513", "530", "587", "456" ]
[ "nonn" ]
18
1
6
null
null
Gil Moses, Mar 11 2025
2025-04-01T23:07:44
oeisdata/seq/A381/A381977.seq
9ba48a893c9027dcdbdc3f7857877d83
A381978
a(n) is the smallest number k such that b+c+d = n, where b, c and d are three distinct positive divisors of k.
[ "6", "4", "10", "6", "6", "6", "12", "8", "8", "12", "10", "10", "12", "12", "12", "12", "12", "14", "24", "16", "16", "18", "16", "18", "18", "20", "20", "18", "20", "20", "24", "24", "24", "24", "24", "26", "24", "28", "24", "30", "28", "30", "30", "28", "30", "30", "32", "34", "36", "30", "32", "36", "36", "38", "36", "40", "40", "36", "40", "40", "36", "44", "40", "42", "40", "46", "48", "48", "48", "48", "48", "42", "48", "52", "48", "54", "52", "54", "48", "50", "56", "54", "48", "58", "54", "52", "56", "60", "60", "60", "60", "64", "56", "54" ]
[ "nonn" ]
18
6
1
null
null
Aksel Eide-Hansen, Mar 11 2025
2025-05-22T21:36:59
oeisdata/seq/A381/A381978.seq
35bc9969e732c41bb79742551be3e07e
A381979
Decimal expansion of the expected number of steps to termination by self-trapping of a self-avoiding random walk on the square lattice.
[ "7", "0", "7", "5", "9" ]
[ "nonn", "cons", "hard", "more" ]
11
2
1
[ "A077483", "A322831", "A378903", "A381979" ]
null
Yi Yang, Mar 11 2025
2025-03-12T08:05:59
oeisdata/seq/A381/A381979.seq
518e058290ce282545191d60c5dfb9bf
A381980
a(n) is the first position where the digits of n occur simultaneously in the decimal expansions of Pi and e.
[ "331", "95", "17", "18", "263", "326", "21", "40", "206", "13", "13422", "428", "500", "6426", "12896", "11172", "17951", "962", "9710", "2857", "9261", "4782", "21688", "17", "26172", "2526", "2060", "2900", "5375", "6167", "10097", "13009", "9287", "12651", "4175", "840", "38691", "11997", "14119", "3519", "4684", "21785", "7662", "1798", "1253", "10869", "9157", "7216", "3430", "13191", "5148", "1843", "10790" ]
[ "nonn", "base", "easy" ]
20
0
1
[ "A000796", "A001113", "A032445", "A052055", "A088576", "A381980" ]
null
Zhining Yang, Mar 11 2025
2025-04-02T09:44:58
oeisdata/seq/A381/A381980.seq
282f8a92817e8ea2b9d0ec62c34d69c3
A381981
Number of compositions of n avoiding the patterns (1,2,3) and (3,2,1).
[ "1", "1", "2", "4", "8", "16", "30", "56", "100", "173", "293", "482", "779", "1232", "1928", "2972", "4546", "6894", "10435", "15705", "23692", "35679", "53976", "81760", "124611", "190404", "292871", "452070", "702042", "1094034", "1713879", "2693284", "4250165", "6724535", "10673794", "16977795", "27070285", "43232232", "69167372" ]
[ "nonn" ]
8
0
3
[ "A011782", "A102726", "A128761", "A335471", "A335473", "A381981" ]
null
John Tyler Rascoe, Mar 11 2025
2025-03-12T09:39:45
oeisdata/seq/A381/A381981.seq
8fe8d7447279a4a78e31a94b36e88923
A381982
E.g.f. A(x) satisfies A(x) = exp(x) * C(x*A(x)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "2", "11", "139", "2829", "78981", "2802163", "120667667", "6113752025", "356342305465", "23488872131871", "1727770084512495", "140302645206245701", "12466960491079733237", "1203253101643330233707", "125351056198801059896491", "14019427299278115378992049", "1675439381194882102492648305" ]
[ "nonn" ]
19
0
2
[ "A000108", "A001764", "A161629", "A349640", "A364983", "A381982", "A381983" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:01
oeisdata/seq/A381/A381982.seq
2359244dcff017f5fceac5d8c01c4c59
A381983
E.g.f. A(x) satisfies A(x) = exp(x) * C(x*A(x)^2), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "2", "15", "280", "8365", "342566", "17839339", "1128217084", "83987669721", "7194842276842", "697216089189511", "75408952092397760", "9005278056681754885", "1176889697125038323662", "167076740069554538243427", "25603739419854491589361636", "4212587964283017439802066353", "740650326150658335888643004498" ]
[ "nonn" ]
22
0
2
[ "A000108", "A002293", "A349640", "A381982", "A381983", "A381997" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:05
oeisdata/seq/A381/A381983.seq
11afa4d25fcc73f2ca4fade2b39ad9ed
A381984
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "9", "94", "1649", "40146", "1246057", "47004014", "2087644449", "106709890114", "6170322084041", "398219508589662", "28376096583546769", "2212797385807852754", "187441592012756668329", "17139223549605292448686", "1682551982313514625386817", "176505773149909540258262274", "19704960849698723062181296009" ]
[ "nonn", "easy" ]
22
0
2
[ "A001763", "A001764", "A381984", "A381985", "A381986", "A381987" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T09:04:27
oeisdata/seq/A381/A381984.seq
4aedca083251fe8d56bdb6d55be41315
A381985
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "13", "217", "5937", "223641", "10725433", "625007993", "42883208609", "3386452550689", "302545287708201", "30170153462509545", "3322052185576104049", "400328811249634307249", "52406094009429908677049", "7405663486143907784247481", "1123601498350780798756198209", "182173718779147621454796872769" ]
[ "nonn" ]
17
0
2
[ "A001764", "A002293", "A346646", "A364987", "A381984", "A381985", "A381986" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:09
oeisdata/seq/A381/A381985.seq
ba937583b56f60ddef3be74243090ff6
A381986
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "17", "388", "14329", "727206", "46984729", "3689119624", "341097752657", "36302764864330", "4371463743828481", "587606216836328460", "87219196719691250185", "14168990447072685567214", "2500554381188629649979593", "476391652257266128440376336", "97447147561230881896398507553" ]
[ "nonn" ]
19
0
2
[ "A001764", "A002294", "A381984", "A381985", "A381986", "A382000" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T09:00:36
oeisdata/seq/A381/A381986.seq
d672809fb14f5774788fea09be169376
A381987
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "11", "160", "3941", "134486", "5851327", "309520436", "19283504585", "1382980764106", "112223497464371", "10165461405056552", "1016801830348902061", "111312715288354681310", "13237965546409421546471", "1699516550894276788156156", "234263144339070269872076177", "34507561203827621878485498386" ]
[ "nonn", "easy" ]
20
0
2
[ "A002293", "A365340", "A381984", "A381987", "A381988", "A381989" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:54:18
oeisdata/seq/A381/A381987.seq
5140d47b36ce66fe4d52cf98478b5080
A381988
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "15", "313", "10773", "510981", "30876463", "2267990159", "196204786025", "19539828320905", "2201822913234771", "276969947671828995", "38473403439454795837", "5849221857618942870029", "966078641687956464576119", "172251173569831561500070711", "32975613823747758363130520529", "6746227557293225645352382744593" ]
[ "nonn" ]
17
0
2
[ "A002293", "A002294", "A346647", "A377526", "A381987", "A381988", "A381989" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:43
oeisdata/seq/A381/A381988.seq
45b35057c6c38edec7408ba7da7984a5
A381989
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "19", "514", "22621", "1369546", "105616639", "9901346554", "1093292035609", "138977379784882", "19990424969236171", "3209995501651871890", "569216406245186726965", "110476637766622355475898", "23294266811686640511534199", "5302371488162151660366545866", "1295920217231693678343467474353" ]
[ "nonn" ]
17
0
2
[ "A002293", "A002295", "A381987", "A381988", "A381989", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:39
oeisdata/seq/A381/A381989.seq
86b6aa806b15b8f202c0f3643ef641aa
A381990
Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
[ "0", "0", "1", "1", "2", "2", "5", "6", "9", "13", "17", "23", "33", "42", "58", "76", "97", "127", "168", "208", "267", "343", "431", "536", "676", "836", "1045", "1283", "1582", "1949", "2395", "2895", "3549", "4298", "5216", "6281", "7569", "9104", "10953", "13078", "15652", "18627", "22207", "26325", "31278", "37002", "43708", "51597", "60807", "71533", "84031" ]
[ "nonn" ]
17
0
5
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A279786", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381634", "A381635", "A381636", "A381716", "A381717", "A381718", "A381806", "A381870", "A381990", "A381991", "A381992", "A382075", "A382077", "A382078", "A382079", "A382201" ]
null
Gus Wiseman, Mar 15 2025
2025-03-29T13:49:45
oeisdata/seq/A381/A381990.seq
69df2134865630081328fc888f1ee787
A381991
Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "61", "62", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn" ]
8
1
2
[ "A000688", "A000720", "A000726", "A001055", "A001222", "A003963", "A004709", "A005117", "A006171", "A047966", "A050361", "A055396", "A056239", "A061395", "A112798", "A265947", "A279784", "A279786", "A293511", "A295935", "A300383", "A300385", "A317141", "A326535", "A355743", "A381635", "A381636", "A381716", "A381717", "A381870", "A381991", "A382079", "A382203", "A382301" ]
null
Gus Wiseman, Mar 22 2025
2025-03-23T08:40:34
oeisdata/seq/A381/A381991.seq
525ef330b2092c432b3fc5d58e148bb7
A381992
Number of integer partitions of n that can be partitioned into sets with distinct sums.
[ "1", "1", "1", "2", "3", "5", "6", "9", "13", "17", "25", "33", "44", "59", "77", "100", "134", "170", "217", "282", "360", "449", "571", "719", "899", "1122", "1391", "1727", "2136", "2616", "3209", "3947", "4800", "5845", "7094", "8602", "10408", "12533", "15062", "18107", "21686", "25956", "30967", "36936", "43897", "52132", "61850", "73157", "86466", "101992", "120195" ]
[ "nonn" ]
14
0
4
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A279786", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381634", "A381635", "A381636", "A381716", "A381717", "A381718", "A381806", "A381870", "A381990", "A381991", "A381992", "A382075", "A382077", "A382078", "A382079", "A382201" ]
null
Gus Wiseman, Mar 16 2025
2025-03-29T13:49:30
oeisdata/seq/A381/A381992.seq
2cecae2a853fb818a964c9a0cd078530
A381993
Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.
[ "0", "0", "0", "1", "1", "5", "4", "13", "13", "25", "33", "54", "54", "99", "124", "166", "207", "295", "352", "488", "591", "780", "987", "1253", "1488", "1951", "2419", "2993", "3665", "4563", "5508", "6840", "8270", "10127", "12289", "14869", "17781", "21635", "25992", "31167", "37184", "44581", "53008", "63259", "75076", "89080", "105531", "124752", "146842", "173516", "204141", "239921", "281461", "329929", "385852" ]
[ "nonn" ]
13
0
6
[ "A000688", "A001055", "A006171", "A045778", "A047966", "A050361", "A265947", "A279784", "A279789", "A300383", "A317141", "A326534", "A355743", "A381453", "A381455", "A381635", "A381636", "A381715", "A381717", "A381719", "A381871", "A381992", "A381993", "A381994", "A381995", "A382076", "A382080", "A382204" ]
null
Gus Wiseman, Mar 17 2025
2025-03-31T21:54:22
oeisdata/seq/A381/A381993.seq
28b091394fb7e77fd5fa89c75a113a5a
A381994
Number of integer partitions of n that cannot be partitioned into sets with equal sums.
[ "0", "0", "0", "0", "1", "3", "3", "9", "12", "17", "27", "43", "46", "82", "103", "133", "181", "258", "295" ]
[ "nonn" ]
6
0
6
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116540", "A265947", "A270995", "A279785", "A279786", "A279788", "A279789", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381454", "A381633", "A381634", "A381635", "A381636", "A381717", "A381718", "A381719", "A381806", "A381990", "A381991", "A381992", "A381993", "A381994", "A382080" ]
null
Gus Wiseman, Mar 17 2025
2025-03-18T22:33:26
oeisdata/seq/A381/A381994.seq
f8af518561cfd4e88952f850ebfbbeaf
A381995
Number of ways to partition the prime indices of n into constant blocks with a common sum.
[ "1", "1", "1", "2", "1", "0", "1", "2", "2", "0", "1", "1", "1", "0", "0", "3", "1", "0", "1", "0", "0", "0", "1", "0", "2", "0", "2", "0", "1", "0", "1", "2", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "2", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "4", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "3", "0", "1", "0", "0", "0", "0" ]
[ "nonn" ]
16
1
4
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A045778", "A050361", "A055396", "A056239", "A061395", "A112798", "A265947", "A279784", "A279789", "A295935", "A300383", "A317141", "A321455", "A323774", "A353864", "A353866", "A381453", "A381455", "A381633", "A381635", "A381719", "A381871", "A381993", "A381995", "A382076", "A382204", "A382215", "A382524", "A383014", "A383093", "A383309" ]
null
Gus Wiseman, Mar 19 2025
2025-04-25T23:40:40
oeisdata/seq/A381/A381995.seq
17b291941d4aa8efdf9eb62b2fd49ca7
A381996
Number of non-isomorphic multisets of size n that can be partitioned into a set of sets.
[ "1", "1", "1", "2", "3", "4", "6", "9", "13", "18", "25", "34", "47" ]
[ "nonn", "more" ]
6
0
4
[ "A000110", "A000670", "A007716", "A034691", "A035310", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A317532", "A318360", "A318361", "A326519", "A358914", "A381633", "A381718", "A381992", "A381996", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382430", "A382458", "A382459", "A382523" ]
null
Gus Wiseman, Mar 31 2025
2025-04-01T10:27:54
oeisdata/seq/A381/A381996.seq
d16e4294bc44402a6c9ec2ce584dd32c
A381997
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^4.
[ "1", "1", "12", "240", "7328", "303400", "15904032", "1010252320", "75442821120", "6478112692224", "628915387166720", "68121797696449024", "8144844724723482624", "1065508614975814537216", "151392999512027274215424", "23217165210450099377479680", "3822334349865128121165283328", "672407573328393115218009063424" ]
[ "nonn" ]
15
0
3
[ "A002293", "A336950", "A364987", "A381983", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:49:47
oeisdata/seq/A381/A381997.seq
01995af61698e3014bfab5fef3208084
A381998
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^2.
[ "1", "1", "8", "90", "1472", "31920", "865152", "28197904", "1075122176", "46976064768", "2315080816640", "127068467480064", "7688296957870080", "508450036968779776", "36490818871396499456", "2824787199565881477120", "234622076533699738861568", "20813348299168251651883008", "1964063064959266899440959488" ]
[ "nonn" ]
14
0
3
[ "A000108", "A295238", "A336950", "A379885", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T09:58:11
oeisdata/seq/A381/A381998.seq
26c2c14721c09838f8049ebfbb589773
A381999
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^3.
[ "1", "1", "10", "156", "3656", "115400", "4595232", "221281312", "12510826624", "812633118336", "59642105050880", "4881685773730304", "440905471531302912", "43559980305765793792", "4673231270870843441152", "541042726968231082967040", "67236501012517546330062848", "8927220151967826907452440576" ]
[ "nonn" ]
14
0
3
[ "A001764", "A336950", "A364983", "A371318", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:28:55
oeisdata/seq/A381/A381999.seq
e3d8582d72bd1a2dfda0b49a1292f669
A382000
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^5.
[ "1", "1", "14", "342", "12872", "659280", "42828912", "3375009568", "312860626304", "33361836534144", "4023352486200320", "541461682626399744", "80448618080927609856", "13079749459734097573888", "2309915877337042992324608", "440332184936376095626076160", "90117169223076699520606896128" ]
[ "nonn" ]
14
0
3
[ "A002294", "A336950", "A377526", "A381986", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:56:42
oeisdata/seq/A382/A382000.seq
faa739546a46f80ae6db461f47e86f0b
A382001
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^6.
[ "1", "1", "16", "462", "20672", "1261400", "97728672", "9190016416", "1016963389696", "129485497897728", "18648682990461440", "2997567408967391744", "531985786683988512768", "103321584851593487961088", "21798243872991807130685440", "4964302861788729054456729600", "1213816740632458735310221672448" ]
[ "nonn" ]
14
0
3
[ "A002295", "A336950", "A381989", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T11:28:25
oeisdata/seq/A382/A382001.seq
829de2031828575df1e937c5600d69ae
A382002
Decimal expansion of the isoperimetric quotient of a triakis tetrahedron.
[ "6", "4", "5", "8", "3", "5", "7", "8", "9", "8", "4", "0", "5", "5", "6", "5", "4", "7", "5", "6", "5", "6", "5", "9", "8", "0", "5", "7", "8", "4", "3", "0", "0", "4", "9", "9", "9", "6", "8", "1", "7", "3", "6", "8", "5", "9", "0", "5", "7", "4", "3", "7", "5", "4", "0", "9", "1", "6", "4", "5", "5", "1", "0", "2", "3", "4", "1", "3", "1", "8", "6", "3", "4", "2", "1", "5", "4", "0", "2", "9", "1", "7", "1", "4", "6", "9", "8", "2", "1", "8" ]
[ "nonn", "cons", "easy" ]
9
0
1
[ "A000796", "A010468", "A378204", "A378205", "A381684", "A382002" ]
null
Paolo Xausa, Mar 16 2025
2025-03-19T07:40:38
oeisdata/seq/A382/A382002.seq
2ed1efa5e5099bb60984aec65010caa0
A382003
Decimal expansion of the isoperimetric quotient of a (small) triakis octahedron.
[ "7", "9", "0", "0", "2", "8", "3", "7", "6", "7", "3", "7", "0", "1", "2", "7", "2", "4", "7", "3", "7", "5", "2", "9", "4", "3", "1", "5", "3", "1", "0", "2", "8", "4", "6", "2", "3", "1", "1", "5", "1", "8", "3", "1", "5", "4", "0", "7", "9", "9", "8", "4", "0", "9", "4", "2", "7", "8", "0", "3", "4", "1", "0", "3", "9", "8", "6", "9", "5", "3", "6", "6", "9", "9", "2", "1", "8", "3", "2", "6", "1", "9", "0", "2", "8", "0", "7", "3", "7", "9" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A002193", "A378351", "A378352", "A381684", "A382003" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:43
oeisdata/seq/A382/A382003.seq
5cd3332fdb84db2e96e78970b4c5b5ac
A382004
Decimal expansion of the isoperimetric quotient of a tetrakis hexahedron.
[ "8", "4", "2", "9", "7", "7", "7", "6", "7", "7", "2", "4", "8", "8", "7", "1", "6", "7", "1", "7", "8", "7", "6", "4", "9", "5", "7", "1", "8", "4", "5", "8", "7", "3", "7", "5", "9", "3", "5", "9", "8", "1", "1", "0", "2", "4", "4", "8", "0", "6", "4", "2", "9", "0", "3", "9", "8", "7", "6", "6", "5", "2", "3", "1", "4", "3", "0", "5", "7", "0", "2", "5", "6", "7", "4", "3", "0", "2", "5", "8", "4", "6", "1", "2", "4", "9", "7", "0", "8", "9" ]
[ "nonn", "cons", "easy" ]
10
0
1
[ "A000796", "A002163", "A374359", "A378388", "A381684", "A382004" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:11
oeisdata/seq/A382/A382004.seq
cd190791e1286640e0b456595c6dbe9b
A382005
Decimal expansion of the isoperimetric quotient of a deltoidal icositetrahedron.
[ "8", "6", "9", "7", "7", "4", "2", "8", "1", "9", "1", "0", "0", "6", "3", "7", "6", "0", "2", "7", "3", "8", "9", "4", "2", "6", "2", "6", "8", "1", "2", "9", "9", "8", "5", "7", "8", "1", "9", "9", "0", "5", "0", "6", "6", "3", "8", "6", "7", "3", "5", "5", "1", "1", "2", "1", "5", "4", "6", "1", "7", "0", "7", "8", "0", "1", "7", "6", "6", "8", "6", "7", "3", "7", "9", "7", "9", "2", "0", "6", "2", "7", "5", "9", "8", "2", "5", "5", "8", "3" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002193", "A378390", "A378391", "A381684", "A382005" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:04
oeisdata/seq/A382/A382005.seq
3e7b84c225300e873073b8b278189893
A382006
Decimal expansion of the isoperimetric quotient of a disdyakis dodecahedron.
[ "9", "1", "0", "0", "6", "5", "6", "3", "8", "8", "0", "8", "0", "3", "1", "1", "7", "0", "5", "9", "1", "2", "3", "8", "0", "8", "5", "7", "0", "5", "3", "7", "1", "4", "9", "8", "4", "4", "5", "5", "8", "3", "5", "4", "5", "4", "0", "5", "9", "5", "2", "7", "6", "9", "3", "9", "8", "2", "5", "2", "3", "6", "3", "1", "6", "6", "9", "1", "6", "1", "4", "1", "6", "3", "6", "5", "1", "7", "5", "8", "9", "1", "5", "4", "7", "8", "3", "7", "3", "7" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002193", "A378712", "A378713", "A381684", "A382006" ]
null
Paolo Xausa, Mar 18 2025
2025-03-19T07:40:34
oeisdata/seq/A382/A382006.seq
d920c553a93f3a1ba99214b6c09b4704
A382007
Decimal expansion of the isoperimetric quotient of a pentagonal icositetrahedron.
[ "8", "7", "2", "6", "2", "8", "3", "2", "9", "1", "2", "8", "6", "9", "9", "7", "5", "5", "5", "1", "3", "4", "9", "9", "9", "7", "4", "4", "6", "8", "5", "1", "4", "6", "7", "5", "7", "3", "3", "0", "1", "8", "7", "4", "5", "9", "8", "4", "6", "2", "0", "6", "6", "8", "9", "2", "6", "8", "1", "4", "4", "8", "1", "0", "4", "1", "7", "8", "8", "0", "3", "9", "1", "3", "9", "9", "5", "7", "8", "9", "2", "8", "9", "6", "8", "9", "8", "6", "5", "7" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A378823", "A378824", "A381684", "A382007" ]
null
Paolo Xausa, Mar 19 2025
2025-03-20T09:27:24
oeisdata/seq/A382/A382007.seq
7bf51c3ab54d7c4a815a6cb248230ae1
A382008
Decimal expansion of the isoperimetric quotient of a rhombic triacontahedron.
[ "8", "8", "7", "2", "0", "0", "0", "0", "2", "5", "4", "8", "0", "2", "0", "8", "5", "8", "0", "0", "5", "4", "4", "4", "0", "9", "3", "9", "8", "4", "2", "6", "0", "0", "3", "7", "8", "5", "7", "3", "8", "9", "8", "6", "5", "7", "2", "1", "1", "6", "0", "9", "3", "7", "4", "6", "2", "6", "4", "0", "6", "8", "0", "7", "2", "0", "5", "1", "8", "3", "1", "2", "8", "7", "9", "4", "4", "0", "4", "1", "3", "4", "9", "0", "6", "8", "0", "8", "0", "4" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A098317", "A344171", "A344172", "A381684", "A382008" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:27:32
oeisdata/seq/A382/A382008.seq
f1c135b8ad84c62a74c332e34d400b70
A382009
Decimal expansion of the isoperimetric quotient of a triakis icosahedron.
[ "9", "0", "5", "1", "8", "0", "8", "0", "1", "7", "4", "0", "2", "2", "9", "7", "9", "7", "6", "5", "2", "8", "5", "0", "2", "4", "1", "7", "9", "3", "5", "5", "3", "5", "8", "3", "3", "0", "0", "1", "7", "6", "0", "0", "6", "7", "2", "5", "5", "6", "8", "2", "8", "3", "8", "4", "3", "6", "7", "9", "2", "7", "1", "5", "4", "7", "1", "6", "8", "1", "7", "5", "6", "9", "7", "6", "8", "8", "3", "6", "8", "9", "0", "4", "0", "9", "6", "7", "9", "7" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A002163", "A378973", "A378974", "A381684", "A382009" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:27:37
oeisdata/seq/A382/A382009.seq
1f09c47db4dd59d4a9edbcda5b84f385
A382010
Decimal expansion of the isoperimetric quotient of a pentakis dodecahedron.
[ "9", "3", "9", "7", "0", "7", "0", "8", "1", "3", "0", "2", "9", "9", "6", "8", "4", "7", "7", "1", "6", "0", "2", "5", "1", "6", "0", "1", "6", "4", "0", "7", "3", "5", "6", "6", "0", "2", "6", "7", "8", "2", "1", "3", "3", "2", "5", "1", "5", "7", "6", "7", "3", "6", "1", "0", "6", "6", "5", "0", "8", "7", "1", "8", "1", "9", "3", "2", "1", "3", "1", "0", "8", "0", "3", "2", "6", "2", "1", "9", "4", "3", "0", "5", "9", "3", "6", "5", "2", "0" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A000796", "A002163", "A379132", "A379133", "A381684", "A382010" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:28:01
oeisdata/seq/A382/A382010.seq
a4701389fcb7e848613421e2b4964b51
A382011
Decimal expansion of the isoperimetric quotient of a deltoidal hexecontahedron.
[ "9", "4", "5", "8", "5", "2", "0", "1", "9", "3", "5", "6", "7", "2", "3", "7", "3", "5", "4", "3", "2", "9", "4", "8", "1", "5", "0", "6", "9", "3", "7", "9", "8", "9", "4", "7", "2", "0", "6", "9", "4", "8", "7", "0", "8", "9", "1", "2", "7", "9", "8", "8", "4", "8", "2", "8", "4", "9", "3", "8", "2", "2", "1", "4", "5", "0", "6", "7", "9", "3", "7", "2", "8", "4", "8", "4", "1", "0", "6", "8", "6", "3", "4", "6", "1", "6", "1", "7", "4", "3" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002163", "A379385", "A379386", "A381684", "A382011" ]
null
Paolo Xausa, Mar 20 2025
2025-03-21T10:02:30
oeisdata/seq/A382/A382011.seq
cd1f29dd56a215e01a038870b00c70d6
A382012
Decimal expansion of the isoperimetric quotient of a disdyakis triacontahedron.
[ "9", "5", "7", "7", "6", "5", "0", "2", "3", "8", "4", "7", "8", "0", "7", "6", "9", "0", "7", "6", "1", "8", "7", "4", "0", "8", "9", "5", "3", "2", "4", "0", "6", "1", "7", "7", "9", "0", "7", "8", "3", "3", "4", "3", "8", "2", "0", "5", "1", "7", "0", "6", "4", "6", "2", "7", "1", "1", "9", "1", "2", "1", "2", "3", "7", "0", "5", "9", "6", "8", "3", "3", "7", "7", "0", "9", "2", "3", "3", "4", "0", "9", "9", "3", "8", "9", "3", "7", "1", "2" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A379708", "A379709", "A381684", "A382012" ]
null
Paolo Xausa, Mar 20 2025
2025-03-21T10:02:40
oeisdata/seq/A382/A382012.seq
d74d3d4dad2279517a611b3423b3db47
A382013
Decimal expansion of the isoperimetric quotient of a pentagonal hexecontahedron.
[ "9", "4", "5", "8", "9", "7", "2", "9", "5", "6", "9", "5", "7", "2", "9", "1", "5", "8", "1", "9", "1", "0", "4", "2", "9", "0", "1", "5", "1", "2", "8", "9", "3", "5", "2", "3", "7", "2", "5", "8", "2", "6", "5", "7", "5", "5", "8", "5", "4", "4", "1", "0", "2", "0", "8", "2", "8", "3", "1", "1", "7", "0", "8", "5", "1", "9", "4", "4", "1", "1", "1", "4", "7", "1", "0", "0", "3", "4", "8", "6", "4", "5", "3", "5", "2", "8", "8", "2", "7", "3" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A379888", "A379889", "A381684", "A382013" ]
null
Paolo Xausa, Mar 21 2025
2025-03-21T10:02:46
oeisdata/seq/A382/A382013.seq
4a1276b275b08ac7dcf7e3f33df0b735
A382014
Partial sums of A377225.
[ "0", "1", "0", "2", "0", "4", "0", "6", "9", "6", "0", "8", "0", "10", "15", "10", "0", "12", "21", "12", "0", "14", "21", "14", "0", "16", "0", "18", "33", "18", "0", "20", "0", "22", "33", "22", "0", "24", "45", "24", "0", "26", "39", "26", "0", "28", "0", "30", "55", "30", "0", "27", "0", "33", "0", "36", "68", "36", "70", "87", "70", "36", "0", "38", "57", "38", "0", "40", "75", "40", "0", "42", "81", "42" ]
[ "nonn" ]
9
0
4
[ "A377225", "A382014" ]
null
Paolo Xausa, Mar 21 2025
2025-03-22T19:23:12
oeisdata/seq/A382/A382014.seq
2f82540ae4375546648bb69cf73e8091