sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A381943
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A001764.
[ "1", "3", "11", "60", "425", "3426", "29619", "267738", "2497889", "23866056", "232325475", "2295889266", "22971682893", "232248775669", "2368969672183", "24348849065860", "251930963865061", "2621914660411919", "27428338267887815", "288258167672381602", "3042002859317810001", "32222429872821051817" ]
[ "nonn" ]
12
0
2
[ "A001764", "A086616", "A364592", "A381867", "A381943", "A381945" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:01:11
oeisdata/seq/A381/A381943.seq
0c1536fe1034f06db8ae57ff5792ea9b
A381944
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A001764.
[ "1", "4", "16", "89", "655", "5592", "51594", "499159", "4990821", "51140527", "534152690", "5665496618", "60854697427", "660601882734", "7235771990454", "79870211543625", "887569516968685", "9921579561050637", "111487286796322366", "1258604967618419118", "14268057344239960863", "162358119295068686098" ]
[ "nonn" ]
10
0
2
[ "A001764", "A162481", "A366034", "A381944", "A381947" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:02:15
oeisdata/seq/A381/A381944.seq
31527d4918c3b685b9d679f87b5eb0d9
A381945
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^2, where B(x) is the g.f. of A002293.
[ "1", "3", "12", "79", "695", "6961", "74679", "837336", "9689234", "114822820", "1386402276", "16994276781", "210919650044", "2645218761934", "33470438908615", "426758782807956", "5477657372957314", "70720821402587371", "917801926609131194", "11966203939448781600", "156662012236067711036", "2058709975008385135863" ]
[ "nonn" ]
10
0
2
[ "A002293", "A086616", "A381867", "A381943", "A381945" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:03:18
oeisdata/seq/A381/A381945.seq
99e38452cead0ef3db2d4653581caab0
A381946
a(n) is the smallest positive integer k with at least one digit > 1 such that k*n contains all the distinct digits of n.
[ "12", "6", "12", "6", "3", "6", "21", "6", "21", "12", "12", "16", "24", "51", "7", "26", "42", "6", "48", "6", "6", "6", "14", "18", "5", "24", "26", "26", "32", "12", "23", "26", "4", "41", "9", "26", "19", "22", "24", "6", "4", "7", "8", "6", "9", "14", "31", "8", "6", "3", "3", "26", "25", "27", "3", "26", "65", "26", "5", "6", "24", "23", "22", "26", "21", "4", "25", "12", "14", "21", "17", "24", "19", "47", "5", "22", "14", "24", "25" ]
[ "nonn", "base" ]
17
1
1
[ "A381700", "A381946" ]
null
M. F. Hasler and Ali Sada, Mar 10 2025
2025-03-21T18:31:35
oeisdata/seq/A381/A381946.seq
431329a8d798dc888bf5d9d4847adeb4
A381947
G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x)^3, where B(x) is the g.f. of A002293.
[ "1", "4", "17", "111", "1001", "10507", "118986", "1411789", "17307078", "217422098", "2784080234", "36201950786", "476725871599", "6344524132503", "85198695369123", "1152990558752089", "15708685673520617", "215287198676732925", "2965962577091646604", "41052101428818066604", "570583013508324005560" ]
[ "nonn" ]
11
0
2
[ "A002293", "A162481", "A366034", "A381916", "A381944", "A381947" ]
null
Seiichi Manyama, Mar 10 2025
2025-03-11T08:04:26
oeisdata/seq/A381/A381947.seq
70545083a92e2b0a277728f3612a64c8
A381948
Number of sequences in which the matches of a fully symmetric single-elimination tournament with 4^n players can be played if arbitrarily many matches can occur simultaneously and each match involves 4 players.
[ "1", "1", "75", "3016718788056802445", "940214577272785072764883853635996915471902343186386048409875362373502134253520788722829230121857323681047351543536731036815" ]
[ "nonn" ]
10
0
3
[ "A273725", "A379758", "A381865", "A381948" ]
null
Noah A Rosenberg, Mar 10 2025
2025-03-19T10:27:57
oeisdata/seq/A381/A381948.seq
4ccdab096b69861b57d3ff015071c5f2
A381949
a(n) is the smallest integer k greater than 1 and not a perfect power satisfying A373387(k^n) = n.
[ "2", "7", "55", "5", "95", "95", "385", "95", "1535", "1535", "6145", "1025", "24575", "24575", "98305", "4095", "393215", "393215", "1572865", "262145", "6291455", "6291455", "25165825", "6291455", "100663295", "100663295", "402653185", "67108865", "1610612735", "1610612735", "6442450945", "402653185", "25769803775", "25769803775" ]
[ "base", "hard", "nonn" ]
10
1
1
[ "A018247", "A091663", "A317905", "A373387", "A381460", "A381949" ]
null
Marco Ripà, Mar 10 2025
2025-03-18T17:36:14
oeisdata/seq/A381/A381949.seq
1128223d2833e89d8ef83fdae3de7eb4
A381950
Odd numbers whose prime factorization has an even maximum exponent.
[ "1", "9", "25", "45", "49", "63", "75", "81", "99", "117", "121", "147", "153", "169", "171", "175", "207", "225", "245", "261", "275", "279", "289", "315", "325", "333", "361", "363", "369", "387", "405", "423", "425", "441", "475", "477", "495", "507", "525", "529", "531", "539", "549", "567", "575", "585", "603", "605", "625", "637", "639", "657", "693", "711", "725" ]
[ "nonn", "easy" ]
10
1
2
[ "A005408", "A051903", "A368714", "A375039", "A381823", "A381950", "A381951", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:10
oeisdata/seq/A381/A381950.seq
f7decc5b37d613d98b5bafe13225f9c0
A381951
Nonsquarefree odd numbers whose prime factorization has an odd maximum exponent.
[ "27", "125", "135", "189", "243", "297", "343", "351", "375", "459", "513", "621", "675", "783", "837", "875", "945", "999", "1029", "1107", "1125", "1161", "1215", "1269", "1323", "1331", "1375", "1431", "1485", "1593", "1625", "1647", "1701", "1715", "1755", "1809", "1917", "1971", "2079", "2125", "2133", "2187", "2197", "2241", "2295", "2375", "2403", "2457" ]
[ "nonn", "easy" ]
7
1
1
[ "A005408", "A013929", "A051903", "A376142", "A381950", "A381951" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:16
oeisdata/seq/A381/A381951.seq
b8cd9ab365939aacf2bbb60432b48f2e
A381952
a(n) is the greatest common divisor of n and the maximum exponent in the prime factorization of n.
[ "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "1", "1", "3", "1", "1", "3", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "4", "1", "2", "1", "2", "1", "3", "1", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "3", "1", "1", "1", "2", "1", "1", "1", "4", "1", "1", "1", "2", "1", "1", "1" ]
[ "nonn", "easy" ]
9
1
4
[ "A051903", "A336064", "A368715", "A381952", "A381953" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:23
oeisdata/seq/A381/A381952.seq
7ed375ea550eaa193110373bc516a82d
A381953
Numbers k such that A381952(k) = 2.
[ "4", "12", "18", "20", "28", "36", "44", "50", "52", "60", "64", "68", "76", "84", "90", "92", "98", "100", "116", "124", "126", "132", "140", "148", "150", "156", "162", "164", "172", "180", "188", "196", "198", "204", "212", "220", "228", "234", "236", "242", "244", "252", "260", "268", "276", "284", "292", "294", "300", "306", "308", "316", "320", "332", "338", "340" ]
[ "nonn", "easy" ]
9
1
1
[ "A051903", "A368715", "A381952", "A381953" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:30
oeisdata/seq/A381/A381953.seq
4e0a37b2412dfbbb01e7784b548cf559
A381954
The maximum exponent in the prime factorization of n that is coprime to n, or 0 if no such exponent exists.
[ "0", "1", "1", "0", "1", "1", "1", "3", "2", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "0", "1", "1", "1", "1", "5", "1", "1", "1", "0", "1", "1", "1", "3", "1", "1", "1", "1", "2", "1", "1", "1", "2", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "1", "2", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "2", "1", "1", "1", "1", "1", "4", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
6
1
8
[ "A051903", "A381952", "A381954" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:40
oeisdata/seq/A381/A381954.seq
250fa92c1ce8ad21a0fa5cee1a66c71e
A381955
a(n) = A051903(n) mod 2.
[ "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "0", "0", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "1", "1", "1", "0", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "1", "1", "0", "0", "0", "1", "1", "1", "1", "1" ]
[ "nonn", "easy" ]
8
1
null
[ "A000035", "A051903", "A181183", "A295316", "A359473", "A368714", "A381955", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:46
oeisdata/seq/A381/A381955.seq
e30953d8022a49bde319998b1403cdd9
A381956
Numbers k such that k and the maximum exponent in the prime factorization of k have opposite parities.
[ "1", "2", "6", "8", "9", "10", "14", "22", "24", "25", "26", "30", "32", "34", "38", "40", "42", "45", "46", "49", "54", "56", "58", "62", "63", "66", "70", "72", "74", "75", "78", "81", "82", "86", "88", "94", "96", "99", "102", "104", "106", "108", "110", "114", "117", "118", "120", "121", "122", "128", "130", "134", "136", "138", "142", "146", "147", "152", "153", "154", "158", "160" ]
[ "nonn", "easy" ]
11
1
2
[ "A000035", "A039956", "A051903", "A381950", "A381955", "A381956" ]
null
Amiram Eldar, Mar 11 2025
2025-03-12T08:24:52
oeisdata/seq/A381/A381956.seq
a44e945bd4f09f9964ce1deea6100552
A381957
If n = Sum 2^e(k), then a(n) = Sum 2^a(e(k)), with a(0) = 1.
[ "1", "2", "4", "6", "16", "18", "20", "22", "64", "66", "68", "70", "80", "82", "84", "86", "65536", "65538", "65540", "65542", "65552", "65554", "65556", "65558", "65600", "65602", "65604", "65606", "65616", "65618", "65620", "65622", "262144", "262146", "262148", "262150", "262160", "262162", "262164", "262166", "262208", "262210", "262212", "262214", "262224", "262226" ]
[ "nonn", "base" ]
11
0
2
[ "A029931", "A033922", "A073642", "A381957" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-18T15:48:03
oeisdata/seq/A381/A381957.seq
2755d8e4380496a3225bf8528ba3f6e3
A381958
Numerator of the sum of the reciprocals of the indices of distinct prime factors of n.
[ "0", "1", "1", "1", "1", "3", "1", "1", "1", "4", "1", "3", "1", "5", "5", "1", "1", "3", "1", "4", "3", "6", "1", "3", "1", "7", "1", "5", "1", "11", "1", "1", "7", "8", "7", "3", "1", "9", "2", "4", "1", "7", "1", "6", "5", "10", "1", "3", "1", "4", "9", "7", "1", "3", "8", "5", "5", "11", "1", "11", "1", "12", "3", "1", "1", "17", "1", "8", "11", "19", "1", "3", "1", "13", "5", "9", "9", "5", "1", "4", "1", "14", "1", "7", "10", "15", "3", "6", "1", "11", "5", "10", "13", "16", "11" ]
[ "nonn", "frac" ]
12
1
6
[ "A000720", "A028235", "A028236", "A066328", "A083345", "A318573", "A379141", "A381958", "A381959" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-19T15:30:15
oeisdata/seq/A381/A381958.seq
5ce6344acdb318d0717f039af2ba4fe2
A381959
Denominator of the sum of the reciprocals of the indices of distinct prime factors of n.
[ "1", "1", "2", "1", "3", "2", "4", "1", "2", "3", "5", "2", "6", "4", "6", "1", "7", "2", "8", "3", "4", "5", "9", "2", "3", "6", "2", "4", "10", "6", "11", "1", "10", "7", "12", "2", "12", "8", "3", "3", "13", "4", "14", "5", "6", "9", "15", "2", "4", "3", "14", "6", "16", "2", "15", "4", "8", "10", "17", "6", "18", "11", "4", "1", "2", "10", "19", "7", "18", "12", "20", "2", "21", "12", "6", "8", "20", "3", "22", "3", "2", "13", "23", "4", "21", "14", "5", "5", "24", "6", "12", "9", "22", "15", "24" ]
[ "nonn", "frac" ]
11
1
3
[ "A000720", "A007947", "A066328", "A083346", "A318574", "A381958", "A381959" ]
null
Ilya Gutkovskiy, Mar 11 2025
2025-03-19T15:30:21
oeisdata/seq/A381/A381959.seq
6dc0e80473086c6ce1b7d9801c2d602d
A381960
Centered heptagonal numbers which are semiprime.
[ "22", "106", "253", "386", "841", "1198", "1618", "2101", "2458", "3046", "3473", "4166", "4411", "5461", "6623", "6931", "7246", "7897", "8926", "9647", "10018", "12811", "13238", "14113", "15947", "16423", "17893", "19951", "22121", "22681", "24403", "24991", "26797", "27413", "30598", "31921", "32593", "33958", "38221", "40447", "41966", "43513" ]
[ "nonn" ]
9
1
1
[ "A001358", "A069099", "A360183", "A381960" ]
null
Massimo Kofler, Mar 11 2025
2025-03-18T15:56:11
oeisdata/seq/A381/A381960.seq
397dac3d5f3620625859ecadf6d494a4
A381961
Number of connected graphs with n vertices which have a planar square.
[ "1", "1", "1", "2", "6", "6", "14", "25", "60", "124", "302", "696", "1745", "4300", "11042", "28362", "74483", "196539", "525521", "1413635", "3835932", "10468384" ]
[ "nonn", "hard", "more" ]
30
0
4
[ "A381961", "A382180", "A382181", "A382284" ]
null
Sean A. Irvine, Mar 18 2025
2025-03-22T15:46:03
oeisdata/seq/A381/A381961.seq
e67903a0b89ee7159ea94d66066e1f54
A381962
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) <= 1, where f(x) is the Hamming weight of x (A000120).
[ "0", "1", "2", "1", "3", "2", "1", "4", "1", "5", "2", "1", "6", "2", "1", "7", "3", "2", "1", "8", "1", "9", "2", "1", "10", "2", "1", "11", "3", "2", "1", "12", "2", "1", "13", "3", "2", "1", "14", "3", "2", "1", "15", "4", "1", "16", "1", "17", "2", "1", "18", "2", "1", "19", "3", "2", "1", "20", "2", "1", "21", "3", "2", "1", "22", "3", "2", "1", "23", "4", "1", "24", "2", "1", "25", "3", "2", "1", "26", "3", "2", "1" ]
[ "nonn", "tabf", "base", "easy" ]
11
0
3
[ "A000120", "A078627", "A078677", "A180094", "A381962", "A381963", "A381965" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:19:40
oeisdata/seq/A381/A381962.seq
bacca641f97b39d070dccb48f1f7486c
A381963
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) < 10, where f(x) is the digital sum of x (A007953).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "1", "11", "2", "12", "3", "13", "4", "14", "5", "15", "6", "16", "7", "17", "8", "18", "9", "19", "10", "1", "20", "2", "21", "3", "22", "4", "23", "5", "24", "6", "25", "7", "26", "8", "27", "9", "28", "10", "1", "29", "11", "2", "30", "3", "31", "4", "32", "5", "33", "6", "34", "7", "35", "8", "36", "9", "37", "10", "1", "38", "11", "2", "39", "12", "3" ]
[ "nonn", "tabf", "base", "easy" ]
9
0
3
[ "A007953", "A010888", "A031286", "A381962", "A381963", "A381964", "A381965" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:04
oeisdata/seq/A381/A381963.seq
bccfe19effea3da9fb0dbf7bf6b0a131
A381964
Row sums of A381963.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "11", "13", "15", "17", "19", "21", "23", "25", "27", "30", "22", "24", "26", "28", "30", "32", "34", "36", "39", "42", "33", "35", "37", "39", "41", "43", "45", "48", "51", "54", "44", "46", "48", "50", "52", "54", "57", "60", "63", "66", "55", "57", "59", "61", "63", "66", "69", "72", "75", "78", "66", "68", "70", "72", "75", "78", "81", "84", "87", "90" ]
[ "nonn", "base", "easy" ]
8
0
3
[ "A031286", "A381963", "A381964" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:13
oeisdata/seq/A381/A381964.seq
3538863ee526018637f0b706c5e4968a
A381965
Irregular triangle read by rows, where row n lists the iterates of f(x), starting at x = n until f(x) < 10, where f(x) is the multiplicative digital root of x (A031347).
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "0", "11", "1", "12", "2", "13", "3", "14", "4", "15", "5", "16", "6", "17", "7", "18", "8", "19", "9", "20", "0", "21", "2", "22", "4", "23", "6", "24", "8", "25", "10", "0", "26", "12", "2", "27", "14", "4", "28", "16", "6", "29", "18", "8", "30", "0", "31", "3", "32", "6", "33", "9", "34", "12", "2", "35", "15", "5", "36", "18", "8", "37", "21", "2" ]
[ "nonn", "tabf", "base", "easy" ]
9
0
3
[ "A031346", "A031347", "A381962", "A381963", "A381965", "A381966" ]
null
Paolo Xausa, Mar 11 2025
2025-03-14T21:20:24
oeisdata/seq/A381/A381965.seq
b72c96c50ee323e92d9dc47d4c121d1a
A381966
Row sums of A381965.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "14", "16", "18", "20", "22", "24", "26", "28", "20", "23", "26", "29", "32", "35", "40", "45", "50", "55", "30", "34", "38", "42", "48", "55", "62", "60", "70", "84", "40", "45", "50", "57", "66", "65", "78", "97", "86", "111", "50", "56", "62", "73", "74", "90", "86", "112", "98", "124", "60", "67", "76", "89", "96", "95", "128", "117" ]
[ "nonn", "base", "easy" ]
6
0
3
[ "A031346", "A381965", "A381966" ]
null
Paolo Xausa, Mar 12 2025
2025-03-14T21:20:31
oeisdata/seq/A381/A381966.seq
afdc17b924f07619915158c6c78653f0
A381967
Lexicographically earliest sequence of distinct nonnegative integers such that for any n >= 0, the factorial base expansion of n*a(n) only contains distinct nonzero digits.
[ "0", "1", "2", "4", "3", "10", "6", "7", "9", "8", "5", "12", "11", "18", "14", "16", "15", "22", "13", "19", "23", "24", "17", "20", "21", "26", "25", "40", "39", "42", "32", "54", "30", "36", "48", "62", "33", "61", "51", "28", "27", "53", "29", "67", "49", "64", "47", "46", "34", "44", "58", "38", "55", "41", "31", "52", "57", "56", "50", "59", "60", "37", "35", "66", "45", "68", "63", "43" ]
[ "nonn", "base" ]
10
0
3
[ "A265349", "A381967" ]
null
Rémy Sigrist, Mar 12 2025
2025-03-14T09:01:13
oeisdata/seq/A381/A381967.seq
facb4fb9bc742708a679e6d8767acd00
A381968
a(a(n)) = A381662(n).
[ "1", "5", "3", "4", "2", "6", "14", "8", "12", "10", "11", "7", "13", "9", "15", "27", "17", "25", "19", "23", "21", "22", "16", "24", "18", "26", "20", "28", "44", "30", "42", "32", "40", "34", "38", "36", "37", "29", "39", "31", "41", "33", "43", "35", "45", "65", "47", "63", "49", "61", "51", "59", "53", "57", "55", "56", "46", "58", "48", "60", "50", "62", "52", "64", "54", "66" ]
[ "nonn", "tabf", "changed" ]
27
1
2
[ "A000027", "A000384", "A016813", "A376214", "A380817", "A381662", "A381968", "A382499", "A382679", "A382680" ]
null
Boris Putievskiy, Mar 12 2025
2025-04-16T22:39:19
oeisdata/seq/A381/A381968.seq
f4f847eb8d021c67b4b87e0523c455cc
A381969
Primes p with the property that PreviousPrime(p) is a substring of p^2.
[ "3701", "65442077", "8410957371097" ]
[ "nonn", "base", "bref", "more" ]
12
1
1
[ "A052073", "A381969" ]
null
Giorgos Kalogeropoulos, Mar 11 2025
2025-03-30T09:52:58
oeisdata/seq/A381/A381969.seq
96e45d40a04ddd881bf0e4598b725c72
A381970
Numbers k such that there are no primes of the form 2^(k-m)*3^m + 1 or 2^(k-m)*3^m - 1 for 0 <= m <= k.
[ "46", "74", "102", "118", "130", "142", "162", "165", "166", "186", "200", "234", "242", "252", "258", "306", "318", "358", "370", "374", "414", "462", "478", "494", "506", "518", "522", "538", "540", "550", "578", "594", "618", "630", "654", "662", "666", "672", "690", "738", "750", "768", "778", "780", "790", "802", "810", "826", "834", "858", "886", "902", "912", "938", "942", "958", "982", "990", "1002" ]
[ "nonn" ]
14
1
1
[ "A167506", "A381970" ]
null
Robert Israel, Mar 11 2025
2025-03-12T07:58:35
oeisdata/seq/A381/A381970.seq
90da4101fd8dd0f939952ace095f0ccf
A381971
Maximum number of diagonal transversals in a Brown's diagonal Latin square of order 2n.
[ "0", "4", "6", "120", "890" ]
[ "nonn", "more", "hard" ]
6
1
2
[ "A287648", "A339641", "A381971" ]
null
Eduard I. Vatutin, Mar 11 2025
2025-03-18T18:00:39
oeisdata/seq/A381/A381971.seq
048b36b0d1bb94deee238454378911e3
A381972
a(n) = least k such that k/A001414(k) > n/A001414(n).
[ "6", "8", "9", "12", "14", "15", "16", "18", "20", "24", "27", "30", "32", "35", "36", "38", "39", "40", "42", "44", "45", "48", "50", "52", "54", "56", "60", "62", "63", "64", "66", "68", "70", "72", "74", "75", "77", "78", "80", "81", "84", "87", "88", "90", "95", "96", "98", "100", "102", "104", "105", "108", "110", "112", "114", "117", "119", "120", "123", "124", "125", "126" ]
[ "nonn", "changed" ]
19
2
1
[ "A001414", "A082299", "A082343", "A082344", "A381249", "A381972" ]
null
Clark Kimberling, Mar 16 2025
2025-04-26T22:49:51
oeisdata/seq/A381/A381972.seq
1e77129e03506e51f9f0318b3aa85967
A381973
Numbers m such that Sum_{k >= 0} floor(m/3^k) is prime.
[ "2", "4", "9", "12", "14", "17", "22", "28", "36", "41", "42", "46", "49", "61", "66", "69", "71", "73", "86", "89", "94", "101", "102", "107", "110", "113", "121", "129", "131", "134", "143", "151", "153", "155", "158", "169", "173", "177", "181", "187", "190", "211", "214", "223", "227", "235", "238", "250", "254", "257", "274", "281", "282", "289", "295", "301" ]
[ "nonn", "changed" ]
11
1
1
[ "A000040", "A028491", "A381973", "A381974" ]
null
Clark Kimberling, Apr 01 2025
2025-04-21T17:00:26
oeisdata/seq/A381/A381973.seq
bdacc7bfdca8173c4ea573ebb84eefe5
A381974
Primes of the form Sum_{k >= 0} floor(m/3^k) for some number m.
[ "2", "5", "13", "17", "19", "23", "31", "41", "53", "59", "61", "67", "71", "89", "97", "101", "103", "107", "127", "131", "139", "149", "151", "157", "163", "167", "179", "191", "193", "197", "211", "223", "227", "229", "233", "251", "257", "263", "269", "277", "283", "313", "317", "331", "337", "349", "353", "373", "379", "383", "409", "419", "421", "431", "439" ]
[ "nonn", "changed" ]
9
1
1
[ "A000040", "A076481", "A381973", "A381974" ]
null
Clark Kimberling, Apr 01 2025
2025-04-21T17:00:36
oeisdata/seq/A381/A381974.seq
032833aec49dbf894c3c2c2eb7f444e6
A381976
a(n) is the number of distinct solutions to the Partridge Puzzle of size n.
[ "1", "0", "0", "0", "0", "0", "0", "2332", "216285" ]
[ "nonn", "more" ]
13
1
8
[ "A369891", "A381976" ]
null
Danila Potapov, Mar 11 2025
2025-03-21T11:25:27
oeisdata/seq/A381/A381976.seq
b9e0ff6ffa06652764d67429726658b4
A381977
Number of edge intersections in the divisibility circle graph of n (base 10).
[ "0", "0", "0", "0", "0", "3", "3", "5", "0", "0", "0", "12", "18", "19", "21", "27", "35", "36", "57", "20", "45", "25", "71", "75", "65", "88", "90", "110", "137", "81", "120", "135", "42", "162", "150", "180", "204", "215", "252", "165", "230", "252", "282", "208", "270", "315", "341", "357", "402", "290", "375", "400", "440", "441", "340", "481", "513", "530", "587", "456" ]
[ "nonn" ]
18
1
6
null
null
Gil Moses, Mar 11 2025
2025-04-01T23:07:44
oeisdata/seq/A381/A381977.seq
9ba48a893c9027dcdbdc3f7857877d83
A381979
Decimal expansion of the expected number of steps to termination by self-trapping of a self-avoiding random walk on the square lattice.
[ "7", "0", "7", "5", "9" ]
[ "nonn", "cons", "hard", "more" ]
11
2
1
[ "A077483", "A322831", "A378903", "A381979" ]
null
Yi Yang, Mar 11 2025
2025-03-12T08:05:59
oeisdata/seq/A381/A381979.seq
518e058290ce282545191d60c5dfb9bf
A381980
a(n) is the first position where the digits of n occur simultaneously in the decimal expansions of Pi and e.
[ "331", "95", "17", "18", "263", "326", "21", "40", "206", "13", "13422", "428", "500", "6426", "12896", "11172", "17951", "962", "9710", "2857", "9261", "4782", "21688", "17", "26172", "2526", "2060", "2900", "5375", "6167", "10097", "13009", "9287", "12651", "4175", "840", "38691", "11997", "14119", "3519", "4684", "21785", "7662", "1798", "1253", "10869", "9157", "7216", "3430", "13191", "5148", "1843", "10790" ]
[ "nonn", "base", "easy" ]
20
0
1
[ "A000796", "A001113", "A032445", "A052055", "A088576", "A381980" ]
null
Zhining Yang, Mar 11 2025
2025-04-02T09:44:58
oeisdata/seq/A381/A381980.seq
282f8a92817e8ea2b9d0ec62c34d69c3
A381981
Number of compositions of n avoiding the patterns (1,2,3) and (3,2,1).
[ "1", "1", "2", "4", "8", "16", "30", "56", "100", "173", "293", "482", "779", "1232", "1928", "2972", "4546", "6894", "10435", "15705", "23692", "35679", "53976", "81760", "124611", "190404", "292871", "452070", "702042", "1094034", "1713879", "2693284", "4250165", "6724535", "10673794", "16977795", "27070285", "43232232", "69167372" ]
[ "nonn" ]
8
0
3
[ "A011782", "A102726", "A128761", "A335471", "A335473", "A381981" ]
null
John Tyler Rascoe, Mar 11 2025
2025-03-12T09:39:45
oeisdata/seq/A381/A381981.seq
8fe8d7447279a4a78e31a94b36e88923
A381982
E.g.f. A(x) satisfies A(x) = exp(x) * C(x*A(x)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "2", "11", "139", "2829", "78981", "2802163", "120667667", "6113752025", "356342305465", "23488872131871", "1727770084512495", "140302645206245701", "12466960491079733237", "1203253101643330233707", "125351056198801059896491", "14019427299278115378992049", "1675439381194882102492648305" ]
[ "nonn" ]
19
0
2
[ "A000108", "A001764", "A161629", "A349640", "A364983", "A381982", "A381983" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:01
oeisdata/seq/A381/A381982.seq
2359244dcff017f5fceac5d8c01c4c59
A381983
E.g.f. A(x) satisfies A(x) = exp(x) * C(x*A(x)^2), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "2", "15", "280", "8365", "342566", "17839339", "1128217084", "83987669721", "7194842276842", "697216089189511", "75408952092397760", "9005278056681754885", "1176889697125038323662", "167076740069554538243427", "25603739419854491589361636", "4212587964283017439802066353", "740650326150658335888643004498" ]
[ "nonn" ]
22
0
2
[ "A000108", "A002293", "A349640", "A381982", "A381983", "A381997" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:05
oeisdata/seq/A381/A381983.seq
11afa4d25fcc73f2ca4fade2b39ad9ed
A381984
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "9", "94", "1649", "40146", "1246057", "47004014", "2087644449", "106709890114", "6170322084041", "398219508589662", "28376096583546769", "2212797385807852754", "187441592012756668329", "17139223549605292448686", "1682551982313514625386817", "176505773149909540258262274", "19704960849698723062181296009" ]
[ "nonn", "easy" ]
22
0
2
[ "A001763", "A001764", "A381984", "A381985", "A381986", "A381987" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T09:04:27
oeisdata/seq/A381/A381984.seq
4aedca083251fe8d56bdb6d55be41315
A381985
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "13", "217", "5937", "223641", "10725433", "625007993", "42883208609", "3386452550689", "302545287708201", "30170153462509545", "3322052185576104049", "400328811249634307249", "52406094009429908677049", "7405663486143907784247481", "1123601498350780798756198209", "182173718779147621454796872769" ]
[ "nonn" ]
17
0
2
[ "A001764", "A002293", "A346646", "A364987", "A381984", "A381985", "A381986" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T08:59:09
oeisdata/seq/A381/A381985.seq
ba937583b56f60ddef3be74243090ff6
A381986
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "2", "17", "388", "14329", "727206", "46984729", "3689119624", "341097752657", "36302764864330", "4371463743828481", "587606216836328460", "87219196719691250185", "14168990447072685567214", "2500554381188629649979593", "476391652257266128440376336", "97447147561230881896398507553" ]
[ "nonn" ]
19
0
2
[ "A001764", "A002294", "A381984", "A381985", "A381986", "A382000" ]
null
Seiichi Manyama, Mar 11 2025
2025-03-14T09:00:36
oeisdata/seq/A381/A381986.seq
d672809fb14f5774788fea09be169376
A381987
E.g.f. A(x) satisfies A(x) = exp(x) * B(x), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "11", "160", "3941", "134486", "5851327", "309520436", "19283504585", "1382980764106", "112223497464371", "10165461405056552", "1016801830348902061", "111312715288354681310", "13237965546409421546471", "1699516550894276788156156", "234263144339070269872076177", "34507561203827621878485498386" ]
[ "nonn", "easy" ]
20
0
2
[ "A002293", "A365340", "A381984", "A381987", "A381988", "A381989" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:54:18
oeisdata/seq/A381/A381987.seq
5140d47b36ce66fe4d52cf98478b5080
A381988
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "15", "313", "10773", "510981", "30876463", "2267990159", "196204786025", "19539828320905", "2201822913234771", "276969947671828995", "38473403439454795837", "5849221857618942870029", "966078641687956464576119", "172251173569831561500070711", "32975613823747758363130520529", "6746227557293225645352382744593" ]
[ "nonn" ]
17
0
2
[ "A002293", "A002294", "A346647", "A377526", "A381987", "A381988", "A381989" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:43
oeisdata/seq/A381/A381988.seq
45b35057c6c38edec7408ba7da7984a5
A381989
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)^2), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "2", "19", "514", "22621", "1369546", "105616639", "9901346554", "1093292035609", "138977379784882", "19990424969236171", "3209995501651871890", "569216406245186726965", "110476637766622355475898", "23294266811686640511534199", "5302371488162151660366545866", "1295920217231693678343467474353" ]
[ "nonn" ]
17
0
2
[ "A002293", "A002295", "A381987", "A381988", "A381989", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:39
oeisdata/seq/A381/A381989.seq
86b6aa806b15b8f202c0f3643ef641aa
A381990
Number of integer partitions of n that cannot be partitioned into a set (or multiset) of sets with distinct sums.
[ "0", "0", "1", "1", "2", "2", "5", "6", "9", "13", "17", "23", "33", "42", "58", "76", "97", "127", "168", "208", "267", "343", "431", "536", "676", "836", "1045", "1283", "1582", "1949", "2395", "2895", "3549", "4298", "5216", "6281", "7569", "9104", "10953", "13078", "15652", "18627", "22207", "26325", "31278", "37002", "43708", "51597", "60807", "71533", "84031" ]
[ "nonn" ]
17
0
5
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A279786", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381634", "A381635", "A381636", "A381716", "A381717", "A381718", "A381806", "A381870", "A381990", "A381991", "A381992", "A382075", "A382077", "A382078", "A382079", "A382201" ]
null
Gus Wiseman, Mar 15 2025
2025-03-29T13:49:45
oeisdata/seq/A381/A381990.seq
69df2134865630081328fc888f1ee787
A381991
Numbers whose prime indices have a unique multiset partition into constant multisets with distinct sums.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "61", "62", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn" ]
8
1
2
[ "A000688", "A000720", "A000726", "A001055", "A001222", "A003963", "A004709", "A005117", "A006171", "A047966", "A050361", "A055396", "A056239", "A061395", "A112798", "A265947", "A279784", "A279786", "A293511", "A295935", "A300383", "A300385", "A317141", "A326535", "A355743", "A381635", "A381636", "A381716", "A381717", "A381870", "A381991", "A382079", "A382203", "A382301" ]
null
Gus Wiseman, Mar 22 2025
2025-03-23T08:40:34
oeisdata/seq/A381/A381991.seq
525ef330b2092c432b3fc5d58e148bb7
A381992
Number of integer partitions of n that can be partitioned into sets with distinct sums.
[ "1", "1", "1", "2", "3", "5", "6", "9", "13", "17", "25", "33", "44", "59", "77", "100", "134", "170", "217", "282", "360", "449", "571", "719", "899", "1122", "1391", "1727", "2136", "2616", "3209", "3947", "4800", "5845", "7094", "8602", "10408", "12533", "15062", "18107", "21686", "25956", "30967", "36936", "43897", "52132", "61850", "73157", "86466", "101992", "120195" ]
[ "nonn" ]
14
0
4
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A279786", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381634", "A381635", "A381636", "A381716", "A381717", "A381718", "A381806", "A381870", "A381990", "A381991", "A381992", "A382075", "A382077", "A382078", "A382079", "A382201" ]
null
Gus Wiseman, Mar 16 2025
2025-03-29T13:49:30
oeisdata/seq/A381/A381992.seq
2cecae2a853fb818a964c9a0cd078530
A381993
Number of integer partitions of n that cannot be partitioned into constant multisets with a common sum.
[ "0", "0", "0", "1", "1", "5", "4", "13", "13", "25", "33", "54", "54", "99", "124", "166", "207", "295", "352", "488", "591", "780", "987", "1253", "1488", "1951", "2419", "2993", "3665", "4563", "5508", "6840", "8270", "10127", "12289", "14869", "17781", "21635", "25992", "31167", "37184", "44581", "53008", "63259", "75076", "89080", "105531", "124752", "146842", "173516", "204141", "239921", "281461", "329929", "385852" ]
[ "nonn" ]
13
0
6
[ "A000688", "A001055", "A006171", "A045778", "A047966", "A050361", "A265947", "A279784", "A279789", "A300383", "A317141", "A326534", "A355743", "A381453", "A381455", "A381635", "A381636", "A381715", "A381717", "A381719", "A381871", "A381992", "A381993", "A381994", "A381995", "A382076", "A382080", "A382204" ]
null
Gus Wiseman, Mar 17 2025
2025-03-31T21:54:22
oeisdata/seq/A381/A381993.seq
28b091394fb7e77fd5fa89c75a113a5a
A381994
Number of integer partitions of n that cannot be partitioned into sets with equal sums.
[ "0", "0", "0", "0", "1", "3", "3", "9", "12", "17", "27", "43", "46", "82", "103", "133", "181", "258", "295" ]
[ "nonn" ]
6
0
6
[ "A000009", "A000041", "A002846", "A047966", "A050320", "A050326", "A089259", "A116540", "A265947", "A270995", "A279785", "A279786", "A279788", "A279789", "A293243", "A293511", "A296119", "A299202", "A317142", "A318360", "A358914", "A381078", "A381454", "A381633", "A381634", "A381635", "A381636", "A381717", "A381718", "A381719", "A381806", "A381990", "A381991", "A381992", "A381993", "A381994", "A382080" ]
null
Gus Wiseman, Mar 17 2025
2025-03-18T22:33:26
oeisdata/seq/A381/A381994.seq
f8af518561cfd4e88952f850ebfbbeaf
A381995
Number of ways to partition the prime indices of n into constant blocks with a common sum.
[ "1", "1", "1", "2", "1", "0", "1", "2", "2", "0", "1", "1", "1", "0", "0", "3", "1", "0", "1", "0", "0", "0", "1", "0", "2", "0", "2", "0", "1", "0", "1", "2", "0", "0", "0", "1", "1", "0", "0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "2", "0", "0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "4", "0", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "3", "0", "1", "0", "0", "0", "0" ]
[ "nonn", "changed" ]
16
1
4
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A045778", "A050361", "A055396", "A056239", "A061395", "A112798", "A265947", "A279784", "A279789", "A295935", "A300383", "A317141", "A321455", "A323774", "A353864", "A353866", "A381453", "A381455", "A381633", "A381635", "A381719", "A381871", "A381993", "A381995", "A382076", "A382204", "A382215", "A382524", "A383014", "A383093", "A383309" ]
null
Gus Wiseman, Mar 19 2025
2025-04-25T23:40:40
oeisdata/seq/A381/A381995.seq
52e129ac521e2e5993f9f0d878c2801a
A381996
Number of non-isomorphic multisets of size n that can be partitioned into a set of sets.
[ "1", "1", "1", "2", "3", "4", "6", "9", "13", "18", "25", "34", "47" ]
[ "nonn", "more" ]
6
0
4
[ "A000110", "A000670", "A007716", "A034691", "A035310", "A050320", "A050326", "A050342", "A089259", "A116539", "A116540", "A255903", "A255906", "A270995", "A279785", "A292432", "A292444", "A293243", "A296119", "A296120", "A317532", "A318360", "A318361", "A326519", "A358914", "A381633", "A381718", "A381992", "A381996", "A382077", "A382078", "A382200", "A382202", "A382214", "A382216", "A382428", "A382430", "A382458", "A382459", "A382523" ]
null
Gus Wiseman, Mar 31 2025
2025-04-01T10:27:54
oeisdata/seq/A381/A381996.seq
d16e4294bc44402a6c9ec2ce584dd32c
A381997
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^4.
[ "1", "1", "12", "240", "7328", "303400", "15904032", "1010252320", "75442821120", "6478112692224", "628915387166720", "68121797696449024", "8144844724723482624", "1065508614975814537216", "151392999512027274215424", "23217165210450099377479680", "3822334349865128121165283328", "672407573328393115218009063424" ]
[ "nonn" ]
15
0
3
[ "A002293", "A336950", "A364987", "A381983", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:49:47
oeisdata/seq/A381/A381997.seq
01995af61698e3014bfab5fef3208084
A381998
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^2.
[ "1", "1", "8", "90", "1472", "31920", "865152", "28197904", "1075122176", "46976064768", "2315080816640", "127068467480064", "7688296957870080", "508450036968779776", "36490818871396499456", "2824787199565881477120", "234622076533699738861568", "20813348299168251651883008", "1964063064959266899440959488" ]
[ "nonn" ]
14
0
3
[ "A000108", "A295238", "A336950", "A379885", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T09:58:11
oeisdata/seq/A381/A381998.seq
26c2c14721c09838f8049ebfbb589773
A381999
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^3.
[ "1", "1", "10", "156", "3656", "115400", "4595232", "221281312", "12510826624", "812633118336", "59642105050880", "4881685773730304", "440905471531302912", "43559980305765793792", "4673231270870843441152", "541042726968231082967040", "67236501012517546330062848", "8927220151967826907452440576" ]
[ "nonn" ]
14
0
3
[ "A001764", "A336950", "A364983", "A371318", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:28:55
oeisdata/seq/A381/A381999.seq
e3d8582d72bd1a2dfda0b49a1292f669
A382000
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^5.
[ "1", "1", "14", "342", "12872", "659280", "42828912", "3375009568", "312860626304", "33361836534144", "4023352486200320", "541461682626399744", "80448618080927609856", "13079749459734097573888", "2309915877337042992324608", "440332184936376095626076160", "90117169223076699520606896128" ]
[ "nonn" ]
14
0
3
[ "A002294", "A336950", "A377526", "A381986", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T10:56:42
oeisdata/seq/A382/A382000.seq
faa739546a46f80ae6db461f47e86f0b
A382001
E.g.f. A(x) satisfies A(x) = 1 + x*exp(2*x)*A(x)^6.
[ "1", "1", "16", "462", "20672", "1261400", "97728672", "9190016416", "1016963389696", "129485497897728", "18648682990461440", "2997567408967391744", "531985786683988512768", "103321584851593487961088", "21798243872991807130685440", "4964302861788729054456729600", "1213816740632458735310221672448" ]
[ "nonn" ]
14
0
3
[ "A002295", "A336950", "A381989", "A381997", "A381998", "A381999", "A382000", "A382001" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-22T11:28:25
oeisdata/seq/A382/A382001.seq
829de2031828575df1e937c5600d69ae
A382002
Decimal expansion of the isoperimetric quotient of a triakis tetrahedron.
[ "6", "4", "5", "8", "3", "5", "7", "8", "9", "8", "4", "0", "5", "5", "6", "5", "4", "7", "5", "6", "5", "6", "5", "9", "8", "0", "5", "7", "8", "4", "3", "0", "0", "4", "9", "9", "9", "6", "8", "1", "7", "3", "6", "8", "5", "9", "0", "5", "7", "4", "3", "7", "5", "4", "0", "9", "1", "6", "4", "5", "5", "1", "0", "2", "3", "4", "1", "3", "1", "8", "6", "3", "4", "2", "1", "5", "4", "0", "2", "9", "1", "7", "1", "4", "6", "9", "8", "2", "1", "8" ]
[ "nonn", "cons", "easy" ]
9
0
1
[ "A000796", "A010468", "A378204", "A378205", "A381684", "A382002" ]
null
Paolo Xausa, Mar 16 2025
2025-03-19T07:40:38
oeisdata/seq/A382/A382002.seq
2ed1efa5e5099bb60984aec65010caa0
A382003
Decimal expansion of the isoperimetric quotient of a (small) triakis octahedron.
[ "7", "9", "0", "0", "2", "8", "3", "7", "6", "7", "3", "7", "0", "1", "2", "7", "2", "4", "7", "3", "7", "5", "2", "9", "4", "3", "1", "5", "3", "1", "0", "2", "8", "4", "6", "2", "3", "1", "1", "5", "1", "8", "3", "1", "5", "4", "0", "7", "9", "9", "8", "4", "0", "9", "4", "2", "7", "8", "0", "3", "4", "1", "0", "3", "9", "8", "6", "9", "5", "3", "6", "6", "9", "9", "2", "1", "8", "3", "2", "6", "1", "9", "0", "2", "8", "0", "7", "3", "7", "9" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A002193", "A378351", "A378352", "A381684", "A382003" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:43
oeisdata/seq/A382/A382003.seq
5cd3332fdb84db2e96e78970b4c5b5ac
A382004
Decimal expansion of the isoperimetric quotient of a tetrakis hexahedron.
[ "8", "4", "2", "9", "7", "7", "7", "6", "7", "7", "2", "4", "8", "8", "7", "1", "6", "7", "1", "7", "8", "7", "6", "4", "9", "5", "7", "1", "8", "4", "5", "8", "7", "3", "7", "5", "9", "3", "5", "9", "8", "1", "1", "0", "2", "4", "4", "8", "0", "6", "4", "2", "9", "0", "3", "9", "8", "7", "6", "6", "5", "2", "3", "1", "4", "3", "0", "5", "7", "0", "2", "5", "6", "7", "4", "3", "0", "2", "5", "8", "4", "6", "1", "2", "4", "9", "7", "0", "8", "9" ]
[ "nonn", "cons", "easy" ]
10
0
1
[ "A000796", "A002163", "A374359", "A378388", "A381684", "A382004" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:11
oeisdata/seq/A382/A382004.seq
cd190791e1286640e0b456595c6dbe9b
A382005
Decimal expansion of the isoperimetric quotient of a deltoidal icositetrahedron.
[ "8", "6", "9", "7", "7", "4", "2", "8", "1", "9", "1", "0", "0", "6", "3", "7", "6", "0", "2", "7", "3", "8", "9", "4", "2", "6", "2", "6", "8", "1", "2", "9", "9", "8", "5", "7", "8", "1", "9", "9", "0", "5", "0", "6", "6", "3", "8", "6", "7", "3", "5", "5", "1", "1", "2", "1", "5", "4", "6", "1", "7", "0", "7", "8", "0", "1", "7", "6", "6", "8", "6", "7", "3", "7", "9", "7", "9", "2", "0", "6", "2", "7", "5", "9", "8", "2", "5", "5", "8", "3" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002193", "A378390", "A378391", "A381684", "A382005" ]
null
Paolo Xausa, Mar 17 2025
2025-03-19T07:40:04
oeisdata/seq/A382/A382005.seq
3e7b84c225300e873073b8b278189893
A382006
Decimal expansion of the isoperimetric quotient of a disdyakis dodecahedron.
[ "9", "1", "0", "0", "6", "5", "6", "3", "8", "8", "0", "8", "0", "3", "1", "1", "7", "0", "5", "9", "1", "2", "3", "8", "0", "8", "5", "7", "0", "5", "3", "7", "1", "4", "9", "8", "4", "4", "5", "5", "8", "3", "5", "4", "5", "4", "0", "5", "9", "5", "2", "7", "6", "9", "3", "9", "8", "2", "5", "2", "3", "6", "3", "1", "6", "6", "9", "1", "6", "1", "4", "1", "6", "3", "6", "5", "1", "7", "5", "8", "9", "1", "5", "4", "7", "8", "3", "7", "3", "7" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002193", "A378712", "A378713", "A381684", "A382006" ]
null
Paolo Xausa, Mar 18 2025
2025-03-19T07:40:34
oeisdata/seq/A382/A382006.seq
d920c553a93f3a1ba99214b6c09b4704
A382007
Decimal expansion of the isoperimetric quotient of a pentagonal icositetrahedron.
[ "8", "7", "2", "6", "2", "8", "3", "2", "9", "1", "2", "8", "6", "9", "9", "7", "5", "5", "5", "1", "3", "4", "9", "9", "9", "7", "4", "4", "6", "8", "5", "1", "4", "6", "7", "5", "7", "3", "3", "0", "1", "8", "7", "4", "5", "9", "8", "4", "6", "2", "0", "6", "6", "8", "9", "2", "6", "8", "1", "4", "4", "8", "1", "0", "4", "1", "7", "8", "8", "0", "3", "9", "1", "3", "9", "9", "5", "7", "8", "9", "2", "8", "9", "6", "8", "9", "8", "6", "5", "7" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A378823", "A378824", "A381684", "A382007" ]
null
Paolo Xausa, Mar 19 2025
2025-03-20T09:27:24
oeisdata/seq/A382/A382007.seq
7bf51c3ab54d7c4a815a6cb248230ae1
A382008
Decimal expansion of the isoperimetric quotient of a rhombic triacontahedron.
[ "8", "8", "7", "2", "0", "0", "0", "0", "2", "5", "4", "8", "0", "2", "0", "8", "5", "8", "0", "0", "5", "4", "4", "4", "0", "9", "3", "9", "8", "4", "2", "6", "0", "0", "3", "7", "8", "5", "7", "3", "8", "9", "8", "6", "5", "7", "2", "1", "1", "6", "0", "9", "3", "7", "4", "6", "2", "6", "4", "0", "6", "8", "0", "7", "2", "0", "5", "1", "8", "3", "1", "2", "8", "7", "9", "4", "4", "0", "4", "1", "3", "4", "9", "0", "6", "8", "0", "8", "0", "4" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A098317", "A344171", "A344172", "A381684", "A382008" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:27:32
oeisdata/seq/A382/A382008.seq
f1c135b8ad84c62a74c332e34d400b70
A382009
Decimal expansion of the isoperimetric quotient of a triakis icosahedron.
[ "9", "0", "5", "1", "8", "0", "8", "0", "1", "7", "4", "0", "2", "2", "9", "7", "9", "7", "6", "5", "2", "8", "5", "0", "2", "4", "1", "7", "9", "3", "5", "5", "3", "5", "8", "3", "3", "0", "0", "1", "7", "6", "0", "0", "6", "7", "2", "5", "5", "6", "8", "2", "8", "3", "8", "4", "3", "6", "7", "9", "2", "7", "1", "5", "4", "7", "1", "6", "8", "1", "7", "5", "6", "9", "7", "6", "8", "8", "3", "6", "8", "9", "0", "4", "0", "9", "6", "7", "9", "7" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A002163", "A378973", "A378974", "A381684", "A382009" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:27:37
oeisdata/seq/A382/A382009.seq
1f09c47db4dd59d4a9edbcda5b84f385
A382010
Decimal expansion of the isoperimetric quotient of a pentakis dodecahedron.
[ "9", "3", "9", "7", "0", "7", "0", "8", "1", "3", "0", "2", "9", "9", "6", "8", "4", "7", "7", "1", "6", "0", "2", "5", "1", "6", "0", "1", "6", "4", "0", "7", "3", "5", "6", "6", "0", "2", "6", "7", "8", "2", "1", "3", "3", "2", "5", "1", "5", "7", "6", "7", "3", "6", "1", "0", "6", "6", "5", "0", "8", "7", "1", "8", "1", "9", "3", "2", "1", "3", "1", "0", "8", "0", "3", "2", "6", "2", "1", "9", "4", "3", "0", "5", "9", "3", "6", "5", "2", "0" ]
[ "nonn", "cons", "easy" ]
8
0
1
[ "A000796", "A002163", "A379132", "A379133", "A381684", "A382010" ]
null
Paolo Xausa, Mar 20 2025
2025-03-20T09:28:01
oeisdata/seq/A382/A382010.seq
a4701389fcb7e848613421e2b4964b51
A382011
Decimal expansion of the isoperimetric quotient of a deltoidal hexecontahedron.
[ "9", "4", "5", "8", "5", "2", "0", "1", "9", "3", "5", "6", "7", "2", "3", "7", "3", "5", "4", "3", "2", "9", "4", "8", "1", "5", "0", "6", "9", "3", "7", "9", "8", "9", "4", "7", "2", "0", "6", "9", "4", "8", "7", "0", "8", "9", "1", "2", "7", "9", "8", "8", "4", "8", "2", "8", "4", "9", "3", "8", "2", "2", "1", "4", "5", "0", "6", "7", "9", "3", "7", "2", "8", "4", "8", "4", "1", "0", "6", "8", "6", "3", "4", "6", "1", "6", "1", "7", "4", "3" ]
[ "nonn", "cons", "easy" ]
7
0
1
[ "A000796", "A002163", "A379385", "A379386", "A381684", "A382011" ]
null
Paolo Xausa, Mar 20 2025
2025-03-21T10:02:30
oeisdata/seq/A382/A382011.seq
cd1f29dd56a215e01a038870b00c70d6
A382012
Decimal expansion of the isoperimetric quotient of a disdyakis triacontahedron.
[ "9", "5", "7", "7", "6", "5", "0", "2", "3", "8", "4", "7", "8", "0", "7", "6", "9", "0", "7", "6", "1", "8", "7", "4", "0", "8", "9", "5", "3", "2", "4", "0", "6", "1", "7", "7", "9", "0", "7", "8", "3", "3", "4", "3", "8", "2", "0", "5", "1", "7", "0", "6", "4", "6", "2", "7", "1", "1", "9", "1", "2", "1", "2", "3", "7", "0", "5", "9", "6", "8", "3", "3", "7", "7", "0", "9", "2", "3", "3", "4", "0", "9", "9", "3", "8", "9", "3", "7", "1", "2" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A379708", "A379709", "A381684", "A382012" ]
null
Paolo Xausa, Mar 20 2025
2025-03-21T10:02:40
oeisdata/seq/A382/A382012.seq
d74d3d4dad2279517a611b3423b3db47
A382013
Decimal expansion of the isoperimetric quotient of a pentagonal hexecontahedron.
[ "9", "4", "5", "8", "9", "7", "2", "9", "5", "6", "9", "5", "7", "2", "9", "1", "5", "8", "1", "9", "1", "0", "4", "2", "9", "0", "1", "5", "1", "2", "8", "9", "3", "5", "2", "3", "7", "2", "5", "8", "2", "6", "5", "7", "5", "5", "8", "5", "4", "4", "1", "0", "2", "0", "8", "2", "8", "3", "1", "1", "7", "0", "8", "5", "1", "9", "4", "4", "1", "1", "1", "4", "7", "1", "0", "0", "3", "4", "8", "6", "4", "5", "3", "5", "2", "8", "8", "2", "7", "3" ]
[ "nonn", "cons", "easy" ]
6
0
1
[ "A000796", "A379888", "A379889", "A381684", "A382013" ]
null
Paolo Xausa, Mar 21 2025
2025-03-21T10:02:46
oeisdata/seq/A382/A382013.seq
4a1276b275b08ac7dcf7e3f33df0b735
A382014
Partial sums of A377225.
[ "0", "1", "0", "2", "0", "4", "0", "6", "9", "6", "0", "8", "0", "10", "15", "10", "0", "12", "21", "12", "0", "14", "21", "14", "0", "16", "0", "18", "33", "18", "0", "20", "0", "22", "33", "22", "0", "24", "45", "24", "0", "26", "39", "26", "0", "28", "0", "30", "55", "30", "0", "27", "0", "33", "0", "36", "68", "36", "70", "87", "70", "36", "0", "38", "57", "38", "0", "40", "75", "40", "0", "42", "81", "42" ]
[ "nonn" ]
9
0
4
[ "A377225", "A382014" ]
null
Paolo Xausa, Mar 21 2025
2025-03-22T19:23:12
oeisdata/seq/A382/A382014.seq
2f82540ae4375546648bb69cf73e8091
A382015
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "3", "31", "589", "16121", "574621", "25206595", "1312188249", "79030103185", "5404390242841", "413597889825011", "35018686148243029", "3249772250267517001", "327996955065621786309", "35769289851588288786211", "4191277822883571632163121", "525144087149768803822788257", "70060367710090279786176259633" ]
[ "nonn" ]
11
0
3
[ "A001764", "A161629", "A161630", "A251569", "A382015", "A382016" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-12T09:38:56
oeisdata/seq/A382/A382015.seq
6b0e51a73917ea9f4d7ac6006dbe09b6
A382016
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "3", "37", "901", "32141", "1502701", "86737645", "5952271977", "473117681881", "42731313784921", "4321503662185601", "483709266378568429", "59360036142346311685", "7924411424305558028757", "1143251381667547987358581", "177245340974472998607370321", "29386977237154379581209716657" ]
[ "nonn" ]
11
0
3
[ "A002293", "A161629", "A161630", "A380513", "A382015", "A382016" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-12T09:39:04
oeisdata/seq/A382/A382016.seq
68b6181712abb9aacca5f48e0521c59e
A382017
Record positions in A277847.
[ "1", "2", "6", "11", "14", "19", "22", "31", "38", "43", "46", "59", "62", "67", "71", "79", "83", "86", "94", "103", "107", "118", "127", "131", "134", "139", "142", "151", "158", "163", "166", "179", "191", "199", "206", "211", "214", "223", "227", "239", "251", "254", "262", "271", "278", "283", "302", "307", "311", "326", "331", "334", "347", "358", "367", "379", "382", "398", "419", "422", "431", "439", "443", "446" ]
[ "nonn" ]
19
1
2
[ "A277847", "A382017" ]
null
Aloe Poliszuk, Mar 11 2025
2025-04-02T21:09:45
oeisdata/seq/A382/A382017.seq
367e8beb9a5d6d749458f957c7f81ce5
A382018
Number of orbits under the action of the permutation group S(n) on the nonsingular n X n matrices over GF(2).
[ "1", "1", "4", "33", "908", "85411", "28227922", "32597166327" ]
[ "nonn", "hard", "more" ]
8
0
3
[ "A000595", "A002884", "A382018" ]
null
Søren Fuglede Jørgensen, Mar 12 2025
2025-03-18T18:58:59
oeisdata/seq/A382/A382018.seq
54f41b71911f03a43b8cf2462293aaea
A382019
Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
[ "0", "1", "2", "3", "4", "5", "6", "5", "6", "7", "8", "9", "10", "9", "10", "11", "12", "13", "14", "13", "14", "15", "16", "17", "18", "17", "18", "19", "20", "21", "22", "21", "22", "23", "24", "25", "26", "25", "26", "27", "28", "29", "30", "29", "30", "31", "32", "33", "34", "33", "34", "35", "36", "37", "38", "37", "38", "39", "40", "41", "42", "41", "42", "43", "44", "45", "46", "45", "46", "47" ]
[ "nonn" ]
26
0
3
[ "A007318", "A214292", "A382019" ]
null
Michel Lagneau, Mar 12 2025
2025-03-25T14:02:23
oeisdata/seq/A382/A382019.seq
a4a2b107977540deb37ca9d2e7dbf4b2
A382020
Decimal expansion of (5040*e^8 - 35280*e^7 + 90720*e^6 - 105000*e^5 + 53760*e^4 - 10206*e^3 + 448*e^2 - e) / 5040.
[ "1", "6", "6", "6", "6", "6", "6", "6", "6", "7", "0", "4", "2", "6", "8", "8", "7", "8", "2", "3", "6", "6", "2", "3", "4", "7", "0", "0", "4", "3", "3", "2", "5", "8", "0", "4", "4", "9", "3", "6", "4", "9", "5", "7", "7", "5", "8", "9", "7", "0", "2", "0", "7", "0", "7", "8", "7", "1", "2", "8", "4", "1", "5", "7", "6", "3", "7", "6", "1", "8", "5", "7", "5", "9", "4", "9", "7", "2", "1", "4", "6", "2", "7", "6", "4", "6", "6", "0" ]
[ "nonn", "cons", "easy" ]
18
2
2
[ "A001113", "A089087", "A089139", "A090142", "A090143", "A090611", "A379601", "A381673", "A381843", "A382020", "A382026" ]
null
Daniel Mondot, Mar 12 2025
2025-03-23T05:31:40
oeisdata/seq/A382/A382020.seq
5a57406250bbab0671344e2b40dc4c49
A382021
Number of distinct degree sequences among all simple graphs with n vertices whose degrees are consecutive integers.
[ "1", "1", "2", "4", "9", "21", "50", "118", "272", "614", "1368", "3014" ]
[ "nonn", "more" ]
9
0
3
[ "A000088", "A004251", "A005176", "A381586", "A382021" ]
null
John P. McSorley, Mar 12 2025
2025-03-18T21:14:02
oeisdata/seq/A382/A382021.seq
c61bca0ea508ee7cf0c3f79add199e3f
A382022
Composite integers k = p*q*r where p < q < r are distinct primes such that p*r < q^2.
[ "70", "105", "110", "154", "182", "231", "238", "266", "273", "286", "322", "374", "418", "429", "442", "494", "506", "561", "598", "627", "638", "646", "663", "682", "715", "741", "754", "759", "782", "806", "814", "874", "897", "902", "935", "946", "957", "962", "969", "986", "1001", "1023", "1034", "1045", "1054", "1066", "1102", "1105", "1118" ]
[ "nonn", "changed" ]
43
1
1
[ "A007304", "A375008", "A381736", "A382022" ]
null
Matthew Goers, Mar 12 2025
2025-04-22T06:32:28
oeisdata/seq/A382/A382022.seq
8328d9f5894b9ebc1e196ff802585015
A382023
Number of distinct half sets in Q_n containing only pairs of antipodal vertices with the property that they form an equitable partition with their complement and are interchangable under a group automorphism of the hypercube graph.
[ "0", "1", "3", "19", "75", "391" ]
[ "nonn", "more" ]
42
1
3
null
null
Constantinos Kourouzides, Mar 12 2025
2025-03-29T18:35:36
oeisdata/seq/A382/A382023.seq
9c3bd05c650c76dacc962bcc851f6c41
A382024
Maximum number of transversals in a Brown's diagonal Latin square of order 2n.
[ "0", "8", "32", "384", "5504" ]
[ "nonn", "more", "hard" ]
8
1
2
[ "A287644", "A339641", "A382024" ]
null
Eduard I. Vatutin, Mar 12 2025
2025-03-18T21:40:24
oeisdata/seq/A382/A382024.seq
a671064cd5c794f2c03cb21d48bb4f3d
A382025
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of three kinds.
[ "1", "0", "3", "0", "3", "9", "0", "3", "12", "22", "0", "3", "18", "36", "51", "0", "3", "21", "57", "87", "108", "0", "3", "27", "82", "148", "193", "221", "0", "3", "30", "111", "225", "330", "393", "429", "0", "3", "36", "144", "333", "528", "681", "765", "810", "0", "3", "39", "184", "460", "808", "1106", "1316", "1424", "1479", "0", "3", "45", "225", "630", "1182", "1740", "2163", "2439", "2574", "2640" ]
[ "nonn", "tabl" ]
5
0
3
[ "A000716", "A026820", "A381895", "A382025" ]
null
Peter Dolland, Mar 12 2025
2025-03-19T10:39:45
oeisdata/seq/A382/A382025.seq
984593de457079400e65296e20f0a54f
A382026
Decimal expansion of (362880*e^10 - 3265920*e^9 + 11612160*e^8 - 20744640*e^7 + 19595520*e^6 - 9450000*e^5 + 2064384*e^4 - 157464*e^3 + 2304*e^2 - e) / 362880.
[ "2", "0", "6", "6", "6", "6", "6", "6", "6", "6", "6", "4", "7", "6", "3", "1", "8", "8", "0", "0", "6", "1", "4", "1", "6", "3", "0", "9", "1", "0", "5", "9", "7", "6", "6", "4", "6", "8", "6", "5", "6", "8", "6", "0", "8", "2", "1", "5", "4", "4", "7", "4", "2", "3", "8", "4", "1", "9", "2", "0", "9", "0", "6", "0", "0", "0", "7", "3", "8", "5", "3", "6", "8", "8", "3", "6", "1", "5", "8", "9", "8", "2", "5", "8", "2", "3", "4", "5" ]
[ "nonn", "cons", "easy" ]
13
2
1
[ "A001113", "A089087", "A089139", "A090142", "A090143", "A090611", "A379601", "A381673", "A381843", "A382020", "A382026" ]
null
Daniel Mondot, Mar 12 2025
2025-03-23T05:28:26
oeisdata/seq/A382/A382026.seq
5d55458e6a76d1ea1b494b9aec4a8ddc
A382027
Primes whose decimal digits are in ascending order and also parity alternating.
[ "2", "3", "5", "7", "23", "29", "47", "67", "89", "127", "149", "167", "347", "349", "367", "389", "569", "2347", "2389", "2789", "4567", "4789", "12347", "12569", "12589", "34589", "234589", "1234789", "1456789", "23456789" ]
[ "nonn", "base", "fini", "full" ]
18
1
1
[ "A030141", "A030144", "A052015", "A381158", "A382027" ]
null
Alois P. Heinz, Mar 12 2025
2025-03-20T10:31:36
oeisdata/seq/A382/A382027.seq
702783e2c44b9d606468aa698780951f
A382028
Lexicographically earliest sequence of positive integers such that a(n) is the length of the n-th run of consecutive, equal terms and no two runs have the same product.
[ "1", "2", "2", "3", "3", "2", "2", "2", "3", "3", "3", "4", "4", "5", "5", "6", "6", "4", "4", "4", "5", "5", "5", "6", "6", "6", "3", "3", "3", "3", "4", "4", "4", "4", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "3", "3", "3", "3", "3", "3", "5", "5", "5", "5", "6", "6", "6", "6", "7", "7", "7", "7", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "5", "5", "5", "5", "5", "5" ]
[ "nonn" ]
15
1
2
[ "A000002", "A331910", "A381894", "A382028" ]
null
Neal Gersh Tolunsky, Mar 12 2025
2025-03-29T10:45:50
oeisdata/seq/A382/A382028.seq
c0570a37218e7c8a70c5d95679ee988c
A382029
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^2)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "3", "31", "529", "12601", "385891", "14440567", "638576065", "32580927505", "1883889232291", "121742057314351", "8695278706372369", "680187946863332233", "57833833258995140803", "5310742450917819399751", "523793286672328763358721", "55223769332070053104438945", "6197871354601209094032190147" ]
[ "nonn" ]
18
0
3
[ "A000108", "A161629", "A212722", "A214688", "A214689", "A379690", "A382029", "A382030", "A382031", "A382042" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:18
oeisdata/seq/A382/A382029.seq
228ca3f097198703e340c509a4e1821c
A382030
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "3", "37", "817", "25741", "1053211", "52957297", "3157457185", "217695187801", "17036331544531", "1491702434847901", "144479729938558609", "15335923797225215653", "1770255543485671432555", "220776904683577075549801", "29582947262972619472787521", "4238424613351537181204589745", "646565304924896452410832170787" ]
[ "nonn" ]
19
0
3
[ "A001764", "A212722", "A382029", "A382030", "A382031", "A382043" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:15
oeisdata/seq/A382/A382030.seq
ec500d5d0079cc6841d62cc66635d69d
A382031
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "3", "43", "1177", "46681", "2419291", "154587427", "11735209585", "1031418915121", "102979800567091", "11510663862332251", "1423811747933017609", "193073662118499898633", "28479005472094048953355", "4539456019668776334683731", "777538096585429376795405281", "142419954152382631361835929185" ]
[ "nonn" ]
20
0
3
[ "A002293", "A212722", "A380513", "A382016", "A382029", "A382030", "A382031", "A382044" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:11
oeisdata/seq/A382/A382031.seq
6b34012203c231820853039ecd7c8b6f
A382032
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x))^2), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "5", "55", "937", "21741", "639841", "22839139", "958882289", "46304377849", "2528571710881", "154076164781991", "10364272238514217", "762867688235619877", "60989719558159065857", "5263030218009265964011", "487578723768665716788961", "48266847740986728218648433", "5084697384633390178057209793" ]
[ "nonn" ]
17
0
3
[ "A000108", "A161630", "A377553", "A382032", "A382033", "A382034", "A382036" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T08:59:13
oeisdata/seq/A382/A382032.seq
d5d0c0a49606b32c88d0dd7fa7032ef9
A382033
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "7", "109", "2653", "88261", "3731581", "191571493", "11576241769", "804996352873", "63324553740121", "5559962513556001", "539015912053933645", "57188111522488589293", "6591136171961660099509", "820029701725988751533341", "109537705061927547203868241", "15635869913619342121140932689" ]
[ "nonn" ]
18
0
3
[ "A001764", "A161630", "A377554", "A382032", "A382033", "A382034" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:17
oeisdata/seq/A382/A382033.seq
27951bccbcafc62e08635f32f83149b7
A382034
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "9", "181", "5713", "246881", "13570081", "906180997", "71250724833", "6448375469665", "660286026034561", "75472025139452261", "9525947428687403473", "1315935073971181422721", "197485196722573989608289", "31993978774204625549549221", "5565216938342017912128576961", "1034506012356981473110554574145" ]
[ "nonn" ]
16
0
3
[ "A002293", "A161630", "A377630", "A382032", "A382033", "A382034" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:21
oeisdata/seq/A382/A382034.seq
5b8b4bad367350ee9f120fcdb841f077
A382035
a(n) is the smallest prime q such that q + prime(n) is of form 10^k or 2*10^k, or 0 if no such prime exists.
[ "0", "7", "5", "3", "89", "7", "3", "181", "977", "71", "1999969", "163", "59", "157", "53", "47", "41", "139", "1933", "29", "127", "199921", "17", "11", "3", "999999999899", "97", "999999893", "19891", "887", "73", "9999999999999999999869", "863", "61", "9851", "1999999999849", "43", "37", "9833", "827", "821", "19", "809", "7", "3", "1801", "1789" ]
[ "nonn" ]
16
1
2
[ "A191474", "A382035" ]
null
Steven Lu, Mar 12 2025
2025-03-28T23:01:16
oeisdata/seq/A382/A382035.seq
14bbb6aae89eb9a50b0c232fbe942a7e
A382036
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)^2) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "7", "94", "1901", "51696", "1771267", "73317616", "3560476761", "198531343360", "12502959204671", "877829600807424", "67991178144166213", "5759309535250776064", "529665762441463234875", "52560256640090731902976", "5597859153748148214250673", "636915477940535101583130624", "77102760978489789146276986231" ]
[ "nonn" ]
20
0
3
[ "A000108", "A052873", "A377829", "A382032", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:05
oeisdata/seq/A382/A382036.seq
0dea8d42929c08d05b465fe51d9c32e8
A382037
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "9", "160", "4325", "157896", "7280077", "406085632", "26599741065", "2001864880000", "170236619802161", "16144762562002944", "1689534516295056301", "193403842876754728960", "24040636567791329323125", "3224829927677539092791296", "464325325579881390473331473", "71428455280041816247241637888" ]
[ "nonn" ]
19
0
3
[ "A001764", "A052873", "A377830", "A382033", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:27
oeisdata/seq/A382/A382037.seq
c6304112ec5dcc120ac407bfd7887fe3
A382038
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "11", "244", "8285", "381096", "22175167", "1562582848", "129381990201", "12313784396800", "1324663415429651", "158957183013686784", "21051725357219126869", "3050121640032545419264", "479928476696367747954375", "81499293517054315684642816", "14856515462975583258374526833", "2893604521320117995839047401472" ]
[ "nonn" ]
17
0
3
[ "A002293", "A052873", "A382034", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:34
oeisdata/seq/A382/A382038.seq
0df0ba1cbc7d4d9babd7d25d7ce7b2c5
A382039
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(3*x)) ).
[ "1", "1", "10", "147", "3252", "96165", "3569778", "159771717", "8378589096", "504057519945", "34227869887710", "2589957885708369", "216121694333055228", "19717935804239270013", "1952741002119283320714", "208629930642065967641805", "23919711023929511941080912", "2929406351866509691077727761" ]
[ "nonn" ]
14
0
3
[ "A213644", "A366233", "A379690", "A382039", "A382040" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:02
oeisdata/seq/A382/A382039.seq
f50bc37892f95e2e0b0f364388bbd474
A382040
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(4*x)) ).
[ "1", "1", "12", "198", "4912", "163120", "6796224", "341366704", "20088997632", "1356164492544", "103333898644480", "8773563043734016", "821474949840482304", "84093840447771701248", "9344359942839980900352", "1120159940123276849141760", "144096985208727744665288704", "19800296439825918648654561280" ]
[ "nonn" ]
11
0
3
[ "A213644", "A366234", "A379690", "A382031", "A382039", "A382040" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:51:59
oeisdata/seq/A382/A382040.seq
adfc6ecc2de3f52cdeb287b3622d00e2
A382041
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of four kinds.
[ "1", "0", "4", "0", "4", "14", "0", "4", "20", "40", "0", "4", "30", "70", "105", "0", "4", "36", "116", "196", "252", "0", "4", "46", "170", "350", "490", "574", "0", "4", "52", "236", "556", "896", "1120", "1240", "0", "4", "62", "310", "845", "1505", "2079", "2415", "2580", "0", "4", "68", "400", "1200", "2400", "3584", "4480", "4960", "5180", "0", "4", "78", "494", "1670", "3626", "5910", "7842", "9162", "9822", "10108" ]
[ "nonn", "tabl" ]
12
0
3
[ "A023003", "A026820", "A381895", "A382025", "A382041" ]
null
Peter Dolland, Mar 12 2025
2025-03-19T10:39:55
oeisdata/seq/A382/A382041.seq
3f10c23776c6baa1ae1305047040c1c7
A382042
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^3)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "3", "37", "733", "20181", "714541", "30903769", "1579206441", "93099946249", "6219777779641", "464382363698661", "38319628830696973", "3463058939163189133", "340172205752538636933", "36087128101110502864561", "4111807211977470782285521", "500807663307856030823859729", "64931674940413564774656214513" ]
[ "nonn" ]
19
0
3
[ "A000108", "A161629", "A212917", "A382029", "A382039", "A382042" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T08:58:57
oeisdata/seq/A382/A382042.seq
e6e57583b84e07c7c06d2c579797431a
A382043
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^3*exp(2*x*A(x)).
[ "1", "1", "10", "168", "4280", "146840", "6354432", "332467072", "20419261312", "1440559380096", "114820434103040", "10205253450850304", "1000815286620229632", "107355373421379825664", "12504295470535952613376", "1571670041412254073323520", "212035122185327799251468288", "30561822671438790519426154496" ]
[ "nonn" ]
9
0
3
[ "A364984", "A366232", "A379690", "A382030", "A382043", "A382044" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:11
oeisdata/seq/A382/A382043.seq
ed9f98c5e89182f6fb4845acb4512d30
A382044
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^4*exp(2*x*A(x)).
[ "1", "1", "12", "252", "8096", "352120", "19372512", "1290832480", "101078857728", "9098805892608", "925857411706880", "105098610198360064", "13167689873652178944", "1804954814456584081408", "268702350796640969736192", "43172786067215188056023040", "7446421094705349321120677888", "1372319952106065844255081037824" ]
[ "nonn" ]
10
0
3
[ "A365175", "A366232", "A379690", "A382031", "A382043", "A382044" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:07
oeisdata/seq/A382/A382044.seq
1a16412d54d4fe0741222a45d1834055