sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-28 00:58:08
filename
stringlengths
29
29
hash
stringlengths
32
32
A381730
Number of minimum connected dominating sets in the n X n grid graph.
[ "1", "4", "2", "16", "126", "24", "800", "16288", "16", "87216", "3554000", "16", "13400336", "882342944", "16", "2376303680" ]
[ "nonn", "more" ]
21
1
2
[ "A287690", "A347632", "A369692", "A381474", "A381730" ]
null
Eric W. Weisstein, Mar 05 2025
2025-03-21T14:39:32
oeisdata/seq/A381/A381730.seq
bdbe4481be2bf82f6f207e314cf3d64c
A381731
a(n) is the least number k with squarefree neighbors such that the number of non-unitary divisors of k (A048105) is equal to n, or 0 if no such k exists.
[ "2", "4", "12", "16", "32", "36", "112", "256", "72", "0", "180", "144", "216", "16384", "768", "65536", "432", "1600", "3072", "900", "864", "1296", "720", "12544", "1080", "67108864", "2592", "268435456", "1440", "9216", "196608", "5184", "2160", "17179869184", "2880", "36864", "10368", "3600", "6300" ]
[ "nonn" ]
28
0
1
[ "A048105", "A280892", "A309181", "A381731" ]
null
Juri-Stepan Gerasimov, Mar 05 2025
2025-03-25T22:34:41
oeisdata/seq/A381/A381731.seq
cc526df507a75d09f6651c7ba3a687f8
A381732
Proceeding from left to right, between any two consecutive digits (d_i, d_i+1) of an integer k, write down apart the lacking consecutive digits, in increasing order if d_i <d_i+1 or decreasing order if d_i>d_i+1. If abs(d_i - d_i+1) = 0 or 1 no digit is added. Sequence lists integers k that divide such resulting numbers.
[ "27", "737", "909", "1845", "1912", "7078", "27412", "90009", "870129", "990099", "6852899", "9090909", "17388261", "70168376", "70787078", "96096078", "96707298", "162533711", "358006673", "737737737", "1050889491", "2238028254", "3281718034", "4249370147", "9009009009", "11819327599", "12178217823", "13851266943", "18768863945" ]
[ "nonn", "base" ]
23
1
1
null
null
Paolo P. Lava, Mar 05 2025
2025-03-29T19:08:42
oeisdata/seq/A381/A381732.seq
a69ec372ed838102e4b0378e053a5c4c
A381733
Number of divisors d of n such that 2^omega(n + d) = tau(n + d), where omega = A001221 and tau = A000005.
[ "1", "1", "1", "2", "2", "1", "1", "1", "1", "2", "1", "3", "2", "2", "1", "1", "1", "2", "1", "3", "2", "2", "1", "2", "2", "1", "1", "4", "2", "3", "1", "2", "2", "2", "2", "4", "2", "2", "2", "2", "2", "1", "1", "3", "1", "2", "1", "1", "0", "2", "1", "3", "1", "2", "2", "3", "2", "2", "1", "5", "2", "1", "2", "2", "4", "3", "1", "4", "2", "3", "1", "3", "2", "1", "1", "4", "2", "2", "1", "2", "1", "2", "1", "5", "3", "2", "1", "2", "1", "4", "1", "4", "2", "2", "2", "2", "1", "1", "2", "4" ]
[ "nonn" ]
9
1
4
[ "A000005", "A001221", "A005117", "A381136", "A381138", "A381733" ]
null
Juri-Stepan Gerasimov, Mar 05 2025
2025-03-15T04:33:10
oeisdata/seq/A381/A381733.seq
2069d05ade3b2a3cd67e4258466b23c0
A381734
Population of elementary triangular automaton rule 190 at generation n, starting from a lone 1 cell at generation 0.
[ "1", "4", "10", "19", "28", "37", "58", "73", "88", "115", "136", "163", "178", "247", "280", "307", "334", "391", "400", "463", "526", "595", "622", "679", "754", "811", "862", "925", "1036", "1057", "1168", "1249", "1318", "1321", "1468", "1531", "1618", "1723", "1840", "1939", "2032", "2155", "2230", "2323", "2572", "2617", "2722", "2785", "2926", "2935" ]
[ "nonn" ]
11
0
2
[ "A372581", "A380012", "A380670", "A381734", "A381735" ]
null
Paul Cousin, Mar 05 2025
2025-03-11T13:18:56
oeisdata/seq/A381/A381734.seq
ae6b3c100677297c1dcea11fad61c3c2
A381735
Third center column of elementary triangular automaton rule 190, starting from a lone 1 cell.
[ "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn" ]
10
0
null
[ "A380173", "A380668", "A381734", "A381735" ]
null
Paul Cousin, Mar 05 2025
2025-04-04T21:24:56
oeisdata/seq/A381/A381735.seq
820656321929e35edddd969393af7d09
A381736
Integers k = p*q*r, where p < q < r are distinct primes and p*q > r.
[ "30", "70", "105", "154", "165", "182", "195", "231", "273", "286", "357", "374", "385", "399", "418", "429", "442", "455", "494", "561", "595", "598", "627", "646", "663", "665", "715", "741", "759", "782", "805", "874", "897", "935", "957", "969", "986", "1001", "1015", "1023", "1045", "1054", "1085", "1102", "1105", "1131", "1173", "1178", "1209" ]
[ "nonn", "changed" ]
45
1
1
[ "A007304", "A164596", "A381736", "A382022" ]
null
Matthew Goers, Mar 05 2025
2025-04-22T06:32:24
oeisdata/seq/A381/A381736.seq
e652b5d11e35efcbad8c34e839ea895b
A381737
Orders k of Hermite polynomials whose maximal coefficient in absolute value appears twice.
[ "8", "13", "34", "43", "76", "89", "134", "151", "208", "229", "298", "323", "404", "433", "526", "559", "664", "701", "818", "859", "988", "1033", "1174", "1223", "1376", "1429", "1594", "1651", "1828", "1889", "2078", "2143", "2344", "2413", "2626", "2699", "2924", "3001", "3238", "3319", "3568", "3653", "3914", "4003", "4276", "4369", "4654", "4751", "5048" ]
[ "nonn" ]
28
1
1
[ "A060821", "A277281", "A381524", "A381737" ]
null
Mike Sheppard, Mar 05 2025
2025-03-16T18:11:54
oeisdata/seq/A381/A381737.seq
c94c1a0e223930009dd5836c5be14f7f
A381738
Numbers k such that k^2 is abundant.
[ "6", "10", "12", "14", "18", "20", "24", "28", "30", "36", "40", "42", "44", "48", "50", "52", "54", "56", "60", "66", "68", "70", "72", "76", "78", "80", "84", "88", "90", "92", "96", "98", "100", "102", "104", "105", "108", "110", "112", "114", "116", "120", "124", "126", "130", "132", "136", "138", "140", "144", "150", "152", "154", "156", "160", "162", "168", "170", "174" ]
[ "nonn", "easy" ]
12
1
1
[ "A005101", "A063734", "A174830", "A334166", "A363171", "A381738", "A381739", "A381740", "A381741", "A381742" ]
null
Amiram Eldar, Mar 05 2025
2025-03-06T01:43:56
oeisdata/seq/A381/A381738.seq
50fddf5170ca76a44d921768ac95ebce
A381739
Number k such that k^2 is abundant, and d^2 is nonabundant for any proper divisor d of k.
[ "6", "10", "14", "44", "52", "68", "76", "92", "105", "116", "124", "286", "296", "328", "344", "374", "376", "418", "424", "442", "472", "488", "495", "506", "536", "568", "584", "585", "632", "664", "712", "776", "808", "824", "856", "872", "904", "1016", "2096", "2145", "2192", "2224", "2384", "2416", "2512", "2608", "2672", "2768", "2805", "2864", "2896", "3056" ]
[ "nonn", "easy" ]
9
1
1
[ "A005101", "A263837", "A381738", "A381739", "A381741" ]
null
Amiram Eldar, Mar 05 2025
2025-03-06T01:45:38
oeisdata/seq/A381/A381739.seq
e7abec0aab31b7746af1474e64597418
A381740
Squarefree numbers k such that k^2 is abundant.
[ "6", "10", "14", "30", "42", "66", "70", "78", "102", "105", "110", "114", "130", "138", "154", "170", "174", "182", "186", "190", "210", "222", "230", "238", "246", "258", "266", "282", "286", "290", "310", "318", "322", "330", "354", "366", "370", "374", "390", "402", "406", "410", "418", "426", "430", "434", "438", "442", "462", "470", "474", "498", "506", "510" ]
[ "nonn", "easy" ]
10
1
1
[ "A005117", "A013661", "A087248", "A381738", "A381740", "A381741" ]
null
Amiram Eldar, Mar 05 2025
2025-03-06T01:45:17
oeisdata/seq/A381/A381740.seq
9fd649b94742cd760eab607760375eab
A381741
Squarefree numbers k such that k^2 is abundant, and d^2 is nonabundant for any proper divisor d of k.
[ "6", "10", "14", "105", "286", "374", "418", "442", "506", "2145", "2805", "3135", "3315", "3705", "3795", "4485", "4785", "4845", "5115", "5655", "6045", "6105", "6765", "7095", "7755", "8745", "9735", "10065", "11362", "14326", "14858", "15314", "17342", "18278", "18538", "18734", "19778", "20026", "20254", "21242", "22126", "22678", "23218" ]
[ "nonn", "easy" ]
9
1
1
[ "A005101", "A005117", "A263837", "A381738", "A381739", "A381740", "A381741" ]
null
Amiram Eldar, Mar 06 2025
2025-03-06T01:44:40
oeisdata/seq/A381/A381741.seq
c4fa663e07188b9bb39f0d9fd912633c
A381742
Numbers k such that k^2 is abundant but d*k is nonabundant for any proper divisor d of k.
[ "14", "124", "585", "1016", "16748", "32085", "33892", "37882", "39962", "41925", "46665", "121605", "134589", "181305", "212175", "388455", "495465", "522488", "524224", "544065", "839865", "1061565", "1152921", "1165515", "1243275", "1247103", "1335411", "1676829", "1943638", "2151075", "2290869", "2478075", "2625514", "2673998" ]
[ "nonn" ]
9
1
1
[ "A005101", "A091191", "A174265", "A263837", "A341358", "A379949", "A379950", "A381738", "A381742" ]
null
Amiram Eldar, Mar 06 2025
2025-03-06T01:44:06
oeisdata/seq/A381/A381742.seq
d95a5722de98dfbe47eba01a06364f7e
A381743
The number of divisors d of n such that d*n is abundant.
[ "0", "0", "0", "0", "0", "3", "0", "0", "0", "2", "0", "6", "0", "1", "0", "0", "0", "6", "0", "6", "0", "0", "0", "8", "0", "0", "0", "5", "0", "8", "0", "0", "0", "0", "0", "9", "0", "0", "0", "8", "0", "8", "0", "4", "0", "0", "0", "10", "0", "3", "0", "4", "0", "8", "0", "8", "0", "0", "0", "12", "0", "0", "0", "0", "0", "8", "0", "2", "0", "8", "0", "12", "0", "0", "0", "2", "0", "8", "0", "10", "0", "0", "0", "12", "0", "0" ]
[ "nonn", "easy" ]
10
1
6
[ "A000005", "A000396", "A002182", "A005101", "A341358", "A381738", "A381742", "A381743" ]
null
Amiram Eldar, Mar 06 2025
2025-03-06T01:54:44
oeisdata/seq/A381/A381743.seq
94900797ec47b33d421ad583b728fb04
A381744
Expansion of exp( Sum_{k>=1} binomial(6*k-1,2*k) * x^k/k ).
[ "1", "10", "215", "5942", "186111", "6283192", "222992692", "8201608382", "309834609743", "11950890428170", "468707758663887", "18634632264615272", "749325132218313540", "30422303269317412048", "1245346665979469486376", "51343805279989437688334", "2130090659402456357279919", "88858984785475871013971710" ]
[ "nonn", "easy" ]
19
0
2
[ "A006013", "A079489", "A182960", "A381744", "A381745", "A381746" ]
null
Seiichi Manyama, Mar 05 2025
2025-03-06T08:15:55
oeisdata/seq/A381/A381744.seq
f62666fe7e1aa7b1e2be44e19fd31d54
A381745
Expansion of exp( Sum_{k>=1} binomial(8*k-1,2*k) * x^k/k ).
[ "1", "21", "903", "49525", "3070308", "204928371", "14369906538", "1043861319189", "77866470852108", "5929621690613108", "459076176165983247", "36026517938705145267", "2859318461620989381900", "229114879928544260792946", "18509862380800289696106372", "1506048000721264678984095445", "123303480420582227597300406588" ]
[ "nonn", "easy" ]
20
0
2
[ "A006632", "A079489", "A381744", "A381745", "A381746", "A381751" ]
null
Seiichi Manyama, Mar 05 2025
2025-03-06T08:44:05
oeisdata/seq/A381/A381745.seq
73705129c760f9d34482b1da43d5b87c
A381746
Expansion of exp( Sum_{k>=1} binomial(10*k-1,2*k) * x^k/k ).
[ "1", "36", "2586", "235884", "24284907", "2689924444", "312907382800", "37699275223260", "4663450108073401", "588854988193808392", "75589352418472567340", "9834912295258236849604", "1294095251234713917535805", "171909332777340128148714400", "23024035140764003881788203616" ]
[ "nonn", "easy" ]
19
0
2
[ "A079489", "A118971", "A381744", "A381745", "A381746", "A381752" ]
null
Seiichi Manyama, Mar 05 2025
2025-03-06T08:44:01
oeisdata/seq/A381/A381746.seq
b6f8c641a0eae5b21fd30b11c38e2f42
A381747
a(n) is the number of solutions to tau(x) + tau(n-x) = tau(n) where 1 <= x <= floor(n/2).
[ "0", "1", "0", "1", "0", "1", "0", "1", "0", "3", "0", "1", "0", "2", "1", "2", "0", "2", "0", "1", "1", "3", "0", "1", "0", "4", "0", "3", "0", "3", "0", "3", "1", "4", "0", "1", "0", "2", "1", "2", "0", "3", "0", "5", "6", "4", "0", "0", "0", "5", "0", "5", "0", "5", "1", "4", "0", "4", "0", "2", "0", "3", "6", "4", "0", "5", "0", "8", "1", "5", "0", "3", "0", "5", "8", "8", "0", "5", "0", "3", "0", "5", "0", "3", "1", "5", "0", "6" ]
[ "nonn", "easy", "changed" ]
17
1
10
[ "A000005", "A000430", "A211225", "A381747", "A382074" ]
null
Felix Huber, Mar 30 2025
2025-04-26T08:27:25
oeisdata/seq/A381/A381747.seq
91b1c45a24a844daf6ac319a63550ae3
A381748
a(n) is the number of primes (counted with multiplicity) in row n of A051599.
[ "1", "2", "2", "4", "2", "4", "2", "6", "2", "4", "4", "4", "4", "4", "2", "2", "2", "2", "2", "6", "2", "4", "2", "2", "2", "4", "4", "6", "2", "8", "6", "6", "2", "2", "2", "2", "4", "4", "2", "2", "2", "2", "4", "2", "2", "4", "2", "6", "2", "4", "4", "8", "2", "4", "4", "2", "2", "4", "4", "2", "2", "2", "2", "10", "2", "2", "4", "4", "2", "4", "2", "2", "2", "2", "2", "2", "4", "2", "4" ]
[ "nonn" ]
18
0
2
[ "A051599", "A381748" ]
null
Vladimir Igorevich Lukyanchikov, Mar 06 2025
2025-03-16T21:37:08
oeisdata/seq/A381/A381748.seq
4d92c2ee62dd782718dc872282b632a9
A381749
Triangle read by rows: T(n,k), n >= k, is the maximum number of kings on a n X k chessboard so that no king attacks more than one other king.
[ "1", "2", "2", "2", "4", "4", "3", "4", "6", "8", "4", "6", "8", "10", "12", "4", "6", "8", "11", "14", "16", "5", "8", "10", "13", "16", "18", "21", "6", "8", "12", "14", "18", "20", "24", "26", "6", "10", "12", "16", "20", "22", "26", "30", "33", "7", "10", "14", "18", "22", "25", "29", "32", "36", "40", "8", "12", "16", "20", "24", "28", "32", "36", "40", "44", "48", "8", "12", "16", "21", "26" ]
[ "nonn", "tabl", "easy" ]
21
1
2
[ "A260090", "A381749" ]
null
Yifan Xie, Mar 06 2025
2025-03-22T17:16:27
oeisdata/seq/A381/A381749.seq
4c0bd75886e4732a79f87610ed30369d
A381750
Nonprime-powers k such that, for any prime p dividing k and m = 1+floor(log k/log p), rad(p^m (mod k)) divides k, where rad = A007947.
[ "6", "12", "14", "24", "39", "56", "62", "112", "120", "155", "254", "992", "1984", "3279", "5219", "16256", "16382", "19607", "32512", "70643", "97655", "208919", "262142", "363023", "402233", "712979", "1040603", "1048574", "1508597", "2265383", "2391483", "4685519", "5207819", "6728903", "21243689", "25239899", "56328959", "61035155", "67100672" ]
[ "nonn" ]
20
1
1
[ "A000961", "A007947", "A024619", "A139257", "A381525", "A381750", "A381799" ]
null
Michael De Vlieger, Mar 27 2025
2025-04-07T10:08:12
oeisdata/seq/A381/A381750.seq
b2bb01a9f6fbbdf81aa610178ea537d4
A381751
Expansion of exp( Sum_{k>=1} binomial(8*k-1,2*k-1) * x^k/k ).
[ "1", "7", "252", "12866", "767460", "50005591", "3449225652", "247579862356", "18301102679444", "1383742325041292", "106516121515030768", "8319491960857739258", "657680525420544788060", "52522142073165048614002", "4230907373618147894630904", "343379827862952363210331624", "28051180121294369965012932980" ]
[ "nonn", "easy" ]
12
0
2
[ "A006013", "A079489", "A182960", "A381745", "A381751", "A381752", "A381753", "A381757", "A381758" ]
null
Seiichi Manyama, Mar 06 2025
2025-03-06T08:27:50
oeisdata/seq/A381/A381751.seq
a264d42596cb175022faed48b8d87949
A381752
Expansion of exp( Sum_{k>=1} binomial(10*k-1,2*k-1) * x^k/k ).
[ "1", "9", "525", "44067", "4338765", "467396050", "53346810991", "6339179481480", "775994115988525", "97182642466115275", "12392633418043399130", "1603634650155295053250", "210047857493659698690575", "27795006677556725604853840", "3710220786174094422360657000", "498998879378383167317202612400" ]
[ "nonn", "easy" ]
9
0
2
[ "A006013", "A079489", "A182960", "A381746", "A381751", "A381752", "A381753", "A381757", "A381758" ]
null
Seiichi Manyama, Mar 06 2025
2025-03-06T08:27:54
oeisdata/seq/A381/A381752.seq
748528136c7cfe422889c6ade7c0af9c
A381753
Expansion of exp( Sum_{k>=1} binomial(5*k-1,2*k-1) * x^k/k ).
[ "1", "4", "50", "846", "16495", "349240", "7803823", "181135830", "4324897697", "105543188190", "2620784850325", "66005699547352", "1682046970846570", "43291586055360034", "1123707191010320955", "29382536610737191930", "773229801368332554273", "20463493681189771623960" ]
[ "nonn", "easy" ]
14
0
2
[ "A006013", "A060941", "A079489", "A182960", "A381751", "A381752", "A381753", "A381757", "A381758" ]
null
Seiichi Manyama, Mar 06 2025
2025-03-07T10:47:16
oeisdata/seq/A381/A381753.seq
caaa742f2346449c1b7c6db3aa727ac0
A381754
Numbers k such that k and 3*k have the same number of zeros in their binary expansions.
[ "0", "1", "2", "4", "8", "16", "19", "32", "35", "38", "39", "53", "64", "67", "70", "71", "76", "78", "79", "101", "105", "106", "117", "128", "131", "134", "135", "140", "142", "143", "152", "156", "158", "159", "197", "201", "202", "209", "210", "212", "229", "233", "234", "245", "256", "259", "262", "263", "268", "270", "271", "280", "284", "286", "287", "301", "304" ]
[ "nonn", "base", "easy" ]
30
1
3
[ "A023416", "A077459", "A381754", "A381934" ]
null
Barak Manos, Mar 06 2025
2025-04-07T09:50:05
oeisdata/seq/A381/A381754.seq
2d91cf403437dfe2bc69e79efee901dd
A381755
Numbers of minimum connected dominating sets in the n-Pell graph.
[ "2", "2", "3", "46" ]
[ "nonn", "more" ]
4
1
1
null
null
Eric W. Weisstein, Mar 06 2025
2025-03-06T08:28:18
oeisdata/seq/A381/A381755.seq
58ff031207ef4dba63ac32e9eca49fa7
A381756
Decimal expansion of the smallest angular distance between two vertices of the equilateral square antiprism measured along the circumscribing sphere.
[ "1", "3", "0", "6", "5", "2", "7", "1", "6", "1", "7", "1", "7", "4", "3", "7", "2", "7", "5", "5", "3", "4", "1", "6", "4", "6", "9", "0", "5", "9", "8", "6", "9", "4", "7", "4", "4", "1", "6", "2", "8", "6", "1", "3", "9", "0", "1", "9", "9", "9", "2", "7", "8", "9", "0", "3", "1", "9", "6", "8", "8", "6", "5", "8", "5", "8", "9", "7", "4", "5", "3", "6", "9", "4", "0", "3", "0", "6", "5", "2", "9", "1", "1", "4", "4", "9", "1", "2", "9", "1", "0" ]
[ "nonn", "cons" ]
6
1
2
[ "A086178", "A381756" ]
null
R. J. Mathar, Mar 06 2025
2025-03-06T08:27:46
oeisdata/seq/A381/A381756.seq
6c8473bc4dec56714b83bd088988fdc4
A381757
Expansion of exp( Sum_{k>=1} binomial(7*k-1,2*k-1) * x^k/k ).
[ "1", "6", "161", "6062", "265868", "12720904", "643915209", "33905228350", "1838102210977", "101910583801012", "5751779249830131", "329359930638541776", "19087504000780665541", "1117418973753045781944", "65982722733895652916539", "3925378032146863676341770", "235048328495265879957413946" ]
[ "nonn", "easy" ]
9
0
2
[ "A006013", "A079489", "A182960", "A300386", "A381751", "A381752", "A381753", "A381757", "A381758" ]
null
Seiichi Manyama, Mar 06 2025
2025-03-06T08:28:03
oeisdata/seq/A381/A381757.seq
f7e583030319b6043f02a8c072002989
A381758
Expansion of exp( Sum_{k>=1} binomial(9*k-1,2*k-1) * x^k/k ).
[ "1", "8", "372", "24732", "1925394", "163883548", "14773987638", "1386341339430", "133994232166575", "13248555929274096", "1333732204895318366", "136243562694021684648", "14087033746990654649067", "1471456489458490198994856", "155042502964505871862313879", "16459391575059417875255359878" ]
[ "nonn", "easy" ]
11
0
2
[ "A006013", "A079489", "A182960", "A300387", "A381751", "A381752", "A381753", "A381757", "A381758" ]
null
Seiichi Manyama, Mar 06 2025
2025-03-06T08:28:09
oeisdata/seq/A381/A381758.seq
62046a2f19977a1eb6f2ba4534cd77aa
A381759
Number of words of length 2n+1 with one 0 entry and two entries of each of 1..n so that there are exactly k numbers between two equal k's and so that the first element does not exceed the last.
[ "1", "1", "3", "5", "11", "38", "182", "938", "4158", "23384", "160104", "1063772", "6987380", "53746000", "479965824", "4182552416", "35963592624", "351432650816", "3860219984448", "41614300175968" ]
[ "nonn", "more" ]
21
1
3
[ "A014552", "A176127", "A381759", "A381760" ]
null
Zhao Hui Du, Mar 06 2025
2025-03-15T04:21:36
oeisdata/seq/A381/A381759.seq
7f4919a5f995b25609c789601e87cff1
A381760
Number of words of length 2n+1 with one 0 entry and two entries of each of 1..n so that there are exactly k numbers between two equal k's and so that the first element is not 0 and also does not exceed the last.
[ "1", "1", "1", "3", "11", "38", "130", "638", "4158", "23384", "124520", "847484", "6987380", "53746000", "400346544", "3529108816", "35963592624", "351432650816", "3346590201888", "36341624453568" ]
[ "nonn", "more" ]
21
1
4
[ "A014552", "A176127", "A381759", "A381760" ]
null
Zhao Hui Du, Mar 06 2025
2025-03-15T04:22:11
oeisdata/seq/A381/A381760.seq
ab820898c815fc958f242cb4caa2a9c2
A381761
Number of minimum connected dominating sets in the n-Keller graph.
[ "0", "40", "80816", "42002944" ]
[ "nonn", "more" ]
4
1
2
null
null
Eric W. Weisstein, Mar 06 2025
2025-03-06T09:09:48
oeisdata/seq/A381/A381761.seq
d26cb41d312f4fd4daa0cfa2125eb63f
A381762
Numbers k such that S(k) sets a new record, where S(k) denotes the sum of the reciprocals of odd elements in the Collatz sequence which starts at k.
[ "1", "3", "7", "9", "559", "745", "993" ]
[ "nonn", "more" ]
19
1
2
[ "A127789", "A304174", "A381762" ]
null
Barak Manos, Mar 06 2025
2025-03-15T12:28:00
oeisdata/seq/A381/A381762.seq
3c6d25cfd636cb2a98bef6c9db5d5d06
A381763
a(n) is the greatest k >= 0 such that Omega(n-i) = Omega(n+i) for 1 <= i <= k, where Omega = A001222.
[ "0", "0", "1", "2", "1", "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "0", "1", "1", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "2", "0", "2", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "0", "0", "0", "0", "0", "3", "0", "0", "2", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0" ]
[ "nonn" ]
7
2
4
[ "A001222", "A381763", "A381768" ]
null
Robert Israel, Mar 06 2025
2025-03-07T06:29:53
oeisdata/seq/A381/A381763.seq
c10dababdb44a041ff6ac222996270b9
A381764
Nearest integer not equal to n with the same Hamming weight (number of 1 bits) as n.
[ "2", "1", "5", "2", "6", "5", "11", "4", "10", "9", "13", "10", "14", "13", "23", "8", "18", "17", "21", "18", "22", "21", "27", "20", "26", "25", "29", "26", "30", "29", "47", "16", "34", "33", "37", "34", "38", "37", "43", "36", "42", "41", "45", "42", "46", "45", "55", "40", "50", "49", "53", "50", "54", "53", "59", "52", "58", "57", "61", "58", "62", "61", "95", "32", "66", "65", "69", "66" ]
[ "nonn" ]
35
1
1
[ "A000120", "A055010", "A057168", "A243109", "A381764" ]
null
Chai Wah Wu, Mar 06 2025
2025-04-02T01:56:06
oeisdata/seq/A381/A381764.seq
c267eddfcde846f4927d6c787401b096
A381765
Number of connected simple graphs on n unlabeled vertices whose degree sequence is consecutive.
[ "1", "1", "1", "2", "5", "16", "75", "544", "6920", "159228", "6961507", "577826609", "90529308665" ]
[ "nonn", "more" ]
41
0
4
[ "A001349", "A005177", "A381586", "A381765" ]
null
John P. McSorley, Mar 25 2025
2025-04-02T03:56:04
oeisdata/seq/A381/A381765.seq
fbb491c4d02b5f619ae78943e862a5e0
A381766
Starting from the n-th prime, a(n) is the minimum number > 1 of consecutive primes whose sum is the average of a twin prime pair.
[ "57", "180", "2", "2", "4", "2", "8", "2", "100", "2", "16", "18", "26", "12", "160", "4", "70", "70", "2", "12", "6", "4", "76", "202", "2", "4", "4", "10", "24", "2", "14", "18", "22", "8", "8", "48", "4", "72", "132", "224", "180", "142", "10", "96", "24", "10", "24", "124", "76", "2", "164", "34", "196", "120", "34", "24", "128", "118", "8", "6", "34", "2", "2", "8", "116", "18", "552", "6" ]
[ "nonn" ]
47
1
1
[ "A014574", "A065091", "A381766", "A381868" ]
null
Abhiram R Devesh, Mar 08 2025
2025-04-02T13:21:04
oeisdata/seq/A381/A381766.seq
ebed093123239a392fc70c3baaf7035b
A381767
a(n) = ceiling(n^(n/(n-1))) with a(1)=1.
[ "1", "4", "6", "7", "8", "9", "10", "11", "12", "13", "14", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71" ]
[ "nonn" ]
35
1
2
[ "A381767", "A382131" ]
null
Mike Sheppard, Mar 06 2025
2025-04-05T03:05:37
oeisdata/seq/A381/A381767.seq
68787eb384b590972e2a2d9a8b247c29
A381768
a(n) is the least positive number k for which A381763(k) = n.
[ "1", "4", "5", "12", "604", "1338", "432", "11700", "421098" ]
[ "nonn", "more" ]
5
0
2
[ "A001222", "A381763", "A381768" ]
null
Zak Seidov and Robert Israel, Mar 06 2025
2025-03-07T06:31:10
oeisdata/seq/A381/A381768.seq
0456ebcd61f465d7e5c7745b3c13e3a1
A381769
a(n) is the area of the largest rectangle that can be formed from n sticks whose lengths are 1, 2, ..., n.
[ "0", "0", "0", "0", "3", "12", "25", "49", "81", "121", "182", "272", "380", "506", "676", "900", "1156", "1444", "1806", "2256", "2756", "3306", "3969", "4761", "5625", "6561", "7656", "8930", "10302", "11772", "13456", "15376", "17424", "19600", "22052", "24806", "27722", "30800", "34225", "38025", "42025", "46225", "50850", "55932", "61256", "66822", "72900", "79524", "86436", "93636" ]
[ "nonn", "easy", "nice" ]
77
0
5
null
null
Ali Sada and Daniel Mondot, Mar 06 2025
2025-03-12T07:47:51
oeisdata/seq/A381/A381769.seq
58d86166ab57a0beb0c5881a9d2e5d44
A381770
a(n) is the least k > 0 such that the factorial base expansion of k*n has digits in nonincreasing order.
[ "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "2", "2", "1", "5", "1", "1", "1", "1", "1", "3", "1", "1", "1", "1", "1", "6", "3", "2", "2", "3", "1", "2", "1", "1", "3", "3", "2", "3", "3", "2", "2", "14", "2", "2", "2", "2", "2", "2", "1", "6", "3", "2", "2", "8", "1", "2", "1", "1", "2", "2", "1", "5", "1", "1", "1", "1", "4", "8", "4", "6", "6", "8", "1", "6", "4", "2", "2", "9", "1", "8", "1", "1", "7", "8", "1", "5", "1" ]
[ "nonn", "base" ]
10
0
8
[ "A223475", "A351987", "A381770", "A381771" ]
null
Rémy Sigrist, Mar 07 2025
2025-03-10T11:11:23
oeisdata/seq/A381/A381770.seq
728478ae6ce89e7216fa02aefa35481a
A381771
For any n > 0, a(n) is the least positive multiple of n whose factorial base expansion has digits in nonincreasing order; a(0) = 0.
[ "0", "1", "2", "3", "4", "5", "6", "14", "8", "9", "20", "22", "12", "65", "14", "15", "16", "17", "18", "57", "20", "21", "22", "23", "24", "150", "78", "54", "56", "87", "30", "62", "32", "33", "102", "105", "72", "111", "114", "78", "80", "574", "84", "86", "88", "90", "92", "94", "48", "294", "150", "102", "104", "424", "54", "110", "56", "57", "116", "118", "60", "305", "62", "63" ]
[ "nonn", "base" ]
10
0
3
[ "A223474", "A351987", "A381770", "A381771" ]
null
Rémy Sigrist, Mar 07 2025
2025-03-10T11:11:27
oeisdata/seq/A381/A381771.seq
502a06d225c645b2863896beeb91fb5c
A381772
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
[ "1", "2", "11", "83", "727", "6940", "70058", "735502", "7949031", "87851819", "988307647", "11279719247", "130286197186", "1520108988221", "17889102534329", "212095541328931", "2531001870925559", "30376237591559863", "366417240105654587", "4440000077166319993", "54020150448778625847", "659665548217188211288" ]
[ "nonn" ]
12
0
2
[ "A000108", "A007852", "A054727", "A060941", "A069271", "A274052", "A381772", "A381773", "A381774", "A381775", "A381780" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:48:52
oeisdata/seq/A381/A381772.seq
94a0ca5d964633921140567a0a2fb3d5
A381773
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.
[ "1", "2", "15", "157", "1913", "25427", "357546", "5229980", "78765793", "1213181593", "19021747383", "302595975502", "4871780511910", "79232327379407", "1299767617080662", "21481625997258747", "357350097625089497", "5978708468143961925", "100537111802285439375", "1698302173359384479307" ]
[ "nonn" ]
13
0
2
[ "A000108", "A054727", "A060941", "A212071", "A234461", "A381772", "A381773", "A381774", "A381775", "A381779", "A381780", "A381782", "A381783", "A381786" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:48:57
oeisdata/seq/A381/A381773.seq
c955ee20a23ab26c186f870ee6738831
A381774
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
[ "1", "2", "19", "255", "3995", "68344", "1237526", "23316295", "452385355", "8977539540", "181374792040", "3718002102747", "77138798530854", "1616741658725930", "34179703551312530", "728019711835819493", "15608122038151106507", "336551042553481867640", "7293934071668996347055" ]
[ "nonn" ]
8
0
2
[ "A000108", "A054727", "A060941", "A381772", "A381773", "A381774", "A381775" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:49:01
oeisdata/seq/A381/A381774.seq
bf999ad1ab077602e7bed8affcca432f
A381775
Expansion of ( (1/x) * Series_Reversion( x/((1+x) * C(x))^6 ) )^(1/6), where C(x) is the g.f. of A000108.
[ "1", "2", "27", "523", "11871", "294668", "7747698", "212054604", "5978347887", "172421233231", "5063192676597", "150872475295522", "4550458484780442", "138652322209300991", "4261638256558924407", "131973650298641750844", "4113788296015093994719", "128973000885015536107140" ]
[ "nonn" ]
12
0
2
[ "A000108", "A054727", "A060941", "A381772", "A381773", "A381774", "A381775" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-08T02:30:52
oeisdata/seq/A381/A381775.seq
4be212dc44fe9287ff8da2be8130ff44
A381776
Empty polygon numbers: a(n) is the smallest number of points in the plane (with no three of them collinear) such that an empty convex n-gon cannot be avoided.
[ "3", "5", "10", "30" ]
[ "nonn", "bref", "fini", "full", "nice" ]
22
3
1
[ "A003182", "A003186", "A330333", "A348260", "A381776" ]
null
Paolo Xausa, Mar 07 2025
2025-03-07T08:22:56
oeisdata/seq/A381/A381776.seq
6779e8362b608d818c26bfcbba0e50f5
A381777
Self-convolution of A001190.
[ "0", "0", "1", "2", "3", "6", "11", "22", "44", "92", "193", "414", "896", "1966", "4347", "9700", "21787", "49262", "111976", "255824", "586996", "765220", "1187129", "2186146", "3966763", "7642844", "14733649", "29037924", "57062745", "113051998", "222948526", "438614648", "853410655", "1637949306", "3069032471", "5548974602", "9438433065" ]
[ "nonn", "easy" ]
5
0
4
[ "A001190", "A381777" ]
null
Stefano Spezia, Mar 07 2025
2025-03-07T09:05:14
oeisdata/seq/A381/A381777.seq
de260e7d6f957e1a6e7730362df8467c
A381778
G.f. A(x) satisfies A(x) = (1 + x*A(x)) * C(x*A(x)^2), where C(x) is the g.f. of A000108.
[ "1", "2", "9", "60", "474", "4105", "37681", "360122", "3545320", "35705553", "366126614", "3809497971", "40119258081", "426829897847", "4580629916321", "49527776299522", "539025763347730", "5900193301962178", "64913644702760248", "717433047054489969", "7961616716665723173", "88679610762886209459" ]
[ "nonn" ]
7
0
2
[ "A000108", "A054727", "A381778", "A381779" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:44
oeisdata/seq/A381/A381778.seq
0ea1be9bb26b0db6efa1b00c543c782f
A381779
G.f. A(x) satisfies A(x) = (1 + x*A(x)) * C(x*A(x)^3), where C(x) is the g.f. of A000108.
[ "1", "2", "11", "95", "977", "11028", "132029", "1646428", "21155077", "278127359", "3723466202", "50586670945", "695676081162", "9665426437561", "135464096419620", "1912922793362142", "27190770354633287", "388734441118885467", "5586079818959767743", "80638973170989453862", "1168864771263296930809" ]
[ "nonn" ]
7
0
2
[ "A000108", "A054727", "A381778", "A381779" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:40
oeisdata/seq/A381/A381779.seq
b4e72b9ad5478006ff83ef06034c98ec
A381780
G.f. A(x) satisfies A(x) = (1 + x*A(x)^2) * C(x*A(x)^3), where C(x) is the g.f. of A000108.
[ "1", "2", "13", "122", "1348", "16317", "209366", "2797461", "38509302", "542367569", "7778173646", "113196865436", "1667497600735", "24816081138489", "372551391235504", "5635157636123317", "85797446797707896", "1313857342649814042", "20222887980813290849", "312694810135597988049", "4854881337618505385339" ]
[ "nonn" ]
9
0
2
[ "A000108", "A007852", "A069271", "A381772", "A381780" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:35
oeisdata/seq/A381/A381780.seq
cdf5b05e93d77f1447c13575ad15fead
A381781
a(n) = k where k*Pi is the solution to sin(x) = 0 obtained using Newton's method starting from x = n.
[ "0", "0", "1", "1", "1", "3", "2", "2", "5", "3", "3", "74", "4", "4", "2", "5", "5", "4", "6", "6", "6", "7", "7", "7", "8", "8", "8", "10", "9", "9", "13", "10", "10", "30", "11", "11", "9", "12", "12", "11", "13", "13", "13", "14", "14", "14", "15", "15", "15", "25", "16", "16", "14", "17", "17", "32", "18", "18", "16", "19", "19", "18", "20", "20", "17", "21", "21", "21", "22", "22", "22", "25", "23", "23", "26" ]
[ "sign", "easy" ]
51
0
6
[ "A082964", "A381473", "A381781", "A381892", "A381893" ]
null
Simcha Z. Katzoff, Mar 07 2025
2025-03-25T19:49:39
oeisdata/seq/A381/A381781.seq
a2c69ea1cc4b278fe987cb89bc056b39
A381782
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * C(x), where C(x) is the g.f. of A000108.
[ "1", "2", "9", "52", "342", "2437", "18331", "143320", "1153308", "9489487", "79470647", "675149665", "5804359859", "50402807459", "441433999816", "3894774605660", "34585663823538", "308867647484634", "2772256164853972", "24994569816424301", "226261997160303326", "2055711320495566962" ]
[ "nonn" ]
7
0
2
[ "A000108", "A212071", "A381773", "A381782", "A381783" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:29
oeisdata/seq/A381/A381782.seq
2ac8ce22b4ff90ea3b4b5fbd2298530c
A381783
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * C(x*A(x)), where C(x) is the g.f. of A000108.
[ "1", "2", "11", "79", "645", "5682", "52643", "505575", "4987933", "50250625", "514787110", "5346336739", "56161123273", "595667090038", "6370314162095", "68616488830785", "743733580011957", "8106009997644507", "88783190884441892", "976705067814061730", "10787334777299825522", "119569153425125828365" ]
[ "nonn" ]
9
0
2
[ "A000108", "A212071", "A381773", "A381782", "A381783" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:24
oeisdata/seq/A381/A381783.seq
b792f6ea314a9232f06739c879d88d30
A381784
G.f. A(x) satisfies A(x) = (1 + x*A(x)^4) * C(x*A(x)^2), where C(x) is the g.f. of A000108.
[ "1", "2", "15", "153", "1799", "22969", "309479", "4331175", "62349575", "917335467", "13732751589", "208509835114", "3203279694575", "49701110565986", "777708690091907", "12258870836704797", "194475105262057575", "3102607480658510165", "49746656826517452788", "801205735002960886531", "12956005807148939155717" ]
[ "nonn" ]
7
0
2
[ "A000108", "A234461", "A381774", "A381784" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:20
oeisdata/seq/A381/A381784.seq
d5118f8abef03e4cd85965c1a97a46ce
A381785
G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)^2), where C(x) is the g.f. of A000108.
[ "1", "2", "7", "45", "335", "2731", "23573", "211741", "1958571", "18529392", "178459000", "1743868792", "17246702932", "172302244669", "1736302280083", "17627794322287", "180133941044517", "1851310247393202", "19123511540724822", "198437973436950204", "2067524004169000212", "21620908821378509071" ]
[ "nonn" ]
8
0
2
[ "A000108", "A212071", "A381772", "A381778", "A381784", "A381785" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:47:49
oeisdata/seq/A381/A381785.seq
daaf7149c3c93e77cbf30349374b5959
A381786
G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)^3), where C(x) is the g.f. of A000108.
[ "1", "2", "9", "76", "744", "7986", "90836", "1075714", "13122656", "163769229", "2080985186", "26832199993", "350187469872", "4617094718728", "61406081813812", "822834184073768", "11098254270705028", "150555545320009712", "2052839917410937693", "28118478688846531072", "386727880988105218913", "5338557108832658927346" ]
[ "nonn" ]
7
0
2
[ "A000108", "A234461", "A381773", "A381779", "A381780", "A381786" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:48:03
oeisdata/seq/A381/A381786.seq
4c0fc5f3ba3f4a0f7a4c29892077ff01
A381787
G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)), where C(x) is the g.f. of A000108.
[ "1", "2", "5", "22", "112", "623", "3664", "22405", "141002", "907228", "5940663", "39459873", "265228359", "1800608563", "12328843910", "85040632504", "590371016188", "4121775003434", "28921911896836", "203854515625194", "1442669458817907", "10247020573880520", "73024240955785936", "521973882076798493" ]
[ "nonn" ]
9
0
2
[ "A000108", "A167422", "A381785", "A381786", "A381787" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-07T10:48:48
oeisdata/seq/A381/A381787.seq
416d45089eff515bb466baa52ee67db4
A381788
Greedy expansion of Pi-3 in a base with place values 1/(10^k-1), k >= 1, using digits {0,1,2,...,8,9,A=10}.
[ "1", "3", "0", "1", "7", "8", "5", "0", "1", "4", "6", "6", "5", "9", "4", "7", "1", "5", "1", "9", "5", "6", "1", "3", "4", "8", "9", "3", "4", "2", "2", "7", "5", "2", "2", "9", "0", "3", "8", "6", "2", "8", "1", "1", "5", "8", "3", "5", "3", "1", "1", "9", "8", "2", "3", "5", "2", "0", "8", "9", "4", "1", "8", "2", "4", "8", "6", "3", "1", "2", "5", "9", "1", "2", "9", "1", "5", "5", "5", "0", "6", "9", "6", "8", "0", "7", "7", "9", "7", "4", "0", "9", "8", "2", "8", "5", "7", "4", "1", "9", "5", "5", "7", "5", "2", "8", "3", "1", "1", "0", "8", "8", "5" ]
[ "nonn", "base" ]
32
1
2
[ "A000796", "A073668", "A381788" ]
null
Simon Plouffe, Mar 07 2025
2025-03-18T14:43:07
oeisdata/seq/A381/A381788.seq
549f952476b96daf7f851bf2e9f5a3b9
A381789
Number of connected dominating sets in the n-Pell graph.
[ "3", "12", "852", "63845729" ]
[ "nonn", "more" ]
13
1
1
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-07T14:07:46
oeisdata/seq/A381/A381789.seq
4e334356e8395dbe30218e53a2c0bd38
A381790
a(n) = 3*2^n + 2*n - 2.
[ "1", "6", "14", "28", "54", "104", "202", "396", "782", "1552", "3090", "6164", "12310", "24600", "49178", "98332", "196638", "393248", "786466", "1572900", "3145766", "6291496", "12582954", "25165868", "50331694", "100663344", "201326642", "402653236", "805306422", "1610612792", "3221225530", "6442451004", "12884901950" ]
[ "nonn", "easy" ]
8
0
2
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-08T01:48:21
oeisdata/seq/A381/A381790.seq
67b52caab4cc119e9255ff0b37b75ed4
A381791
a(n) = 2*(4 + 17*2^(n-1)).
[ "25", "42", "76", "144", "280", "552", "1096", "2184", "4360", "8712", "17416", "34824", "69640", "139272", "278536", "557064", "1114120", "2228232", "4456456", "8912904", "17825800", "35651592", "71303176", "142606344", "285212680", "570425352", "1140850696", "2281701384", "4563402760", "9126805512", "18253611016" ]
[ "nonn", "easy" ]
8
0
1
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-08T01:34:37
oeisdata/seq/A381/A381791.seq
cfb416211bc4ca30e3db316f4c545bfd
A381792
Numbers k such that k + prime(k) is prime and k + semiprime(k) is semiprime.
[ "4", "6", "18", "24", "34", "72", "96", "98", "116", "130", "150", "172", "200", "206", "270", "290", "350", "356", "362", "386", "410", "420", "450", "504", "508", "554", "576", "618", "666", "682", "720", "738", "754", "782", "784", "808", "820", "832", "858", "892", "960", "962", "984", "1016", "1050", "1102", "1110", "1154", "1162", "1168", "1176", "1184", "1206", "1256", "1284", "1296", "1302", "1360" ]
[ "nonn" ]
14
1
1
[ "A000040", "A001222", "A001358", "A064402", "A100915", "A381792" ]
null
Zak Seidov and Robert Israel, Mar 07 2025
2025-03-10T11:01:24
oeisdata/seq/A381/A381792.seq
4fe5b5a74e0845b3ae30653c771e738a
A381793
Smallest k>1 such that 10*k^(5*2^n)+1 is prime.
[ "6", "11", "649", "792", "1034", "12386", "21813", "87318", "35387", "207339", "67958" ]
[ "nonn", "base", "hard", "more" ]
28
0
1
[ "A020714", "A089319", "A381793", "A381815" ]
null
Jakub Buczak, Mar 07 2025
2025-03-16T15:03:15
oeisdata/seq/A381/A381793.seq
19739fa328e63146734153c694dafd2a
A381794
Number of connected dominating sets in the n-trapezohedral graph.
[ "8", "36", "115", "436", "1604", "6067", "22936", "87332", "334075", "1285148", "4969452", "19310763", "75372496", "295346604", "1161269763", "4579368004", "18103226292", "71715416035", "284593621544", "1131006389780", "4500107172363", "17922831610316", "71439705155420", "284943217164891", "1137130012887584" ]
[ "nonn", "easy" ]
12
1
1
[ "A000032", "A370089", "A381190", "A381794" ]
null
Eric W. Weisstein, Mar 07 2025
2025-03-20T19:34:31
oeisdata/seq/A381/A381794.seq
40addb72b77d0e3b145d74e4c1d7e8d9
A381795
Number of connected dominating sets in the n-triangular honeycomb bishop graph.
[ "1", "4", "28", "504", "19488", "1488192", "217706592" ]
[ "nonn", "more" ]
4
1
2
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-07T14:07:28
oeisdata/seq/A381/A381795.seq
e0b645b235e396afbf3df1225e41a138
A381796
Number of connected dominating sets in the n-triangular honeycomb obtuse knight graph.
[ "1", "0", "0", "0", "0", "223634", "46217016" ]
[ "nonn", "more" ]
4
1
6
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-07T14:07:25
oeisdata/seq/A381/A381796.seq
1e2172a859481a2199e5dd0d7442ad3e
A381797
Number of connected dominating sets in the n X n X n grid graph.
[ "1", "115", "22463410" ]
[ "nonn", "bref", "more" ]
4
1
2
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-07T14:07:19
oeisdata/seq/A381/A381797.seq
653a52166898224b150413a881f42be9
A381798
Number of residues r such that p^m is congruent to r (mod n), where prime p | n and m >= 0.
[ "1", "2", "2", "3", "2", "4", "2", "4", "3", "6", "2", "6", "2", "5", "7", "5", "2", "9", "2", "7", "8", "12", "2", "7", "3", "14", "4", "7", "2", "11", "2", "6", "8", "10", "11", "11", "2", "20", "5", "9", "2", "14", "2", "14", "12", "13", "2", "10", "3", "23", "19", "15", "2", "22", "7", "8", "20", "30", "2", "12", "2", "7", "11", "7", "9", "18", "2", "11", "14", "23", "2", "12", "2", "38", "24", "22", "14", "17" ]
[ "nonn" ]
7
1
2
[ "A000961", "A381798", "A381799" ]
null
Michael De Vlieger, Mar 07 2025
2025-03-14T20:05:08
oeisdata/seq/A381/A381798.seq
2e283572d331e673ffed93edf727e73b
A381799
Irregular triangle read by rows, where row n is a list of residues of powers of prime factors of n (mod n).
[ "0", "0", "1", "0", "1", "0", "1", "2", "0", "1", "1", "2", "3", "4", "0", "1", "0", "1", "2", "4", "0", "1", "3", "1", "2", "4", "5", "6", "8", "0", "1", "1", "2", "3", "4", "8", "9", "0", "1", "1", "2", "4", "7", "8", "1", "3", "5", "6", "9", "10", "12", "0", "1", "2", "4", "8", "0", "1", "1", "2", "3", "4", "8", "9", "10", "14", "16", "0", "1", "1", "2", "4", "5", "8", "12", "16", "1", "3", "6", "7", "9", "12", "15", "18" ]
[ "nonn", "tabf" ]
6
1
8
[ "A024619", "A038566", "A121998", "A381798", "A381799" ]
null
Michael De Vlieger, Mar 07 2025
2025-03-14T20:06:38
oeisdata/seq/A381/A381799.seq
56858f1da5380b7e4c154652a3f96883
A381800
a(n) = number of distinct residues r mod n of numbers k such that rad(k) | n, where rad = A007947.
[ "1", "2", "2", "3", "2", "5", "2", "4", "3", "7", "2", "8", "2", "6", "8", "5", "2", "12", "2", "9", "9", "13", "2", "11", "3", "15", "4", "9", "2", "19", "2", "6", "9", "11", "12", "16", "2", "21", "6", "12", "2", "24", "2", "16", "15", "14", "2", "16", "3", "28", "20", "17", "2", "31", "8", "12", "21", "31", "2", "28", "2", "8", "13", "7", "10", "32", "2", "13", "15", "35", "2", "20", "2", "39", "29", "24" ]
[ "nonn" ]
11
1
2
[ "A000005", "A010846", "A024619", "A051953", "A381798", "A381800", "A381801" ]
null
Michael De Vlieger, Mar 07 2025
2025-03-14T20:16:41
oeisdata/seq/A381/A381800.seq
64dfcc2fcb25fd196a33187cbd2615f7
A381801
Irregular triangle read by rows: row n lists the residues r mod n of numbers k such that rad(k) | n, where rad = A007947.
[ "0", "0", "1", "0", "1", "0", "1", "2", "0", "1", "0", "1", "2", "3", "4", "0", "1", "0", "1", "2", "4", "0", "1", "3", "0", "1", "2", "4", "5", "6", "8", "0", "1", "0", "1", "2", "3", "4", "6", "8", "9", "0", "1", "0", "1", "2", "4", "7", "8", "0", "1", "3", "5", "6", "9", "10", "12", "0", "1", "2", "4", "8", "0", "1", "0", "1", "2", "3", "4", "6", "8", "9", "10", "12", "14", "16", "0", "1", "0", "1", "2", "4", "5", "8", "10", "12", "16" ]
[ "nonn", "tabf" ]
7
1
8
[ "A007947", "A038566", "A121998", "A162306", "A381799", "A381800", "A381801" ]
null
Michael De Vlieger, Mar 07 2025
2025-03-14T20:11:52
oeisdata/seq/A381/A381801.seq
5d05c6b0182384bd39127ba07c620130
A381802
a(n) = number of distinct residues r mod n of numbers k congruent to r (mod n) such that rad(k) does not divide n, where rad = A007947.
[ "0", "0", "1", "1", "3", "1", "5", "4", "6", "3", "9", "4", "11", "8", "7", "11", "15", "6", "17", "11", "12", "9", "21", "13", "22", "11", "23", "19", "27", "11", "29", "26", "24", "23", "23", "20", "35", "17", "33", "28", "39", "18", "41", "28", "30", "32", "45", "32", "46", "22", "31", "35", "51", "23", "47", "44", "36", "27", "57", "32", "59", "54", "50", "57", "55", "34", "65", "55", "54", "35" ]
[ "nonn" ]
7
1
5
[ "A000010", "A381800", "A381801", "A381802" ]
null
Michael De Vlieger, Mar 14 2025
2025-03-22T19:05:15
oeisdata/seq/A381/A381802.seq
509b0d5536c4419d560c0775f144c769
A381803
Number of residues r in {0..n-1} that are not coprime to n and not in row n of A381801.
[ "0", "0", "0", "0", "0", "0", "0", "1", "1", "0", "0", "1", "0", "3", "0", "4", "0", "1", "0", "4", "1", "0", "0", "6", "3", "0", "6", "8", "0", "4", "0", "11", "5", "8", "0", "9", "0", "0", "10", "13", "0", "7", "0", "9", "7", "11", "0", "17", "5", "3", "0", "12", "0", "6", "8", "21", "1", "0", "0", "17", "0", "25", "15", "26", "8", "15", "0", "24", "11", "12", "0", "29", "0", "0", "7", "17", "3", "22", "0", "32", "23" ]
[ "nonn" ]
7
1
14
[ "A000010", "A038566", "A051953", "A121998", "A381800", "A381802", "A381803" ]
null
Michael De Vlieger, Mar 24 2025
2025-04-03T22:43:40
oeisdata/seq/A381/A381803.seq
39f625e827b167b825028a8a3c11435f
A381804
Number of residues r mod n congruent to k such that rad(k) | n but rad(r) does not divide n, with rad = A007947.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "0", "3", "0", "0", "2", "0", "1", "4", "6", "0", "0", "0", "8", "0", "1", "0", "1", "0", "0", "3", "3", "7", "2", "0", "13", "0", "1", "0", "5", "0", "7", "7", "6", "0", "1", "0", "16", "14", "8", "0", "15", "3", "1", "15", "23", "0", "2", "0", "0", "5", "0", "5", "10", "0", "3", "9", "15", "0", "2", "0", "30", "20", "14", "10", "10", "0", "3", "0", "14", "0" ]
[ "nonn" ]
4
1
15
[ "A010846", "A243623", "A381800", "A381804" ]
null
Michael De Vlieger, Mar 14 2025
2025-03-22T19:06:02
oeisdata/seq/A381/A381804.seq
126f9be99dede6b99e742d28a44d8ff2
A381805
Smallest composite squarefree number that is coprime to n.
[ "6", "15", "10", "15", "6", "35", "6", "15", "10", "21", "6", "35", "6", "15", "14", "15", "6", "35", "6", "21", "10", "15", "6", "35", "6", "15", "10", "15", "6", "77", "6", "15", "10", "15", "6", "35", "6", "15", "10", "21", "6", "55", "6", "15", "14", "15", "6", "35", "6", "21", "10", "15", "6", "35", "6", "15", "10", "15", "6", "77", "6", "15", "10", "15", "6", "35", "6", "15", "10", "33", "6", "35" ]
[ "nonn", "easy" ]
7
1
1
[ "A002110", "A007947", "A051250", "A053669", "A120944", "A380539", "A381805", "A382248" ]
null
Michael De Vlieger, Mar 31 2025
2025-04-05T10:58:12
oeisdata/seq/A381/A381805.seq
11931575f1f960a0ded576539045e410
A381806
Numbers that cannot be written as a product of squarefree numbers with distinct sums of prime indices.
[ "4", "8", "9", "16", "24", "25", "27", "32", "40", "48", "49", "54", "56", "64", "72", "80", "81", "88", "96", "104", "108", "112", "121", "125", "128", "135", "136", "144", "152", "160", "162", "169", "176", "184", "189", "192", "200", "208", "216", "224", "232", "240", "243", "248", "250", "256", "272", "288", "289", "296", "297", "304", "320", "324", "328", "336" ]
[ "nonn" ]
18
1
1
[ "A000688", "A000720", "A001055", "A001222", "A003963", "A005117", "A045778", "A050320", "A050326", "A055396", "A056239", "A061395", "A089259", "A112798", "A116540", "A270995", "A279785", "A292444", "A293243", "A293511", "A296119", "A299202", "A300383", "A300385", "A317141", "A318360", "A321469", "A358914", "A381078", "A381441", "A381454", "A381633", "A381634", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075" ]
null
Gus Wiseman, Mar 12 2025
2025-03-28T14:13:20
oeisdata/seq/A381/A381806.seq
2dc3404ec381099a0bfe5a735a84938d
A381807
Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.
[ "1", "1", "2", "4", "12", "24", "92", "184", "704", "2016", "7600", "15200", "80664", "161328", "601696", "2198824" ]
[ "nonn", "more" ]
8
0
3
[ "A000005", "A000009", "A000041", "A000688", "A001970", "A006171", "A018818", "A050361", "A058694", "A066723", "A066843", "A152827", "A213385", "A265947", "A279784", "A295935", "A299200", "A300383", "A317141", "A321467", "A321468", "A321470", "A321471", "A321514", "A327486", "A355537", "A355731", "A355733", "A355741", "A355742", "A355744", "A355746", "A355747", "A381453", "A381455", "A381635", "A381636", "A381715", "A381716", "A381807", "A381808" ]
null
Gus Wiseman, Mar 13 2025
2025-03-14T15:07:19
oeisdata/seq/A381/A381807.seq
d72be6b5d6146e3a7a1b7c4312792665
A381808
Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.
[ "1", "1", "1", "2", "4", "12", "38", "145", "586", "2619", "12096", "58370" ]
[ "nonn", "more" ]
5
0
4
[ "A000005", "A000009", "A000041", "A001970", "A018818", "A050342", "A058694", "A066723", "A066843", "A116539", "A152827", "A213385", "A265947", "A279785", "A296120", "A299200", "A300383", "A317141", "A318361", "A321467", "A321468", "A321470", "A321471", "A321514", "A327486", "A355537", "A355731", "A355733", "A355741", "A355742", "A355744", "A355746", "A355747", "A381453", "A381455", "A381718", "A381807", "A381808" ]
null
Gus Wiseman, Mar 14 2025
2025-03-14T17:10:22
oeisdata/seq/A381/A381808.seq
433165ae95de0dc14c6d16ac296980f0
A381812
Number of moves required to reach a position with the maximum number of heads in the game of blet with 2*n coins.
[ "1", "1", "2", "5", "3", "6", "11", "7", "10", "17", "11", "16", "25", "15", "22", "33", "21", "28", "41", "27", "34" ]
[ "nonn", "more" ]
27
2
3
[ "A047206", "A075273", "A381812", "A381813", "A381814" ]
null
Pontus von Brömssen, Mar 08 2025
2025-03-16T13:08:33
oeisdata/seq/A381/A381812.seq
64c2a4a19ace3888032a2142ddd59365
A381813
Number of connected components, not counting isolated vertices, of the blet graph for n coins.
[ "3", "2", "1", "7", "2", "5", "8", "8", "6", "50", "12", "30", "61", "62", "47", "417", "102", "303", "682", "696", "532", "4904", "1250", "3854", "8911", "9218", "7147", "66735", "17298", "53965", "126348", "131740", "103080" ]
[ "nonn", "more" ]
19
3
1
[ "A007039", "A075273", "A381812", "A381813", "A381814" ]
null
Pontus von Brömssen, Mar 08 2025
2025-03-16T12:19:50
oeisdata/seq/A381/A381813.seq
82fea528c6f327617069eb7fb18db209
A381814
Size of the largest component of the blet graph for n coins.
[ "2", "5", "20", "8", "56", "56", "74", "180", "660", "220", "2288", "2002", "2942", "7280", "24752", "8568", "93024", "77520", "120920", "298452", "1009470", "346104", "3845600", "3289000", "5067974", "12432420", "42921450", "14307150", "161280600", "140244000", "215188426", "524512560", "1835793960" ]
[ "nonn", "more" ]
17
3
1
[ "A075273", "A381812", "A381813", "A381814" ]
null
Pontus von Brömssen, Mar 08 2025
2025-03-16T10:37:21
oeisdata/seq/A381/A381814.seq
fa33f31aa051c1b74ddc6284c15dd222
A381815
Smallest k>1 such that 10*k^(3*2^n)+1 is prime.
[ "3", "2", "2", "2", "138", "24", "695", "107", "250", "404", "4657", "2185", "27931" ]
[ "nonn", "base", "more", "hard", "changed" ]
25
0
1
[ "A002254", "A007283", "A089319", "A381793", "A381815" ]
null
Jakub Buczak, Mar 07 2025
2025-04-15T07:39:58
oeisdata/seq/A381/A381815.seq
a37a8cb793ef7dd8f020de9f673ca39b
A381816
a(n) = (4*n^2 - (-1)^n - 2*n - 7)/4.
[ "-1", "1", "6", "12", "21", "31", "44", "58", "75", "93", "114", "136", "161", "187", "216", "246", "279", "313", "350", "388", "429", "471", "516", "562", "611", "661", "714", "768", "825", "883", "944", "1006", "1071", "1137", "1206", "1276", "1349", "1423", "1500", "1578", "1659", "1741", "1826", "1912", "2001", "2091", "2184", "2278", "2375", "2473" ]
[ "sign", "easy" ]
8
1
3
null
null
Eric W. Weisstein, Mar 07 2025
2025-03-08T01:34:27
oeisdata/seq/A381/A381816.seq
035224066a0b72793d0f8227307d688f
A381817
Expansion of (1/x) * Series_Reversion( x * (1-x) / C(x) ), where C(x) is the g.f. of A000108.
[ "1", "2", "8", "41", "239", "1507", "10016", "69123", "490676", "3560150", "26285896", "196862679", "1491921261", "11420072162", "88166571504", "685724643699", "5367842153463", "42259058503891", "334373741310812", "2657683458672907", "21209720057079565", "169886023881795700", "1365290865904393560" ]
[ "nonn" ]
11
0
2
[ "A000108", "A381817", "A381818", "A381819", "A381820" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-10T11:02:14
oeisdata/seq/A381/A381817.seq
0abc16636d99e4326f3821e9cfc22bb9
A381818
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^2 ) )^(1/2), where C(x) is the g.f. of A000108.
[ "1", "2", "12", "97", "903", "9129", "97419", "1080058", "12319200", "143630575", "1704099034", "20507897766", "249734145622", "3071587654688", "38102046141882", "476138815310364", "5988435287060671", "75745116484532586", "962898676577135634", "12295850972794555196", "157649023155654522723", "2028662477759375282902" ]
[ "nonn" ]
13
0
2
[ "A000108", "A364592", "A381772", "A381817", "A381818", "A381819", "A381820", "A381830", "A381831" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-08T09:40:20
oeisdata/seq/A381/A381818.seq
4e092cb37e59f6969a0aad9caed0fc70
A381819
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^3 ) )^(1/3), where C(x) is the g.f. of A000108.
[ "1", "2", "16", "177", "2271", "31731", "468614", "7195295", "113712012", "1837457589", "30220139048", "504212998955", "8513461623355", "145197727340337", "2497695979786842", "43285207907364178", "755005614380697735", "13244500528948104210", "233515959911770430972", "4135792046643993604967" ]
[ "nonn" ]
13
0
2
[ "A000108", "A381773", "A381817", "A381818", "A381819", "A381820" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-08T09:40:06
oeisdata/seq/A381/A381819.seq
df951a6414923f47e25237f6b65c72fb
A381820
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) / C(x))^4 ) )^(1/4), where C(x) is the g.f. of A000108.
[ "1", "2", "20", "281", "4599", "82113", "1550993", "30473930", "616463800", "12753523628", "268586285058", "5738804673016", "124098812744140", "2710824280371114", "59728504549831296", "1325862161472193292", "29623682752417138511", "665679666998856945540", "15034747192791290846435" ]
[ "nonn" ]
10
0
2
[ "A000108", "A381774", "A381817", "A381818", "A381819", "A381820" ]
null
Seiichi Manyama, Mar 07 2025
2025-03-08T09:40:02
oeisdata/seq/A381/A381820.seq
271540bd63e30cb960c3487ebdfe23e7
A381821
Fixed points of A381419.
[ "1", "81", "91", "93", "110", "122", "129", "156", "159", "163", "165", "172", "185", "188", "201", "205", "213", "216", "232", "254", "281", "286", "292", "356", "481", "507", "548", "3553", "3698", "3776", "3796", "3808", "3909", "4132", "4199", "4250", "4318", "4414", "4712", "4713", "4805", "4898", "4912", "4976", "5005", "5182", "5193", "5354", "5361", "5445", "5577", "5658", "5696" ]
[ "nonn" ]
8
1
2
[ "A381419", "A381420", "A381821" ]
null
Scott R. Shannon, Mar 07 2025
2025-03-08T09:40:54
oeisdata/seq/A381/A381821.seq
37fab8a94b34d59d190ff12f7e43d220
A381822
Odd cubefree numbers: odd numbers that are not divisible by any cube greater than 1.
[ "1", "3", "5", "7", "9", "11", "13", "15", "17", "19", "21", "23", "25", "29", "31", "33", "35", "37", "39", "41", "43", "45", "47", "49", "51", "53", "55", "57", "59", "61", "63", "65", "67", "69", "71", "73", "75", "77", "79", "83", "85", "87", "89", "91", "93", "95", "97", "99", "101", "103", "105", "107", "109", "111", "113", "115", "117", "119", "121", "123", "127", "129", "131" ]
[ "nonn", "easy" ]
10
1
2
[ "A002117", "A004709", "A005408", "A056911", "A233091", "A381822" ]
null
Amiram Eldar, Mar 08 2025
2025-03-09T12:27:55
oeisdata/seq/A381/A381822.seq
08777f9dd27573e7c38471cee71c36fc
A381823
Odd cubefree numbers that are not squarefree.
[ "9", "25", "45", "49", "63", "75", "99", "117", "121", "147", "153", "169", "171", "175", "207", "225", "245", "261", "275", "279", "289", "315", "325", "333", "361", "363", "369", "387", "423", "425", "441", "475", "477", "495", "507", "525", "529", "531", "539", "549", "575", "585", "603", "605", "637", "639", "657", "693", "711", "725", "735", "747", "765", "775" ]
[ "nonn", "easy" ]
8
1
1
[ "A002117", "A005408", "A013661", "A048103", "A051903", "A056911", "A067259", "A375039", "A381822", "A381823" ]
null
Amiram Eldar, Mar 08 2025
2025-03-09T12:27:44
oeisdata/seq/A381/A381823.seq
7a2bad35adcbafc77eba4bf9068e5a1f
A381824
Odd cubefull numbers: odd numbers that are divisible by the cube of any of their prime factors.
[ "1", "27", "81", "125", "243", "343", "625", "729", "1331", "2187", "2197", "2401", "3125", "3375", "4913", "6561", "6859", "9261", "10125", "12167", "14641", "15625", "16807", "16875", "19683", "24389", "27783", "28561", "29791", "30375", "35937", "42875", "50625", "50653", "59049", "59319", "64827", "68921", "78125", "79507", "83349", "83521", "84375", "91125" ]
[ "nonn", "easy" ]
7
1
2
[ "A005408", "A016755", "A020639", "A036966", "A051904", "A065483", "A381824", "A381825" ]
null
Amiram Eldar, Mar 08 2025
2025-03-09T12:27:52
oeisdata/seq/A381/A381824.seq
aaae56988d68ffc05d9cc6f19b8eb15e
A381825
Odd cubefull exponentially odd numbers: numbers whose prime factorization has only odd primes and odd exponents that are larger than 1 (except for 1 whose prime factorization is empty).
[ "1", "27", "125", "243", "343", "1331", "2187", "2197", "3125", "3375", "4913", "6859", "9261", "12167", "16807", "19683", "24389", "29791", "30375", "35937", "42875", "50653", "59319", "68921", "78125", "79507", "83349", "84375", "103823", "132651", "148877", "161051", "166375", "177147", "185193", "205379", "226981", "273375", "274625" ]
[ "nonn", "easy" ]
8
1
2
[ "A005408", "A036966", "A065487", "A335988", "A369118", "A376218", "A381824", "A381825" ]
null
Amiram Eldar, Mar 08 2025
2025-03-09T12:27:48
oeisdata/seq/A381/A381825.seq
64b227483c25e6b0fc026102e44c2325
A381826
G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x)^2), where C(x) is the g.f. of A000108.
[ "1", "2", "8", "41", "241", "1545", "10503", "74429", "543833", "4067510", "30985633", "239560975", "1874831287", "14823253892", "118222204539", "949963236834", "7683289712433", "62499664522578", "510992689465500", "4196824203859773", "34609480384100715", "286461380785102398", "2378954616256505177" ]
[ "nonn" ]
9
0
2
[ "A000108", "A014137", "A129442", "A381826", "A381827" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-10T10:41:50
oeisdata/seq/A381/A381826.seq
da003e48824d2bcdf4508ee595d21033
A381827
G.f. A(x) satisfies A(x) = C(x) / (1 - x*A(x)^3), where C(x) is the g.f. of A000108.
[ "1", "2", "10", "69", "562", "5042", "48100", "478547", "4908338", "51522174", "550758208", "5974753990", "65608248500", "727835313461", "8144965594184", "91834891588099", "1042244963201914", "11896871741939462", "136493661712053752", "1573151972820654218", "18205626549920314728", "211468167403628323318" ]
[ "nonn" ]
9
0
2
[ "A000108", "A014137", "A129442", "A381782", "A381826", "A381827" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-08T09:39:48
oeisdata/seq/A381/A381827.seq
7a881996845db48b5d4e7445f3366132
A381828
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^2 ) )^(1/2).
[ "1", "2", "10", "65", "480", "3824", "32039", "278256", "2482578", "22617830", "209540672", "1968031520", "18696064179", "179332892186", "1734451272240", "16895744042472", "165621305486976", "1632518433458400", "16170959983623314", "160888256475481560", "1607061512154585046", "16110030923830784248" ]
[ "nonn" ]
13
0
2
[ "A000108", "A129442", "A188687", "A368975", "A381817", "A381828", "A381829", "A381831" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-10T10:50:02
oeisdata/seq/A381/A381828.seq
791b91ac9943c2214c05f26515ac533e
A381829
G.f. A(x) satisfies A(x) = C(x*A(x)) / (1 - x*A(x)^3), where C(x) is the g.f. of A000108.
[ "1", "2", "12", "97", "905", "9187", "98578", "1099980", "12636101", "148449436", "1775331503", "21541303494", "264533752068", "3281596216087", "41062196808517", "517655936768189", "6568539787903369", "83827401412072474", "1075254139150601581", "13855040994605807348", "179256835556387995412", "2327788724156294034612" ]
[ "nonn" ]
9
0
2
[ "A000108", "A188687", "A381783", "A381817", "A381828", "A381829" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-08T09:39:40
oeisdata/seq/A381/A381829.seq
c16aaaae78e637d98dba00014402004e
A381830
G.f. A(x) satisfies A(x) = C(x*A(x)^2) / (1 - x*A(x)), where C(x) is the g.f. of A000108.
[ "1", "2", "10", "69", "558", "4946", "46506", "455587", "4599494", "47517909", "499933964", "5337957532", "57694565830", "630010984557", "6939976239376", "77027050722166", "860564349616694", "9670164031087137", "109221767288604000", "1239281689627682221", "14119315749935075540", "161460732437631678114" ]
[ "nonn" ]
9
0
2
[ "A000108", "A364592", "A381778", "A381818", "A381830", "A381831" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-08T09:39:53
oeisdata/seq/A381/A381830.seq
a1276355fd9cfac85a59847c3c398334
A381831
Expansion of ( (1/x) * Series_Reversion( x * ((1-x) * (1-x+x^2))^3 ) )^(1/3).
[ "1", "2", "14", "133", "1456", "17306", "217066", "2827896", "37895130", "519000037", "7232429952", "102220846756", "1461817707558", "21112968248198", "307527937374182", "4512344039147420", "66634574697351360", "989569163283434676", "14769533757869187052", "221426909287107012800", "3333042591222552282784", "50353576994047154278451" ]
[ "nonn" ]
11
0
2
[ "A000108", "A129442", "A364592", "A381818", "A381828", "A381830", "A381831" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-08T09:39:36
oeisdata/seq/A381/A381831.seq
c5d83828e8f7dbba52bfb5f606ea30c3
A381832
G.f. A(x) satisfies A(x) = C(x*A(x)^3) / (1 - x), where C(x) is the g.f. of A000108.
[ "1", "2", "10", "81", "796", "8616", "98973", "1184324", "14602486", "184219731", "2366543116", "30851212416", "407106050261", "5427274340091", "72986372975716", "988937692146346", "13487903251385562", "185022817888443780", "2551096865411701371", "35335463473311506321", "491444773227779518956", "6860346682881319595632" ]
[ "nonn" ]
10
0
2
[ "A000108", "A014137", "A188687", "A364592", "A381786", "A381832" ]
null
Seiichi Manyama, Mar 08 2025
2025-03-08T09:39:31
oeisdata/seq/A381/A381832.seq
c5a134246c9fdd9d0c9f7f0628dc5f85