text
stringlengths 0
15.3k
|
---|
batch_size = batch_size.split(':') |
self.batch_size_per_gpu = batch_size[0] |
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1 |
else: |
self.batch_size_per_gpu = int(batch_size) |
if isinstance(pretrained, str): |
if gpus > 1: |
if parallelize: |
if accelerator.num_processes > 1: |
raise RuntimeError('Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher.') |
else: |
pass |
elif accelerator.num_processes == 1: |
self._rank = 0 |
self._world_size = 1 |
else: |
if gpus > accelerator.num_processes: |
eval_logger.warning(f"WARNING: The number of total system GPUs does not match the number of spawned processes. If you would like to use data parallelism, please launch the script with 'accelerate launch *script*'. Current run will proceed with {accelerator.num_processes} devices.") |
assert accelerator.distributed_type in [DistributedType.FSDP, DistributedType.MULTI_GPU, DistributedType.MULTI_NPU], 'Unsupported distributed type provided. Only DDP and FSDP are supported.' |
if accelerator.distributed_type == DistributedType.FSDP: |
self._model = accelerator.prepare(self.model) |
else: |
self._model = accelerator.prepare_model(self.model, evaluation_mode=True) |
self._device = torch.device(f'{accelerator.device}') |
self.accelerator = accelerator |
if self.accelerator.is_local_main_process: |
eval_logger.info(f'Using {gpus} devices with data parallelism') |
self._rank = self.accelerator.local_process_index |
self._world_size = self.accelerator.num_processes |
else: |
eval_logger.warning('Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration') |
self._rank = 0 |
self._world_size = 1 |
self.custom_prefix_token_id = prefix_token_id |
if prefix_token_id is not None: |
eval_logger.info(f'Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}') |
@property |
def config(self): |
return self._config |
@property |
def model(self): |
if hasattr(self, 'accelerator'): |
return self.accelerator.unwrap_model(self._model) |
else: |
return self._model |
@property |
def eot_token_id(self): |
return self.tokenizer.eos_token_id |
@property |
def prefix_token_id(self): |
if self.custom_prefix_token_id is not None: |
return self.custom_prefix_token_id |
if self.tokenizer.bos_token_id is not None: |
return self.tokenizer.bos_token_id |
return self.tokenizer.eos_token_id |
@property |
def max_length(self): |
if self._max_length: |
return self._max_length |
seqlen_config_attrs = ('n_positions', 'max_position_embeddings', 'n_ctx') |
for attr in seqlen_config_attrs: |
if hasattr(self.model.config, attr): |
return getattr(self.model.config, attr) |
if hasattr(self.tokenizer, 'model_max_length'): |
if self.tokenizer.model_max_length == 1000000000000000019884624838656: |
return self._DEFAULT_MAX_LENGTH |
return self.tokenizer.model_max_length |
return self._DEFAULT_MAX_LENGTH |
@property |
def max_gen_toks(self) -> int: |
return 256 |
@property |
def batch_size(self): |
return self.batch_size_per_gpu |
@property |
def device(self): |
return self._device |
@property |
def rank(self): |
return self._rank |
@property |
def world_size(self): |
return self._world_size |
@property |
def tokenizer_name(self) -> str: |
return self.tokenizer.name_or_path.replace('/', '__') |
@property |
def chat_template(self) -> str: |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.