text
stringlengths
0
15.3k
if self.tokenizer.chat_template is not None:
return self.tokenizer.chat_template
return self.tokenizer.default_chat_template
def _get_backend(self, config: Union[transformers.PretrainedConfig, transformers.AutoConfig], backend: Optional[Literal['default', 'causal', 'seq2seq']]='default', trust_remote_code: Optional[bool]=False) -> None:
assert backend in ['default', 'causal', 'seq2seq']
if backend != 'default':
if backend == 'causal':
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
elif backend == 'seq2seq':
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
eval_logger.info(f"Overrode HF model backend type, and using type '{backend}'")
elif getattr(config, 'model_type') in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
elif getattr(self.config, 'model_type') in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
else:
if not trust_remote_code:
eval_logger.warning('HF model type is neither marked as CausalLM or Seq2SeqLM. This is expected if your model requires `trust_remote_code=True` but may be an error otherwise.')
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
assert self.AUTO_MODEL_CLASS in [transformers.AutoModelForCausalLM, transformers.AutoModelForSeq2SeqLM]
return None
def _get_config(self, pretrained: str, revision: str='main', trust_remote_code: bool=False) -> None:
self._config = transformers.AutoConfig.from_pretrained(pretrained, revision=revision, trust_remote_code=trust_remote_code)
def _create_model(self, pretrained: str, revision: Optional[str]='main', dtype: Optional[Union[str, torch.dtype]]='auto', trust_remote_code: Optional[bool]=False, parallelize: Optional[bool]=False, gpus: Optional[int]=None, device_map_option: Optional[str]='auto', max_memory_per_gpu: Optional[Union[int, str]]=None, max_cpu_memory: Optional[Union[int, str]]=None, offload_folder: Optional[str]='./offload', peft: Optional[str]=None, delta: Optional[str]=None, autogptq: Optional[Union[bool, str]]=False, **kwargs) -> None:
model_kwargs = kwargs if kwargs else {}
if parallelize:
model_kwargs.update(_get_accelerate_args(device_map_option, max_memory_per_gpu, max_cpu_memory, offload_folder, gpus))
elif 'device_map' not in model_kwargs:
if hasattr(self, 'accelerator'):
model_kwargs.update({'device_map': {'': f'{self.accelerator.device}'}})
else:
model_kwargs.update({'device_map': {'': str(self.device)}})
if not autogptq:
if model_kwargs.get('load_in_4bit', None):
assert transformers.__version__ >= '4.30.0', 'load_in_4bit requires transformers >= 4.30.0'
if transformers.__version__ >= '4.30.0':
if model_kwargs.get('load_in_4bit', None):
if model_kwargs.get('bnb_4bit_compute_dtype', None):
model_kwargs['bnb_4bit_compute_dtype'] = get_dtype(model_kwargs['bnb_4bit_compute_dtype'])
self._model = self.AUTO_MODEL_CLASS.from_pretrained(pretrained, revision=revision, torch_dtype=get_dtype(dtype), trust_remote_code=trust_remote_code, **model_kwargs)
else:
try:
from auto_gptq import AutoGPTQForCausalLM
except ModuleNotFoundError:
raise Exception('Tried to load auto_gptq, but auto-gptq is not installed ', 'please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]')
self._model = AutoGPTQForCausalLM.from_quantized(pretrained, trust_remote_code=trust_remote_code, model_basename=None if autogptq is True else Path(autogptq).stem, use_safetensors=True if autogptq is True else autogptq.endswith('.safetensors'), **model_kwargs)
if peft and delta:
raise ValueError("Cannot use both 'peft' and 'delta' options at the same time.")
if peft:
if model_kwargs.get('load_in_4bit', None):
if version.parse(PEFT_VERSION) < version.parse('0.4.0'):
raise AssertionError('load_in_4bit requires peft >= 0.4.0')
if self._model.config.vocab_size != len(self.tokenizer):
self._model.resize_token_embeddings(len(self.tokenizer))
eval_logger.info(f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer...")
self._model = PeftModel.from_pretrained(self._model, peft, revision=revision)
elif delta:
if autogptq:
eval_logger.warning('Delta weights might trigger unexpected behavior when used with AutoGPTQ.')
_model_delta = self.AUTO_MODEL_CLASS.from_pretrained(delta, revision=revision, torch_dtype=get_dtype(dtype), trust_remote_code=trust_remote_code, **model_kwargs)
for (name, param) in self._model.state_dict().items():
try:
param.data += _model_delta.state_dict()[name]
except KeyError:
raise KeyError(f'Delta model is missing weights for layer: {name}')
except Exception as e:
raise RuntimeError(f'Failed to add delta weights to layer {name}. Error: {e}')
del _model_delta
return None
def _create_tokenizer(self, pretrained: Union[str, transformers.PreTrainedModel], tokenizer: Optional[Union[str, transformers.PreTrainedTokenizer, transformers.PreTrainedTokenizerFast]], revision: Optional[str]='main', trust_remote_code: Optional[bool]=False, use_fast_tokenizer: Optional[bool]=True) -> None:
if tokenizer:
if isinstance(tokenizer, str):
self.tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer, revision=revision, trust_remote_code=trust_remote_code, use_fast=use_fast_tokenizer)
else:
assert isinstance(tokenizer, transformers.PreTrainedTokenizer) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
self.tokenizer = tokenizer
else:
if isinstance(pretrained, str):
model_name = pretrained
else:
model_name = self.model.name_or_path
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, use_fast=use_fast_tokenizer)
return None
def _detect_batch_size(self, requests=None, pos: int=0):
if requests:
(_, context_enc, continuation_enc) = requests[pos]
max_length = len((context_enc + continuation_enc)[-(self.max_length + 1):][:-1])
max_context_enc = len(context_enc[-(self.max_length + 1):])
max_cont_enc = len(continuation_enc[-(self.max_length + 1):])
else:
max_length = self.max_length
max_context_enc = max_length
max_cont_enc = max_length
@find_executable_batch_size(starting_batch_size=self.max_batch_size)