text
stringlengths
0
15.3k
def forward_batch(batch_size):
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
length = max(max_context_enc, max_cont_enc)
batched_conts = torch.ones((batch_size, length), device=self.device).long()
test_batch = torch.ones((batch_size, length), device=self.device).long()
call_kwargs = {'attn_mask': test_batch, 'labels': batched_conts}
else:
call_kwargs = {}
test_batch = torch.ones((batch_size, max_length), device=self.device).long()
for _ in range(5):
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)
return batch_size
try:
batch_size = forward_batch()
except RuntimeError as e:
if 'No executable batch size found' in str(e):
batch_size = 1
else:
raise
if self.world_size > 1:
max_rnk_bs = torch.tensor([batch_size], device=self.device)
gathered = self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
batch_size = min(gathered)
clear_torch_cache()
return batch_size
clear_torch_cache()
return batch_size
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None) -> List[int]:
""""""
special_tokens_kwargs = {}
if add_special_tokens is None:
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
special_tokens_kwargs = {'add_special_tokens': False or self.add_bos_token}
else:
special_tokens_kwargs = {'add_special_tokens': add_special_tokens}
encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
if left_truncate_len:
encoding = encoding[-left_truncate_len:]
return encoding
def tok_batch_encode(self, strings: List[str], padding_side: str='left', left_truncate_len: int=None, truncation: bool=False) -> Tuple[torch.Tensor, torch.Tensor]:
old_padding_side = self.tokenizer.padding_side
self.tokenizer.padding_side = padding_side
add_special_tokens = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
add_special_tokens = {'add_special_tokens': False or self.add_bos_token}
encoding = self.tokenizer(strings, truncation=truncation, padding='longest', return_tensors='pt', **add_special_tokens)
if left_truncate_len:
encoding['input_ids'] = encoding['input_ids'][:, -left_truncate_len:]
encoding['attention_mask'] = encoding['attention_mask'][:, -left_truncate_len:]
self.tokenizer.padding_side = old_padding_side
return (encoding['input_ids'], encoding['attention_mask'])
def tok_decode(self, tokens, skip_special_tokens=True):
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
def _model_call(self, inps, attn_mask=None, labels=None):
with torch.no_grad():
if attn_mask is not None or labels is not None:
assert attn_mask is not None and labels is not None
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
return self.model(input_ids=inps, attention_mask=attn_mask, labels=labels).logits
else:
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
return self.model(inps).logits
def _model_generate(self, context, max_length, stop, **generation_kwargs):
generation_kwargs['temperature'] = generation_kwargs.get('temperature', 0.0)
do_sample = generation_kwargs.get('do_sample', None)
if generation_kwargs.get('temperature') == 0.0 and do_sample is None:
generation_kwargs['do_sample'] = do_sample = False
if do_sample is False and generation_kwargs.get('temperature') == 0.0:
generation_kwargs.pop('temperature')
stopping_criteria = stop_sequences_criteria(self.tokenizer, stop, context.shape[1], context.shape[0])
return self.model.generate(input_ids=context, max_length=max_length, stopping_criteria=stopping_criteria, pad_token_id=self.tokenizer.pad_token_id, use_cache=True, **generation_kwargs)
def _select_cont_toks(self, logits: torch.Tensor, contlen: int=None, inplen: int=None) -> torch.Tensor:
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
assert contlen and inplen, 'Must pass input len and cont. len to select scored logits for causal LM'
logits = logits[inplen - contlen:inplen]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
assert contlen and (not inplen), 'Selecting scored logits for Seq2SeqLM requires only cont. len'
logits = logits[:contlen]
return logits
def loglikelihood_rolling(self, requests: List[Instance], disable_tqdm: bool=False) -> List[float]:
loglikelihoods = []
adaptive_batch_size = None
if self.batch_size == 'auto':
print('Passed argument batch_size = auto. Detecting largest batch size')
batch_size = self._detect_batch_size()
print(f'Determined Largest batch size: {batch_size}')
adaptive_batch_size = batch_size
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm or self.rank != 0):
rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(token_list=self.tok_encode(string), prefix_token=self.prefix_token_id, max_seq_len=self.max_length, context_len=1)))
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
pad_amnt = 0
if self.world_size > 1:
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)