text
stringlengths 0
15.3k
|
---|
return ([len(ref) for ref in refs], maxcounts) |
def cook_test(test, item, n=4): |
(reflens, refmaxcounts) = item |
test = normalize(test) |
result: Dict[str, Any] = {} |
result['testlen'] = len(test) |
if eff_ref_len == 'shortest': |
result['reflen'] = min(reflens) |
elif eff_ref_len == 'average': |
result['reflen'] = float(sum(reflens)) / len(reflens) |
elif eff_ref_len == 'closest': |
min_diff: Optional[int] = None |
for reflen in reflens: |
if min_diff is None or abs(reflen - len(test)) < min_diff: |
min_diff = abs(reflen - len(test)) |
result['reflen'] = reflen |
result['guess'] = [max(len(test) - k + 1, 0) for k in range(1, n + 1)] |
result['correct'] = [0] * n |
counts = count_ngrams(test, n) |
for (ngram, count) in counts.items(): |
result['correct'][len(ngram) - 1] += min(refmaxcounts.get(ngram, 0), count) |
return result |
def score_cooked(allcomps, n=4, ground=0, smooth=1): |
totalcomps: Dict[str, Any] = {'testlen': 0, 'reflen': 0, 'guess': [0] * n, 'correct': [0] * n} |
for comps in allcomps: |
for key in ['testlen', 'reflen']: |
totalcomps[key] += comps[key] |
for key in ['guess', 'correct']: |
for k in range(n): |
totalcomps[key][k] += comps[key][k] |
logbleu = 0.0 |
all_bleus: List[float] = [] |
for k in range(n): |
correct = totalcomps['correct'][k] |
guess = totalcomps['guess'][k] |
addsmooth = 0 |
if smooth == 1 and k > 0: |
addsmooth = 1 |
logbleu += math.log(correct + addsmooth + sys.float_info.min) - math.log(guess + addsmooth + sys.float_info.min) |
if guess == 0: |
all_bleus.append(-10000000.0) |
else: |
all_bleus.append(math.log(correct + sys.float_info.min) - math.log(guess)) |
logbleu /= float(n) |
all_bleus.insert(0, logbleu) |
brevPenalty = min(0, 1 - float(totalcomps['reflen'] + 1) / (totalcomps['testlen'] + 1)) |
for i in range(len(all_bleus)): |
if i == 0: |
all_bleus[i] += brevPenalty |
all_bleus[i] = math.exp(all_bleus[i]) |
return all_bleus |
def bleu(refs, candidate, ground=0, smooth=1): |
refs = cook_refs(refs) |
test = cook_test(candidate, refs) |
return score_cooked([test], ground=ground, smooth=smooth) |
def splitPuncts(line): |
return ' '.join(re.findall('[\\w]+|[^\\s\\w]', line)) |
def computeMaps(predictions, goldfile): |
predictionMap: Dict[str, list] = {} |
goldMap: Dict[str, list] = {} |
gf = open(goldfile, 'r', encoding='utf-8') |
for row in predictions: |
cols = row.strip().split('\t') |
if len(cols) == 1: |
(rid, pred) = (cols[0], '') |
else: |
(rid, pred) = (cols[0], cols[1]) |
predictionMap[rid] = [splitPuncts(pred.strip().lower())] |
for row in gf: |
(rid, pred) = row.split('\t') |
if rid in predictionMap: |
if rid not in goldMap: |
goldMap[rid] = [] |
goldMap[rid].append(splitPuncts(pred.strip().lower())) |
sys.stderr.write('Total: ' + str(len(goldMap)) + '\n') |
return (goldMap, predictionMap) |
def bleuFromMaps(m1, m2): |
score = [0] * 5 |
num = 0.0 |
for key in m1: |
if key in m2: |
bl = bleu(m1[key], m2[key][0]) |
score = [score[i] + bl[i] for i in range(0, len(bl))] |
num += 1 |
return [s * 100.0 / num for s in score] |
def smoothed_bleu_4(references, predictions, **kwargs): |
predictionMap = {} |
goldMap = {} |
for (rid, pred) in enumerate(predictions): |
predictionMap[rid] = [splitPuncts(pred.strip().lower())] |
for (rid, row) in enumerate(references): |
goldMap[rid] = [splitPuncts(row.strip().lower())] |
return bleuFromMaps(goldMap, predictionMap)[0] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.