text
stringlengths 0
15.3k
|
---|
def filter_age(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'age') |
def filter_religion(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'religion') |
def filter_disability(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'disability') |
def filter_orientation(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'sexual-orientation') |
def filter_nationality(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'nationality') |
def filter_appearance(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'physical-appearance') |
def filter_autre(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'autre') |
# File: lm-evaluation-harness-main/lm_eval/tasks/csatqa/_generate_configs.py |
"""""" |
import argparse |
import os |
import yaml |
from tqdm import tqdm |
from lm_eval.logger import eval_logger |
SUBSETS = ['WR', 'GR', 'RCS', 'RCSS', 'RCH', 'LI'] |
def parse_args(): |
parser = argparse.ArgumentParser() |
parser.add_argument('--base_yaml_path', required=True) |
parser.add_argument('--save_prefix_path', default='csatqa') |
parser.add_argument('--task_prefix', default='') |
return parser.parse_args() |
if __name__ == '__main__': |
args = parse_args() |
base_yaml_name = os.path.split(args.base_yaml_path)[-1] |
with open(args.base_yaml_path, encoding='utf-8') as f: |
base_yaml = yaml.full_load(f) |
for name in tqdm(SUBSETS): |
yaml_dict = {'include': base_yaml_name, 'task': f'csatqa_{args.task_prefix}_{name}' if args.task_prefix != '' else f'csatqa_{name.lower()}', 'dataset_name': name} |
file_save_path = args.save_prefix_path + f'_{name.lower()}.yaml' |
eval_logger.info(f'Saving yaml for subset {name} to {file_save_path}') |
with open(file_save_path, 'w', encoding='utf-8') as yaml_file: |
yaml.dump(yaml_dict, yaml_file, width=float('inf'), allow_unicode=True, default_style='"') |
# File: lm-evaluation-harness-main/lm_eval/tasks/csatqa/utils.py |
import datasets |
def process_docs(dataset: datasets.Dataset) -> datasets.Dataset: |
def _process_doc(doc): |
instruction = f"๋ค์์ ์ฝ๊ณ ์ ๋ต์ผ๋ก ์๋ง์ ๊ฒ์ ๊ณ ๋ฅด์์.\n### Context: {doc['context']}\n### Question: {doc['question']}\n### Options:\n(1) {doc['option#1']}\n(2) {doc['option#2']}\n(3) {doc['option#3']}\n(4) {doc['option#4']}\n(5) {doc['option#5']}\n### Answer: ์ฃผ์ด์ง ๋ฌธ์ ์ ์ ๋ต์" |
out_doc = {'question': instruction, 'choices': ['(1)', '(2)', '(3)', '(4)', '(5)'], 'gold': int(doc['gold']) - 1} |
return out_doc |
return dataset.map(_process_doc) |
# File: lm-evaluation-harness-main/lm_eval/tasks/drop/utils.py |
import re |
import string |
import numpy as np |
from scipy.optimize import linear_sum_assignment |
_ARTICLES = re.compile('\\b(a|an|the)\\b', re.UNICODE) |
def process_docs(dataset): |
def _process(doc): |
return {'id': doc['query_id'], 'passage': doc['passage'], 'question': doc['question'], 'answers': get_answers(doc)} |
return dataset.map(_process) |
def get_answers(doc): |
def _flatten_validated_answers(validated_answers): |
valid_answers = [] |
for i in range(len(validated_answers['number'])): |
valid_answers.append({'number': validated_answers['number'][i], 'date': validated_answers['date'][i], 'spans': validated_answers['spans'][i]}) |
return valid_answers |
answers = [] |
answers_set = set() |
candidates = [doc['answer']] + _flatten_validated_answers(doc['validated_answers']) |
for candidate in candidates: |
answer = parse_answer(candidate) |
if answer in answers_set: |
continue |
answers_set.add(answer) |
answers.append(answer) |
return answers |
def parse_answer(answer): |
if answer['number'] != '': |
return (str(answer['number']),) |
if answer['spans'] != []: |
return tuple(answer['spans']) |
return (' '.join([answer['date']['day'], answer['date']['month'], answer['date']['year']]).strip(),) |
def process_results(doc, results): |
(preds, golds) = (results, doc['answers']) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.