text
stringlengths 0
15.3k
|
---|
max_em = 0 |
max_f1 = 0 |
for gold_answer in golds: |
(exact_match, f1_score) = get_metrics(preds, gold_answer) |
if gold_answer[0].strip(): |
max_em = max(max_em, exact_match) |
max_f1 = max(max_f1, f1_score) |
return {'em': max_em, 'f1': max_f1} |
def get_metrics(predicted, gold): |
predicted_bags = _answer_to_bags(predicted) |
gold_bags = _answer_to_bags(gold) |
if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len(gold_bags[0]): |
exact_match = 1.0 |
else: |
exact_match = 0.0 |
f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1]) |
f1 = np.mean(f1_per_bag) |
f1 = round(f1, 2) |
return (exact_match, f1) |
def _answer_to_bags(answer): |
if isinstance(answer, (list, tuple)): |
raw_spans = answer |
else: |
raw_spans = [answer] |
normalized_spans = [] |
token_bags = [] |
for raw_span in raw_spans: |
normalized_span = _normalize(raw_span) |
normalized_spans.append(normalized_span) |
token_bags.append(set(normalized_span.split())) |
return (normalized_spans, token_bags) |
def _align_bags(predicted, gold): |
scores = np.zeros([len(gold), len(predicted)]) |
for (gold_index, gold_item) in enumerate(gold): |
for (pred_index, pred_item) in enumerate(predicted): |
if _match_numbers_if_present(gold_item, pred_item): |
scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item) |
(row_ind, col_ind) = linear_sum_assignment(-scores) |
max_scores = np.zeros([max(len(gold), len(predicted))]) |
for (row, column) in zip(row_ind, col_ind): |
max_scores[row] = max(max_scores[row], scores[row, column]) |
return max_scores |
def _compute_f1(predicted_bag, gold_bag): |
intersection = len(gold_bag.intersection(predicted_bag)) |
if not predicted_bag: |
precision = 1.0 |
else: |
precision = intersection / float(len(predicted_bag)) |
if not gold_bag: |
recall = 1.0 |
else: |
recall = intersection / float(len(gold_bag)) |
f1 = 2 * precision * recall / (precision + recall) if not (precision == 0.0 and recall == 0.0) else 0.0 |
return f1 |
def _match_numbers_if_present(gold_bag, predicted_bag): |
gold_numbers = set() |
predicted_numbers = set() |
for word in gold_bag: |
if _is_number(word): |
gold_numbers.add(word) |
for word in predicted_bag: |
if _is_number(word): |
predicted_numbers.add(word) |
if not gold_numbers or gold_numbers.intersection(predicted_numbers): |
return True |
return False |
def _is_number(text): |
try: |
float(text) |
return True |
except ValueError: |
return False |
def _remove_articles(text): |
return _ARTICLES.sub(' ', text) |
def _white_space_fix(text): |
return ' '.join(text.split()) |
def _remove_punc(text): |
exclude = set(string.punctuation) |
if not _is_number(text): |
return ''.join((ch for ch in text if ch not in exclude)) |
else: |
return text |
def _fix_number(text): |
return str(float(text)) if _is_number(text) else text |
def _tokenize(text): |
return re.split(' |-', text) |
def _normalize(answer): |
tokens = [_white_space_fix(_remove_articles(_fix_number(_remove_punc(token.lower())))) for token in _tokenize(answer)] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.