text
stringlengths 0
15.3k
|
---|
if __name__ == '__main__': |
reference_file = sys.argv[1] |
predictions = [] |
for row in sys.stdin: |
predictions.append(row) |
(goldMap, predictionMap) = computeMaps(predictions, reference_file) |
print(bleuFromMaps(goldMap, predictionMap)[0]) |
# File: lm-evaluation-harness-main/lm_eval/tasks/copal_id/utils.py |
from functools import partial |
def convert_choice(choice): |
return choice[0].lower() + choice[1:] |
def doc_to_text(doc, connector): |
conn = connector[doc['question']] |
return doc['premise'].strip()[:-1] + f' {conn}' |
def doc_to_choice(doc): |
return [convert_choice(doc['choice1']), convert_choice(doc['choice2'])] |
doc_to_text_id = partial(doc_to_text, connector={'cause': 'karena', 'effect': 'maka'}) |
# File: lm-evaluation-harness-main/lm_eval/tasks/coqa/utils.py |
from itertools import zip_longest |
import transformers.data.metrics.squad_metrics as squad_metrics |
def doc_to_text(doc): |
doc_text = doc['story'] + '\n\n' |
for (q, a) in zip_longest(doc['questions']['input_text'], doc['answers']['input_text'][:-1]): |
question = f'Q: {q}\n\n' |
answer = f'A: {a}\n\n' if a is not None else 'A:' |
doc_text += question + answer |
return doc_text |
def doc_to_target(doc): |
turn_id = len(doc['questions']['input_text']) |
answers = [] |
answer_forturn = doc['answers']['input_text'][turn_id - 1] |
answers.append(answer_forturn) |
additional_answers = doc.get('additional_answers') |
if additional_answers: |
for key in additional_answers: |
additional_answer_for_turn = additional_answers[key]['input_text'][turn_id - 1] |
if additional_answer_for_turn.lower() not in map(str.lower, answers): |
answers.append(additional_answer_for_turn) |
return answers |
def em(gold_list, pred): |
em_sum = 0.0 |
if len(gold_list) > 1: |
for i in range(len(gold_list)): |
gold_answers = gold_list[0:i] + gold_list[i + 1:] |
em_sum += max((squad_metrics.compute_exact(a, pred) for a in gold_answers)) |
else: |
em_sum += max((squad_metrics.compute_exact(a, pred) for a in gold_list)) |
return em_sum / max(1, len(gold_list)) |
def compute_scores(gold_list, pred): |
f1_sum = 0.0 |
em_sum = 0.0 |
if len(gold_list) > 1: |
for i in range(len(gold_list)): |
gold_answers = gold_list[0:i] + gold_list[i + 1:] |
em_sum += max((squad_metrics.compute_exact(a, pred) for a in gold_answers)) |
f1_sum += max((squad_metrics.compute_f1(a, pred) for a in gold_answers)) |
else: |
em_sum += max((squad_metrics.compute_exact(a, pred) for a in gold_list)) |
f1_sum += max((squad_metrics.compute_f1(a, pred) for a in gold_list)) |
return {'em': em_sum / max(1, len(gold_list)), 'f1': f1_sum / max(1, len(gold_list))} |
def process_results(doc, results): |
gold_list = doc_to_target(doc) |
pred = results[0].strip().split('\n')[0] |
scores = compute_scores(gold_list, pred) |
return scores |
# File: lm-evaluation-harness-main/lm_eval/tasks/crows_pairs/utils.py |
import datasets |
def process_results(doc, results): |
(lls, _) = zip(*results) |
(likelihood1, likelihood2) = lls |
diff = abs(likelihood1 - likelihood2) |
acc = 1.0 if likelihood1 > likelihood2 else 0.0 |
return {'likelihood_diff': diff, 'pct_stereotype': acc} |
def doc_to_choice(doc): |
return [doc['sent_more'], doc['sent_less']] |
def filter_dataset(dataset: datasets.Dataset, bias_type: str) -> datasets.Dataset: |
return dataset.filter(lambda example: example['bias_type'].startswith(bias_type)) |
def filter_race_color(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'race-color') |
def filter_socio(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'socioeconomic') |
def filter_gender(dataset: datasets.Dataset) -> datasets.Dataset: |
return filter_dataset(dataset, 'gender') |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.