repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf
CAMeL-Lab
bert
12
6
transformers
0
token-classification
true
true
false
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,317
# CAMeLBERT-MSA POS-GLF Model ## Model description **CAMeLBERT-MSA POS-GLF Model** is a Gulf Arabic POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [Gumar](https://camel.abudhabi.nyu.edu/annotated-gumar-corpus/) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA POS-GLF model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-glf') >>> text = 'شلونك ؟ شخبارك ؟' >>> pos(text) [{'entity': 'adv_interrog', 'score': 0.5622676, 'index': 1, 'word': 'شلون', 'start': 0, 'end': 4}, {'entity': 'prep', 'score': 0.99969727, 'index': 2, 'word': '##ك', 'start': 4, 'end': 5}, {'entity': 'punc', 'score': 0.9999299, 'index': 3, 'word': '؟', 'start': 6, 'end': 7}, {'entity': 'noun', 'score': 0.9843815, 'index': 4, 'word': 'ش', 'start': 8, 'end': 9}, {'entity': 'noun', 'score': 0.9998467, 'index': 5, 'word': '##خبار', 'start': 9, 'end': 13}, {'entity': 'prep', 'score': 0.9993611, 'index': 6, 'word': '##ك', 'start': 13, 'end': 14}, {'entity': 'punc', 'score': 0.99993765, 'index': 7, 'word': '؟', 'start': 15, 'end': 16}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa
CAMeL-Lab
bert
9
7
transformers
0
token-classification
true
true
false
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,778
# CAMeLBERT-MSA POS-MSA Model ## Model description **CAMeLBERT-MSA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-MSA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset . Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-MSA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999764, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.99991846, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.9998356, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.99368894, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999426, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.9999339, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99996775, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.99996895, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99990183, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.9999347, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.99931145, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter
CAMeL-Lab
bert
9
5
transformers
2
fill-mask
true
true
true
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
10,745
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-MSA-quarter** (`bert-base-arabic-camelbert-msa-quarter`), a model pre-trained on a quarter of the full MSA dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| |✔|`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| ||`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.17437894642353058, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]', 'score': 0.042852893471717834, 'token': 6232, 'token_str': 'النجاح'}, {'sequence': '[CLS] الهدف من الحياة هو البقاء. [SEP]', 'score': 0.030925093218684196, 'token': 9331, 'token_str': 'البقاء'}, {'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]', 'score': 0.02964409440755844, 'token': 3088, 'token_str': 'الحب'}, {'sequence': '[CLS] الهدف من الحياة هو الكمال. [SEP]', 'score': 0.028030086308717728, 'token': 17188, 'token_str': 'الكمال'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-quarter') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment
CAMeL-Lab
bert
9
78
transformers
3
text-classification
true
true
false
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,301
# CAMeLBERT MSA SA Model ## Model description **CAMeLBERT MSA SA Model** is a Sentiment Analysis (SA) model that was built by fine-tuning the [CAMeLBERT Modern Standard Arabic (MSA)](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-msa/) model. For the fine-tuning, we used the [ASTD](https://aclanthology.org/D15-1299.pdf), [ArSAS](http://lrec-conf.org/workshops/lrec2018/W30/pdf/22_W30.pdf), and [SemEval](https://aclanthology.org/S17-2088.pdf) datasets. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT MSA SA model directly as part of our [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component (*recommended*) or as part of the transformers pipeline. #### How to use To use the model with the [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) SA component: ```python >>> from camel_tools.sentiment import SentimentAnalyzer >>> sa = SentimentAnalyzer("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment") >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa.predict(sentences) >>> ['positive', 'negative'] ``` You can also use the SA model directly with a transformers pipeline: ```python >>> from transformers import pipeline >>> sa = pipeline('sentiment-analysis', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment') >>> sentences = ['أنا بخير', 'أنا لست بخير'] >>> sa(sentences) [{'label': 'positive', 'score': 0.9616648554801941}, {'label': 'negative', 'score': 0.9779177904129028}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth
CAMeL-Lab
bert
9
56
transformers
2
fill-mask
true
true
true
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
10,765
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-MSA-sixteenth** (`bert-base-arabic-camelbert-msa-sixteenth`), a model pre-trained on a sixteenth of the full MSA dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| ||`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| |✔|`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو التغيير. [SEP]', 'score': 0.08320745080709457, 'token': 7946, 'token_str': 'التغيير'}, {'sequence': '[CLS] الهدف من الحياة هو التعلم. [SEP]', 'score': 0.04305094853043556, 'token': 12554, 'token_str': 'التعلم'}, {'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]', 'score': 0.0417640283703804, 'token': 2854, 'token_str': 'العمل'}, {'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.041371218860149384, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو المعرفة. [SEP]', 'score': 0.039794355630874634, 'token': 7344, 'token_str': 'المعرفة'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAMeL-Lab/bert-base-arabic-camelbert-msa
CAMeL-Lab
bert
9
486
transformers
4
fill-mask
true
true
true
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
10,666
# CAMeLBERT: A collection of pre-trained models for Arabic NLP tasks ## Model description **CAMeLBERT** is a collection of BERT models pre-trained on Arabic texts with different sizes and variants. We release pre-trained language models for Modern Standard Arabic (MSA), dialectal Arabic (DA), and classical Arabic (CA), in addition to a model pre-trained on a mix of the three. We also provide additional models that are pre-trained on a scaled-down set of the MSA variant (half, quarter, eighth, and sixteenth). The details are described in the paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* This model card describes **CAMeLBERT-MSA** (`bert-base-arabic-camelbert-msa`), a model pre-trained on the entire MSA dataset. ||Model|Variant|Size|#Word| |-|-|:-:|-:|-:| ||`bert-base-arabic-camelbert-mix`|CA,DA,MSA|167GB|17.3B| ||`bert-base-arabic-camelbert-ca`|CA|6GB|847M| ||`bert-base-arabic-camelbert-da`|DA|54GB|5.8B| |✔|`bert-base-arabic-camelbert-msa`|MSA|107GB|12.6B| ||`bert-base-arabic-camelbert-msa-half`|MSA|53GB|6.3B| ||`bert-base-arabic-camelbert-msa-quarter`|MSA|27GB|3.1B| ||`bert-base-arabic-camelbert-msa-eighth`|MSA|14GB|1.6B| ||`bert-base-arabic-camelbert-msa-sixteenth`|MSA|6GB|746M| ## Intended uses You can use the released model for either masked language modeling or next sentence prediction. However, it is mostly intended to be fine-tuned on an NLP task, such as NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. We release our fine-tuninig code [here](https://github.com/CAMeL-Lab/CAMeLBERT). #### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='CAMeL-Lab/bert-base-arabic-camelbert-msa') >>> unmasker("الهدف من الحياة هو [MASK] .") [{'sequence': '[CLS] الهدف من الحياة هو العمل. [SEP]', 'score': 0.08507660031318665, 'token': 2854, 'token_str': 'العمل'}, {'sequence': '[CLS] الهدف من الحياة هو الحياة. [SEP]', 'score': 0.058905381709337234, 'token': 3696, 'token_str': 'الحياة'}, {'sequence': '[CLS] الهدف من الحياة هو النجاح. [SEP]', 'score': 0.04660581797361374, 'token': 6232, 'token_str': 'النجاح'}, {'sequence': '[CLS] الهدف من الحياة هو الربح. [SEP]', 'score': 0.04156001657247543, 'token': 12413, 'token_str': 'الربح'}, {'sequence': '[CLS] الهدف من الحياة هو الحب. [SEP]', 'score': 0.03534102067351341, 'token': 3088, 'token_str': 'الحب'}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa') model = AutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa') model = TFAutoModel.from_pretrained('CAMeL-Lab/bert-base-arabic-camelbert-msa') text = "مرحبا يا عالم." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ## Training data - MSA (Modern Standard Arabic) - [The Arabic Gigaword Fifth Edition](https://catalog.ldc.upenn.edu/LDC2011T11) - [Abu El-Khair Corpus](http://www.abuelkhair.net/index.php/en/arabic/abu-el-khair-corpus) - [OSIAN corpus](https://vlo.clarin.eu/search;jsessionid=31066390B2C9E8C6304845BA79869AC1?1&q=osian) - [Arabic Wikipedia](https://archive.org/details/arwiki-20190201) - The unshuffled version of the Arabic [OSCAR corpus](https://oscar-corpus.com/) ## Training procedure We use [the original implementation](https://github.com/google-research/bert) released by Google for pre-training. We follow the original English BERT model's hyperparameters for pre-training, unless otherwise specified. ### Preprocessing - After extracting the raw text from each corpus, we apply the following pre-processing. - We first remove invalid characters and normalize white spaces using the utilities provided by [the original BERT implementation](https://github.com/google-research/bert/blob/eedf5716ce1268e56f0a50264a88cafad334ac61/tokenization.py#L286-L297). - We also remove lines without any Arabic characters. - We then remove diacritics and kashida using [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools). - Finally, we split each line into sentences with a heuristics-based sentence segmenter. - We train a WordPiece tokenizer on the entire dataset (167 GB text) with a vocabulary size of 30,000 using [HuggingFace's tokenizers](https://github.com/huggingface/tokenizers). - We do not lowercase letters nor strip accents. ### Pre-training - The model was trained on a single cloud TPU (`v3-8`) for one million steps in total. - The first 90,000 steps were trained with a batch size of 1,024 and the rest was trained with a batch size of 256. - The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. - We use whole word masking and a duplicate factor of 10. - We set max predictions per sequence to 20 for the dataset with max sequence length of 128 tokens and 80 for the dataset with max sequence length of 512 tokens. - We use a random seed of 12345, masked language model probability of 0.15, and short sequence probability of 0.1. - The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results - We evaluate our pre-trained language models on five NLP tasks: NER, POS tagging, sentiment analysis, dialect identification, and poetry classification. - We fine-tune and evaluate the models using 12 dataset. - We used Hugging Face's transformers to fine-tune our CAMeLBERT models. - We used transformers `v3.1.0` along with PyTorch `v1.5.1`. - The fine-tuning was done by adding a fully connected linear layer to the last hidden state. - We use \\(F_{1}\\) score as a metric for all tasks. - Code used for fine-tuning is available [here](https://github.com/CAMeL-Lab/CAMeLBERT). ### Results | Task | Dataset | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | --------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | NER | ANERcorp | MSA | 80.8% | 67.9% | 74.1% | 82.4% | 82.0% | 82.1% | 82.6% | 80.8% | | POS | PATB (MSA) | MSA | 98.1% | 97.8% | 97.7% | 98.3% | 98.2% | 98.3% | 98.2% | 98.2% | | | ARZTB (EGY) | DA | 93.6% | 92.3% | 92.7% | 93.6% | 93.6% | 93.7% | 93.6% | 93.6% | | | Gumar (GLF) | DA | 97.3% | 97.7% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | 97.9% | | SA | ASTD | MSA | 76.3% | 69.4% | 74.6% | 76.9% | 76.0% | 76.8% | 76.7% | 75.3% | | | ArSAS | MSA | 92.7% | 89.4% | 91.8% | 93.0% | 92.6% | 92.5% | 92.5% | 92.3% | | | SemEval | MSA | 69.0% | 58.5% | 68.4% | 72.1% | 70.7% | 72.8% | 71.6% | 71.2% | | DID | MADAR-26 | DA | 62.9% | 61.9% | 61.8% | 62.6% | 62.0% | 62.8% | 62.0% | 62.2% | | | MADAR-6 | DA | 92.5% | 91.5% | 92.2% | 91.9% | 91.8% | 92.2% | 92.1% | 92.0% | | | MADAR-Twitter-5 | MSA | 75.7% | 71.4% | 74.2% | 77.6% | 78.5% | 77.3% | 77.7% | 76.2% | | | NADI | DA | 24.7% | 17.3% | 20.1% | 24.9% | 24.6% | 24.6% | 24.9% | 23.8% | | Poetry | APCD | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | ### Results (Average) | | Variant | Mix | CA | DA | MSA | MSA-1/2 | MSA-1/4 | MSA-1/8 | MSA-1/16 | | -------------------- | ------- | ----- | ----- | ----- | ----- | ------- | ------- | ------- | -------- | | Variant-wise-average<sup>[[1]](#footnote-1)</sup> | MSA | 82.1% | 75.7% | 80.1% | 83.4% | 83.0% | 83.3% | 83.2% | 82.3% | | | DA | 74.4% | 72.1% | 72.9% | 74.2% | 74.0% | 74.3% | 74.1% | 73.9% | | | CA | 79.8% | 80.9% | 79.6% | 79.7% | 79.9% | 80.0% | 79.7% | 79.8% | | Macro-Average | ALL | 78.7% | 74.7% | 77.1% | 79.2% | 79.0% | 79.2% | 79.1% | 78.6% | <a name="footnote-1">[1]</a>: Variant-wise-average refers to average over a group of tasks in the same language variant. ## Acknowledgements This research was supported with Cloud TPUs from Google’s TensorFlow Research Cloud (TFRC). ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
CAUKiel/JavaBERT-uncased
CAUKiel
bert
7
22
transformers
0
fill-mask
true
false
false
apache-2.0
['java', 'code']
null
null
0
0
0
0
1
0
1
[]
false
true
true
535
## JavaBERT A BERT-like model pretrained on Java software code. ### Training Data The model was trained on 2,998,345 Java files retrieved from open source projects on GitHub. A ```bert-base-uncased``` tokenizer is used by this model. ### Training Objective A MLM (Masked Language Model) objective was used to train this model. ### Usage ```python from transformers import pipeline pipe = pipeline('fill-mask', model='CAUKiel/JavaBERT') output = pipe(CODE) # Replace with Java code; Use '[MASK]' to mask tokens/words in the code. ```
CAUKiel/JavaBERT
CAUKiel
bert
7
178
transformers
5
fill-mask
true
false
false
apache-2.0
['code']
null
null
2
0
1
1
0
0
0
[]
false
true
true
3,686
# Model Card for JavaBERT A BERT-like model pretrained on Java software code. # Model Details ## Model Description A BERT-like model pretrained on Java software code. - **Developed by:** Christian-Albrechts-University of Kiel (CAUKiel) - **Shared by [Optional]:** Hugging Face - **Model type:** Fill-Mask - **Language(s) (NLP):** en - **License:** Apache-2.0 - **Related Models:** A version of this model using an uncased tokenizer is available at [CAUKiel/JavaBERT-uncased](https://huggingface.co/CAUKiel/JavaBERT-uncased). - **Parent Model:** BERT - **Resources for more information:** - [Associated Paper](https://arxiv.org/pdf/2110.10404.pdf) # Uses ## Direct Use Fill-Mask ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. { see paper= word something) # Training Details ## Training Data The model was trained on 2,998,345 Java files retrieved from open source projects on GitHub. A ```bert-base-cased``` tokenizer is used by this model. ## Training Procedure ### Training Objective A MLM (Masked Language Model) objective was used to train this model. ### Preprocessing More information needed. ### Speeds, Sizes, Times More information needed. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed. ### Factors ### Metrics More information needed. ## Results More information needed. # Model Examination More information needed. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed. - **Hours used:** More information needed. - **Cloud Provider:** More information needed. - **Compute Region:** More information needed. - **Carbon Emitted:** More information needed. # Technical Specifications [optional] ## Model Architecture and Objective More information needed. ## Compute Infrastructure More information needed. ### Hardware More information needed. ### Software More information needed. # Citation **BibTeX:** More information needed. **APA:** More information needed. # Glossary [optional] More information needed. # More Information [optional] More information needed. # Model Card Authors [optional] Christian-Albrechts-University of Kiel (CAUKiel) in collaboration with Ezi Ozoani and the team at Hugging Face # Model Card Contact More information needed. # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import pipeline pipe = pipeline('fill-mask', model='CAUKiel/JavaBERT') output = pipe(CODE) # Replace with Java code; Use '[MASK]' to mask tokens/words in the code. ``` </details>
CLAck/en-km
CLAck
marian
11
2
transformers
1
translation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
1,256
This model translate from English to Khmer. It is the pure fine-tuned version of MarianMT model en-zh. This is the result after 30 epochs of pure fine-tuning of khmer language. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-km") tokenizer = AutoTokenizer.from_pretrained("CLAck/en-km") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2khm>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2khm> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ```
CLAck/en-vi
CLAck
marian
11
25
transformers
0
translation
true
false
false
apache-2.0
['en', 'vi']
['ALT']
null
1
0
0
1
0
0
0
['translation']
false
true
true
1,748
This is a finetuning of a MarianMT pretrained on English-Chinese. The target language pair is English-Vietnamese. The first phase of training (mixed) is performed on a dataset containing both English-Chinese and English-Vietnamese sentences. The second phase of training (pure) is performed on a dataset containing only English-Vietnamese sentences. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/en-vi") tokenizer = AutoTokenizer.from_pretrained("CLAck/en-vi") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2vi>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 26.2407 | | 2.0 | 32.6016 | | 3.0 | 35.4060 | | 4.0 | 36.6737 | | 5.0 | 37.3774 | PURE | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 37.3169 | | 2.0 | 37.4407 | | 3.0 | 37.6696 | | 4.0 | 37.8765 | | 5.0 | 38.0105 |
CLAck/indo-mixed
CLAck
marian
11
3
transformers
1
translation
true
false
false
apache-2.0
['en', 'id']
['ALT']
null
1
0
0
1
0
0
0
['translation']
false
true
true
1,515
This model is pretrained on Chinese and Indonesian languages, and fine-tuned on Indonesian language. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-mixed") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-mixed") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results MIXED | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 24.2579 | | 2.0 | 30.6287 | | 3.0 | 34.4417 | | 4.0 | 36.2577 | | 5.0 | 37.3488 | FINETUNING | Epoch | Bleu | |:-----:|:-------:| | 6.0 | 34.1676 | | 7.0 | 35.2320 | | 8.0 | 36.7110 | | 9.0 | 37.3195 | | 10.0 | 37.9461 |
CLAck/indo-pure
CLAck
marian
11
3
transformers
0
translation
true
false
false
apache-2.0
['en', 'id']
['ALT']
null
1
0
0
1
0
0
0
['translation']
false
true
true
1,418
Pure fine-tuning version of MarianMT en-zh on Indonesian Language ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/indo-pure") tokenizer = AutoTokenizer.from_pretrained("CLAck/indo-pure") # Download a tokenizer that can tokenize English since the model Tokenizer doesn't know anymore how to do it # We used the one coming from the initial model # This tokenizer is used to tokenize the input sentence tokenizer_en = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-en-zh') # These special tokens are needed to reproduce the original tokenizer tokenizer_en.add_tokens(["<2zh>", "<2indo>"], special_tokens=True) sentence = "The cat is on the table" # This token is needed to identify the target language input_sentence = "<2indo> " + sentence translated = model.generate(**tokenizer_en(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 15.9336 | | 2.0 | 28.0175 | | 3.0 | 31.6603 | | 4.0 | 33.9151 | | 5.0 | 35.0472 | | 6.0 | 35.8469 | | 7.0 | 36.1180 | | 8.0 | 36.6018 | | 9.0 | 37.1973 | | 10.0 | 37.2738 |
CLAck/vi-en
CLAck
marian
11
19
transformers
0
translation
true
false
false
apache-2.0
['en', 'vi']
['ALT']
null
1
0
0
1
0
0
0
['translation']
false
true
true
929
This is a finetuning of a MarianMT pretrained on Chinese-English. The target language pair is Vietnamese-English. ### Example ``` %%capture !pip install transformers transformers[sentencepiece] from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Download the pretrained model for English-Vietnamese available on the hub model = AutoModelForSeq2SeqLM.from_pretrained("CLAck/vi-en") tokenizer = AutoTokenizer.from_pretrained("CLAck/vi-en") sentence = your_vietnamese_sentence # This token is needed to identify the source language input_sentence = "<2vi> " + sentence translated = model.generate(**tokenizer(input_sentence, return_tensors="pt", padding=True)) output_sentence = [tokenizer.decode(t, skip_special_tokens=True) for t in translated] ``` ### Training results | Epoch | Bleu | |:-----:|:-------:| | 1.0 | 21.3180 | | 2.0 | 26.8012 | | 3.0 | 29.3578 | | 4.0 | 31.5178 | | 5.0 | 32.8740 |
CLTL/MedRoBERTa.nl
CLTL
roberta
7
2,910
transformers
0
fill-mask
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,229
# MedRoBERTa.nl ## Description This model is a RoBERTa-based model pre-trained from scratch on Dutch hospital notes sourced from Electronic Health Records. The model is not fine-tuned. All code used for the creation of MedRoBERTa.nl can be found at https://github.com/cltl-students/verkijk_stella_rma_thesis_dutch_medical_language_model. ## Intended use The model can be fine-tuned on any type of task. Since it is a domain-specific model trained on medical data, it is meant to be used on medical NLP tasks for Dutch. ## Data The model was trained on nearly 10 million hospital notes from the Amsterdam University Medical Centres. The training data was anonymized before starting the pre-training procedure. ## Privacy By anonymizing the training data we made sure the model did not learn any representative associations linked to names. Apart from the training data, the model's vocabulary was also anonymized. This ensures that the model can not predict any names in the generative fill-mask task. ## Authors Stella Verkijk, Piek Vossen ## Reference Paper: Verkijk, S. & Vossen, P. (2022) MedRoBERTa.nl: A Language Model for Dutch Electronic Health Records. Computational Linguistics in the Netherlands Journal, 11.
CLTL/gm-ner-xlmrbase
CLTL
xlm-roberta
8
14
transformers
0
token-classification
true
true
false
apache-2.0
['nl']
null
null
0
0
0
0
0
0
0
['dighum']
false
true
true
3,811
# Early-modern Dutch NER (General Letters) ## Description This is a fine-tuned NER model for early-modern Dutch United East India Company (VOC) letters based on XLM-R_base [(Conneau et al., 2020)](https://aclanthology.org/2020.acl-main.747/). The model identifies *locations*, *persons*, *organisations*, but also *ships* as well as derived forms of locations and religions. ## Intended uses and limitations This model was fine-tuned (trained, validated and tested) on a single source of data, the General Letters (Generale Missiven). These letters span a large variety of Dutch, as they cover the largest part of the 17th and 18th centuries, and have been extended with editorial notes between 1960 and 2017. As the model was only fine-tuned on this data however, it may perform less well on other texts from the same period. ## How to use The model can run on raw text through the *token-classification* pipeline: ``` from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("CLTL/gm-ner-xlmrbase") model = AutoModelForTokenClassification.from_pretrained("CLTL/gm-ner-xlmrbase") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Batavia heeft om advies gevraagd." ner_results = nlp(example) print(ner_results) ``` This outputs a list of entities with their character offsets in the input text: ``` [{'entity': 'B-LOC', 'score': 0.99739265, 'index': 1, 'word': '▁Bata', 'start': 0, 'end': 4}, {'entity': 'I-LOC', 'score': 0.5373179, 'index': 2, 'word': 'via', 'start': 4, 'end': 7}] ``` ## Training data and tagset The model was fine-tuned on the General Letters [GM-NER](https://github.com/cltl/voc-missives/tree/master/data/ner/datasplit_all_standard) dataset, with the following tagset: | tag | description | notes | | --- | ----------- | ----- | | LOC | locations | | | LOCderiv | derived forms of locations | by derivation, e.g. *Bandanezen*, or composition, e.g. *Javakoffie* | | ORG | organisations | includes forms derived by composition, e.g. *Compagnieszaken* | PER | persons | | RELderiv | forms related to religion | merges religion names (*Christendom*), derived forms (*christenen*) and composed forms (*Christen-orangkay*) | | SHP | ships | The base text for this dataset is OCR text that has been partially corrected. The text is clean overall but errors remain. ## Training procedure The model was fine-tuned with [xlm-roberta-base](https://huggingface.co/xlm-roberta-base), using [this script](https://github.com/huggingface/transformers/blob/master/examples/legacy/token-classification/run_ner.py). Non-default training parameters are: * training batch size: 16 * max sequence length: 256 * number of epochs: 4 -- loading the best checkpoint model by loss at the end, with checkpoints every 200 steps * (seed: 1) ## Evaluation ### Metric * entity-level F1 ### Results | overall | 92.7 | | --- | ----------- | | LOC | 95.8 | | LOCderiv | 92.7 | | ORG | 92.5 | | PER | 86.2 | | RELderiv | 90.7 | | SHP | 81.6 | ## Reference The model and fine-tuning data presented here were developed as part of: ```bibtex @inproceedings{arnoult-etal-2021-batavia, title = "Batavia asked for advice. Pretrained language models for Named Entity Recognition in historical texts.", author = "Arnoult, Sophie I. and Petram, Lodewijk and Vossen, Piek", booktitle = "Proceedings of the 5th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature", month = nov, year = "2021", address = "Punta Cana, Dominican Republic (online)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.latechclfl-1.3", pages = "21--30" } ```
CLTL/icf-domains
CLTL
roberta
10
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
4,102
# A-PROOF ICF-domains Classification ## Description A fine-tuned multi-label classification model that detects 9 [WHO-ICF](https://www.who.int/standards/classifications/international-classification-of-functioning-disability-and-health) domains in clinical text in Dutch. The model is based on a pre-trained Dutch medical language model ([link to be added]()), a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. ## ICF domains The model can detect 9 domains, which were chosen due to their relevance to recovery from COVID-19: ICF code | Domain | name in repo ---|---|--- b440 | Respiration functions | ADM b140 | Attention functions | ATT d840-d859 | Work and employment | BER b1300 | Energy level | ENR d550 | Eating | ETN d450 | Walking | FAC b455 | Exercise tolerance functions | INS b530 | Weight maintenance functions | MBW b152 | Emotional functions | STM ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import MultiLabelClassificationModel model = MultiLabelClassificationModel( 'roberta', 'CLTL/icf-domains', use_cuda=False, ) example = 'Nu sinds 5-6 dagen progressieve benauwdheidsklachten (bij korte stukken lopen al kortademig), terwijl dit eerder niet zo was.' predictions, raw_outputs = model.predict([example]) ``` The predictions look like this: ``` [[1, 0, 0, 0, 0, 1, 1, 0, 0]] ``` The indices of the multi-label stand for: ``` [ADM, ATT, BER, ENR, ETN, FAC, INS, MBW, STM] ``` In other words, the above prediction corresponds to assigning the labels ADM, FAC and INS to the example sentence. The raw outputs look like this: ``` [[0.51907885 0.00268032 0.0030862 0.03066113 0.00616694 0.64720929 0.67348498 0.0118863 0.0046311 ]] ``` For this model, the threshold at which the prediction for a label flips from 0 to 1 is **0.5**. ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 - Threshold: 0.5 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). ### Sentence-level | | ADM | ATT | BER | ENR | ETN | FAC | INS | MBW | STM |---|---|---|---|---|---|---|---|---|--- precision | 0.98 | 0.98 | 0.56 | 0.96 | 0.92 | 0.84 | 0.89 | 0.79 | 0.70 recall | 0.49 | 0.41 | 0.29 | 0.57 | 0.49 | 0.71 | 0.26 | 0.62 | 0.75 F1-score | 0.66 | 0.58 | 0.35 | 0.72 | 0.63 | 0.76 | 0.41 | 0.70 | 0.72 support | 775 | 39 | 54 | 160 | 382 | 253 | 287 | 125 | 181 ### Note-level | | ADM | ATT | BER | ENR | ETN | FAC | INS | MBW | STM |---|---|---|---|---|---|---|---|---|--- precision | 1.0 | 1.0 | 0.66 | 0.96 | 0.95 | 0.84 | 0.95 | 0.87 | 0.80 recall | 0.89 | 0.56 | 0.44 | 0.70 | 0.72 | 0.89 | 0.46 | 0.87 | 0.87 F1-score | 0.94 | 0.71 | 0.50 | 0.81 | 0.82 | 0.86 | 0.61 | 0.87 | 0.84 support | 231 | 27 | 34 | 92 | 165 | 95 | 116 | 64 | 94 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-adm
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,304
# Regression Model for Respiration Functioning Levels (ICF b440) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing respiration functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about respiration functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with respiration, and/or respiratory rate is normal (EWS: 9-20). 3 | Shortness of breath in exercise (saturation &ge;90), and/or respiratory rate is slightly increased (EWS: 21-30). 2 | Shortness of breath in rest (saturation &ge;90), and/or respiratory rate is fairly increased (EWS: 31-35). 1 | Needs oxygen at rest or during exercise (saturation &lt;90), and/or respiratory rate &gt;35. 0 | Mechanical ventilation is needed. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-adm', use_cuda=False, ) example = 'Nu sinds 5-6 dagen progressieve benauwdheidsklachten (bij korte stukken lopen al kortademig), terwijl dit eerder niet zo was.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.26 ``` The raw outputs look like this: ``` [[2.26074648]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.48 | 0.37 mean squared error | 0.55 | 0.34 root mean squared error | 0.74 | 0.58 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-att
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,185
# Regression Model for Attention Functioning Levels (ICF b140) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing attention functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about attention functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with concentrating / directing / holding / dividing attention. 3 | Slight problem with concentrating / directing / holding / dividing attention for a longer period of time or for complex tasks. 2 | Can concentrate / direct / hold / divide attention only for a short time. 1 | Can barely concentrate / direct / hold / divide attention. 0 | Unable to concentrate / direct / hold / divide attention. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-att', use_cuda=False, ) example = 'Snel afgeleid, moeite aandacht te behouden.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.89 ``` The raw outputs look like this: ``` [[2.89226103]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.99 | 1.03 mean squared error | 1.35 | 1.47 root mean squared error | 1.16 | 1.21 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-ber
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,094
# Regression Model for Work and Employment Functioning Levels (ICF d840-d859) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing work and employment functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about work and employment functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Can work/study fully (like when healthy). 3 | Can work/study almost fully. 2 | Can work/study only for about 50\%, or can only work at home and cannot go to school / office. 1 | Work/study is severely limited. 0 | Cannot work/study. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-ber', use_cuda=False, ) example = 'Fysiek zwaar werk is niet mogelijk, maar administrative taken zou zij wel aan moeten kunnen.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 2.41 ``` The raw outputs look like this: ``` [[2.40793037]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 1.56 | 1.49 mean squared error | 3.06 | 2.85 root mean squared error | 1.75 | 1.69 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-enr
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,175
# Regression Model for Energy Levels (ICF b1300) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing energy level. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about energy level in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with the energy level. 3 | Slight fatigue that causes mild limitations. 2 | Moderate fatigue; the patient gets easily tired from light activities or needs a long time to recover after an activity. 1 | Severe fatigue; the patient is capable of very little. 0 | Very severe fatigue; unable to do anything and mostly lays in bed. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-enr', use_cuda=False, ) example = 'Al jaren extreme vermoeidheid overdag, valt overdag in slaap tijdens school- en werkactiviteiten en soms zelfs tijdens een gesprek.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.98 ``` The raw outputs look like this: ``` [[1.97520316]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.48 | 0.43 mean squared error | 0.49 | 0.42 root mean squared error | 0.70 | 0.65 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-etn
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,286
# Regression Model for Eating Functioning Levels (ICF d550) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing eating functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about eating functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Can eat independently (in culturally acceptable ways), good intake, eats according to her/his needs. 3 | Can eat independently but with adjustments, and/or somewhat reduced intake (&gt;75% of her/his needs), and/or good intake can be achieved with proper advice. 2 | Reduced intake, and/or stimulus / feeding modules / nutrition drinks are needed (but not tube feeding / TPN). 1 | Intake is severely reduced (&lt;50% of her/his needs), and/or tube feeding / TPN is needed. 0 | Cannot eat, and/or fully dependent on tube feeding / TPN. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-etn', use_cuda=False, ) example = 'Sondevoeding is geïndiceerd' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 0.89 ``` The raw outputs look like this: ``` [[0.8872931]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.59 | 0.50 mean squared error | 0.65 | 0.47 root mean squared error | 0.81 | 0.68 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-fac
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,447
# Regression Model for Walking Functioning Levels (ICF d550) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing walking functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about walking functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 5 | Patient can walk independently anywhere: level surface, uneven surface, slopes, stairs. 4 | Patient can walk independently on level surface but requires help on stairs, inclines, uneven surface; or, patient can walk independently, but the walking is not fully normal. 3 | Patient requires verbal supervision for walking, without physical contact. 2 | Patient needs continuous or intermittent support of one person to help with balance and coordination. 1 | Patient needs firm continuous support from one person who helps carrying weight and with balance. 0 | Patient cannot walk or needs help from two or more people; or, patient walks on a treadmill. The predictions generated by the model might sometimes be outside of the scale (e.g. 5.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-fac', use_cuda=False, ) example = 'kan nog goed traplopen, maar flink ingeleverd aan conditie na Corona' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 4.2 ``` The raw outputs look like this: ``` [[4.20903111]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.70 | 0.66 mean squared error | 0.91 | 0.93 root mean squared error | 0.95 | 0.96 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-ins
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,381
# Regression Model for Exercise Tolerance Functioning Levels (ICF b455) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing exercise tolerance functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about exercise tolerance functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 5 | MET&gt;6. Can tolerate jogging, hard exercises, running, climbing stairs fast, sports. 4 | 4&le;MET&le;6. Can tolerate walking / cycling at a brisk pace, considerable effort (e.g. cycling from 16 km/h), heavy housework. 3 | 3&le;MET&lt;4. Can tolerate walking / cycling at a normal pace, gardening, exercises without equipment. 2 | 2&le;MET&lt;3. Can tolerate walking at a slow to moderate pace, grocery shopping, light housework. 1 | 1&le;MET&lt;2. Can tolerate sitting activities. 0 | 0&le;MET&lt;1. Can physically tolerate only recumbent activities. The predictions generated by the model might sometimes be outside of the scale (e.g. 5.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-ins', use_cuda=False, ) example = 'kan nog goed traplopen, maar flink ingeleverd aan conditie na Corona' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 3.13 ``` The raw outputs look like this: ``` [[3.1300993]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.69 | 0.61 mean squared error | 0.80 | 0.64 root mean squared error | 0.89 | 0.80 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-mbw
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,260
# Regression Model for Weight Maintenance Functioning Levels (ICF b530) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing weight maintenance functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about weight maintenance functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | Healthy weight, no unintentional weight loss or gain, SNAQ 0 or 1. 3 | Some unintentional weight loss or gain, or lost a lot of weight but gained some of it back afterwards. 2 | Moderate unintentional weight loss or gain (more than 3 kg in the last month), SNAQ 2. 1 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months), SNAQ &ge; 3. 0 | Severe unintentional weight loss or gain (more than 6 kg in the last 6 months) and admitted to ICU. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-mbw', use_cuda=False, ) example = 'Tijdens opname >10 kg afgevallen.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.95 ``` The raw outputs look like this: ``` [[1.95429301]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.81 | 0.60 mean squared error | 0.83 | 0.56 root mean squared error | 0.91 | 0.75 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CLTL/icf-levels-stm
CLTL
roberta
11
10
transformers
1
text-classification
true
false
false
mit
['nl']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,279
# Regression Model for Emotional Functioning Levels (ICF b152) ## Description A fine-tuned regression model that assigns a functioning level to Dutch sentences describing emotional functions. The model is based on a pre-trained Dutch medical language model ([link to be added]()): a RoBERTa model, trained from scratch on clinical notes of the Amsterdam UMC. To detect sentences about emotional functions in clinical text in Dutch, use the [icf-domains](https://huggingface.co/CLTL/icf-domains) classification model. ## Functioning levels Level | Meaning ---|--- 4 | No problem with emotional functioning: emotions are appropriate, well regulated, etc. 3 | Slight problem with emotional functioning: irritable, gloomy, etc. 2 | Moderate problem with emotional functioning: negative emotions, such as fear, anger, sadness, etc. 1 | Severe problem with emotional functioning: intense negative emotions, such as fear, anger, sadness, etc. 0 | Flat affect, apathy, unstable, inappropriate emotions. The predictions generated by the model might sometimes be outside of the scale (e.g. 4.2); this is normal in a regression model. ## Intended uses and limitations - The model was fine-tuned (trained, validated and tested) on medical records from the Amsterdam UMC (the two academic medical centers of Amsterdam). It might perform differently on text from a different hospital or text from non-hospital sources (e.g. GP records). - The model was fine-tuned with the [Simple Transformers](https://simpletransformers.ai/) library. This library is based on Transformers but the model cannot be used directly with Transformers `pipeline` and classes; doing so would generate incorrect outputs. For this reason, the API on this page is disabled. ## How to use To generate predictions with the model, use the [Simple Transformers](https://simpletransformers.ai/) library: ``` from simpletransformers.classification import ClassificationModel model = ClassificationModel( 'roberta', 'CLTL/icf-levels-stm', use_cuda=False, ) example = 'Naarmate het somatische beeld een herstellende trend laat zien, valt op dat patient zich depressief en suicidaal uit.' _, raw_outputs = model.predict([example]) predictions = np.squeeze(raw_outputs) ``` The prediction on the example is: ``` 1.60 ``` The raw outputs look like this: ``` [[1.60418844]] ``` ## Training data - The training data consists of clinical notes from medical records (in Dutch) of the Amsterdam UMC. Due to privacy constraints, the data cannot be released. - The annotation guidelines used for the project can be found [here](https://github.com/cltl/a-proof-zonmw/tree/main/resources/annotation_guidelines). ## Training procedure The default training parameters of Simple Transformers were used, including: - Optimizer: AdamW - Learning rate: 4e-5 - Num train epochs: 1 - Train batch size: 8 ## Evaluation results The evaluation is done on a sentence-level (the classification unit) and on a note-level (the aggregated unit which is meaningful for the healthcare professionals). | | Sentence-level | Note-level |---|---|--- mean absolute error | 0.76 | 0.68 mean squared error | 1.03 | 0.87 root mean squared error | 1.01 | 0.93 ## Authors and references ### Authors Jenia Kim, Piek Vossen ### References TBD
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
CNT-UPenn
bert
8
1
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,003
emilyalsentzer/Bio_ClinicalBERT with additional training through the finetuning pipeline described in "Extracting Seizure Frequency From Epilepsy Clinic Notes: A Machine Reading Approach To Natural Language Processing." Citation: Kevin Xie, Ryan S Gallagher, Erin C Conrad, Chadric O Garrick, Steven N Baldassano, John M Bernabei, Peter D Galer, Nina J Ghosn, Adam S Greenblatt, Tara Jennings, Alana Kornspun, Catherine V Kulick-Soper, Jal M Panchal, Akash R Pattnaik, Brittany H Scheid, Danmeng Wei, Micah Weitzman, Ramya Muthukrishnan, Joongwon Kim, Brian Litt, Colin A Ellis, Dan Roth, Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing, Journal of the American Medical Informatics Association, 2022;, ocac018, https://doi.org/10.1093/jamia/ocac018 Bio_ClinicalBERT_for_seizureFreedom_classification classifies patients has having seizures or being seizure free using the HPI and/or Interval History paragraphs from a medical note.
CNT-UPenn/RoBERTa_for_seizureFrequency_QA
CNT-UPenn
roberta
9
5
transformers
0
question-answering
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,010
RoBERTa-base with additional training through the finetuning pipeline described in "Extracting Seizure Frequency From Epilepsy Clinic Notes: A Machine Reading Approach To Natural Language Processing." Citation: Kevin Xie, Ryan S Gallagher, Erin C Conrad, Chadric O Garrick, Steven N Baldassano, John M Bernabei, Peter D Galer, Nina J Ghosn, Adam S Greenblatt, Tara Jennings, Alana Kornspun, Catherine V Kulick-Soper, Jal M Panchal, Akash R Pattnaik, Brittany H Scheid, Danmeng Wei, Micah Weitzman, Ramya Muthukrishnan, Joongwon Kim, Brian Litt, Colin A Ellis, Dan Roth, Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing, Journal of the American Medical Informatics Association, 2022;, ocac018, https://doi.org/10.1093/jamia/ocac018 RoBERTa_for_seizureFrequency_QA performs extractive question answering to identify a patient's seizure freedom and/or date of last seizure using the HPI and/or Interval History paragraphs from a medical note.
CZWin32768/xlm-align
CZWin32768
xlm-roberta
6
10
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,429
# XLM-Align **Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment** (ACL-2021, [paper](https://arxiv.org/pdf/2106.06381.pdf), [github](https://github.com/CZWin32768/XLM-Align)) XLM-Align is a pretrained cross-lingual language model that supports 94 languages. See details in our [paper](https://arxiv.org/pdf/2106.06381.pdf). ## Example ``` model = = AutoModel.from_pretrained("CZWin32768/xlm-align") ``` ## Evaluation Results XTREME cross-lingual understanding tasks: | Model | POS | NER | XQuAD | MLQA | TyDiQA | XNLI | PAWS-X | Avg | |:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:| | XLM-R_base | 75.6 | 61.8 | 71.9 / 56.4 | 65.1 / 47.2 | 55.4 / 38.3 | 75.0 | 84.9 | 66.4 | | XLM-Align | **76.0** | **63.7** | **74.7 / 59.0** | **68.1 / 49.8** | **62.1 / 44.8** | **76.2** | **86.8** | **68.9** | ## MD5 ``` b9d214025837250ede2f69c9385f812c config.json 6005db708eb4bab5b85fa3976b9db85b pytorch_model.bin bf25eb5120ad92ef5c7d8596b5dc4046 sentencepiece.bpe.model eedbd60a7268b9fc45981b849664f747 tokenizer.json ``` ## About Contact: chizewen\@outlook.com BibTeX: ``` @article{xlmalign, title={Improving Pretrained Cross-Lingual Language Models via Self-Labeled Word Alignment}, author={Zewen Chi and Li Dong and Bo Zheng and Shaohan Huang and Xian-Ling Mao and Heyan Huang and Furu Wei}, journal={arXiv preprint arXiv:2106.06381}, year={2021} } ```
Callidior/bert2bert-base-arxiv-titlegen
Callidior
encoder-decoder
7
133
transformers
4
summarization
true
false
false
apache-2.0
['en']
['arxiv_dataset']
null
0
0
0
0
0
0
0
['summarization']
false
true
true
495
# Paper Title Generator Generates titles for computer science papers given an abstract. The model is a BERT2BERT Encoder-Decoder using the official `bert-base-uncased` checkpoint as initialization for the encoder and decoder. It was fine-tuned on 318,500 computer science papers posted on arXiv.org between 2007 and 2022 and achieved a 26.3% Rouge2 F1-Score on held-out validation data. **Live Demo:** [https://paper-titles.ey.r.appspot.com/](https://paper-titles.ey.r.appspot.com/)
CalvinHuang/mt5-small-finetuned-amazon-en-es
CalvinHuang
mt5
13
6
transformers
1
summarization
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['summarization', 'generated_from_trainer']
true
true
true
1,997
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-amazon-en-es This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0393 - Rouge1: 17.2936 - Rouge2: 8.0678 - Rougel: 16.8129 - Rougelsum: 16.9991 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| | 6.6665 | 1.0 | 1209 | 3.2917 | 13.912 | 5.595 | 13.2984 | 13.4171 | | 3.8961 | 2.0 | 2418 | 3.1711 | 16.2845 | 8.6033 | 15.5509 | 15.7383 | | 3.5801 | 3.0 | 3627 | 3.0917 | 17.316 | 8.122 | 16.697 | 16.773 | | 3.4258 | 4.0 | 4836 | 3.0583 | 16.1347 | 7.7829 | 15.6475 | 15.7804 | | 3.3154 | 5.0 | 6045 | 3.0573 | 17.5918 | 8.7349 | 17.0537 | 17.2216 | | 3.2438 | 6.0 | 7254 | 3.0479 | 17.2294 | 8.0383 | 16.8141 | 16.9858 | | 3.2024 | 7.0 | 8463 | 3.0377 | 17.2918 | 8.139 | 16.8178 | 16.9671 | | 3.1745 | 8.0 | 9672 | 3.0393 | 17.2936 | 8.0678 | 16.8129 | 16.9991 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
Capreolus/bert-base-msmarco
Capreolus
bert
9
26
transformers
0
text-classification
true
true
true
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
778
# capreolus/bert-base-msmarco ## Model description BERT-Base model (`google/bert_uncased_L-12_H-768_A-12`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model; see the [Capreolus BERT-MaxP implementation](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) for a usage example. This corresponds to the BERT-Base model used to initialize BERT-MaxP and PARADE variants in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_bert_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
Capreolus/electra-base-msmarco
Capreolus
electra
8
32
transformers
0
text-classification
true
true
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
935
# capreolus/electra-base-msmarco ## Model description ELECTRA-Base model (`google/electra-base-discriminator`) fine-tuned on the MS MARCO passage classification task. It is intended to be used as a `ForSequenceClassification` model, but requires some modification since it contains a BERT classification head rather than the standard ELECTRA classification head. See the [TFElectraRelevanceHead](https://github.com/capreolus-ir/capreolus/blob/master/capreolus/reranker/TFBERTMaxP.py) in the Capreolus BERT-MaxP implementation for a usage example. This corresponds to the ELECTRA-Base model used to initialize PARADE (ELECTRA) in [PARADE: Passage Representation Aggregation for Document Reranking](https://arxiv.org/abs/2008.09093) by Li et al. It was converted from the released [TFv1 checkpoint](https://zenodo.org/record/3974431/files/vanilla_electra_base_on_MSMARCO.tar.gz). Please cite the PARADE paper if you use these weights.
Captain-1337/CrudeBERT
Captain-1337
null
5
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
2,966
# Master Thesis ## Predictive Value of Sentiment Analysis from Headlines for Crude Oil Prices ### Understanding and Exploiting Deep Learning-based Sentiment Analysis from News Headlines for Predicting Price Movements of WTI Crude Oil The focus of this thesis deals with the task of research and development of state-of-the-art sentiment analysis methods, which can potentially provide helpful quantification of news that can be used to assess the future price movements of crude oil. CrudeBERT is a pre-trained NLP model to analyze sentiment of news headlines relevant to crude oil. It was developed by fine tuning [FinBERT: Financial Sentiment Analysis with Pre-trained Language Models](https://arxiv.org/pdf/1908.10063.pdf). ![CrudeBERT comparison_white_2](https://user-images.githubusercontent.com/42164041/135273552-4a9c4457-70e4-48d0-ac97-169daefab79e.png) Performing sentiment analysis on the news regarding a specific asset requires domain adaptation. Domain adaptation requires training data made up of examples with text and its associated polarity of sentiment. The experiments show that pre-trained deep learning-based sentiment analysis can be further fine-tuned, and the conclusions of these experiments are as follows: * Deep learning-based sentiment analysis models from the general financial world such as FinBERT are of little or hardly any significance concerning the price development of crude oil. The reason behind this is a lack of domain adaptation of the sentiment. Moreover, the polarity of sentiment cannot be generalized and is highly dependent on the properties of its target. * The properties of crude oil prices are, according to the literature, determined by changes in supply and demand. News can convey information about these direction changes and can broadly be identified through query searches and serve as a foundation for creating a training dataset to perform domain adaptation. For this purpose, news headlines tend to be rich enough in content to provide insights into supply and demand changes. Even when significantly reducing the number of headlines to more reputable sources. * Domain adaptation can be achieved to some extend by analyzing the properties of the target through literature review and creating a corresponding training dataset to fine-tune the model. For example, considering supply and demand changes regarding crude oil seems to be a suitable component for a domain adaptation. In order to advance sentiment analysis applications in the domain of crude oil, this paper presents CrudeBERT. In general, sentiment analysis of headlines from crude oil through CrudeBERT could be a viable source of insight for the price behaviour of WTI crude oil. However, further research is required to see if CrudeBERT can serve as beneficial for predicting oil prices. For this matter, the codes and the thesis is made publicly available on [GitHub] (https://github.com/Captain-1337/Master-Thesis).
CarlosPR/mt5-spanish-memmories-analysis
CarlosPR
mt5
8
4
transformers
0
text2text-generation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
2,729
**mt5-spanish-memmories-analysis** **// ES** Este es un trabajo en proceso. Este modelo aún es solo un punto de control inicial que mejoraré en los próximos meses. El objetivo es proporcionar un modelo capaz de, utilizando una combinación de tareas del modelo mT5, comprender los recuerdos y proporcionar una interacción útil para las personas con alzeimer o personas como mi propio abuelo que escribió sus recuerdos, pero ahora es solo un libro en la estantería. por lo que este modelo puede hacer que esos recuerdos parezcan "vivos". Pronto (si aún no está cargado) cargaré un cuaderno de **Google Colaboratory con una aplicación visual** que al usar este modelo proporcionará toda la interacción necesaria y deseada con una interfaz fácil de usar. **LINK APLICACIÓN (sobre él se actualizará la versión):** https://drive.google.com/drive/folders/1ewGcxxCYHHwhHhWtGlLiryZfV8wEAaBa?usp=sharing -> Debe descargarse la carpeta "memorium" del enlace y subirse a Google Drive sin incluir en ninguna otra carpeta (directamente en "Mi unidad"). -> A continuación se podrá abrir la app, encontrada dentro de dicha carpeta "memorium" con nombre "APP-Memorium" (el nombre puede incluir además un indicador de versión). -> Si haciendo doble click en el archivo de la app no permite abrirla, debe hacerse pulsando el botón derecho sobre el archivo y seleccionar "Abrir con", "Conectar más aplicaciones", y a continuación escoger Colaboratory (se pedirá instalar). Completada la instalación (tiempo aproximado: 2 minutos) se podrá cerrar la ventana de instalación para volver a visualizar la carpeta donde se encuentra el fichero de la app, que de ahora en adelante se podrá abrir haciendo doble click. -> Se podrán añadir memorias en la carpeta "perfiles" como se indica en la aplicación en el apartado "crear perfil". **// EN** This is a work in process. This model is just an initial checkpoint yet that I will be improving the following months. **APP LINK (it will contain the latest version):** https://drive.google.com/drive/folders/1ewGcxxCYHHwhHhWtGlLiryZfV8wEAaBa?usp=sharing -> The folder "memorium" must be downloaded and then uploaded to Google Drive at "My Drive", NOT inside any other folder. The aim is to provide a model able to, using a mixture of mT5 model's tasks, understand memories and provide an interaction useful for people with alzeimer or people like my own grandfather who wrote his memories but it is now just a book in the shelf, so this model can make those memories seem 'alive'. I will soon (if it is´t uploaded by now) upload a **Google Colaboratory notebook with a visual App** that using this model will provide all the needed and wanted interaction with an easy-to-use Interface.
Cdial/hausa-asr
Cdial
wav2vec2
8
4
transformers
0
automatic-speech-recognition
false
false
false
apache-2.0
['ha']
['mozilla-foundation/common_voice_8_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'ha', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
true
true
true
2,349
# Cdial/Hausa_xlsr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) It achieves the following results on the evaluation set (which is 10 percent of train data set merged with invalidated data, reported, other, and dev datasets): - Loss: 0.275118 - Wer: 0.329955 ## Model description "facebook/wav2vec2-xls-r-300m" was finetuned. ## Intended uses & limitations More information needed ## Training and evaluation data Training data - Common voice Hausa train.tsv, dev.tsv, invalidated.tsv, reported.tsv and other.tsv Only those points were considered where upvotes were greater than downvotes and duplicates were removed after concatenation of all the datasets given in common voice 7.0 ## Training procedure For creating the training dataset, all possible datasets were appended and 90-10 split was used. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000096 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - gradient_accumulation_steps: 2 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 500 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Step | Training Loss | Validation Loss | Wer | |------|---------------|-----------------|----------| | 500 | 5.175900 | 2.750914 | 1.000000 | | 1000 | 1.028700 | 0.338649 | 0.497999 | | 1500 | 0.332200 | 0.246896 | 0.402241 | | 2000 | 0.227300 | 0.239640 | 0.395839 | | 2500 | 0.175000 | 0.239577 | 0.373966 | | 3000 | 0.140400 | 0.243272 | 0.356095 | | 3500 | 0.119200 | 0.263761 | 0.365164 | | 4000 | 0.099300 | 0.265954 | 0.353428 | | 4500 | 0.084400 | 0.276367 | 0.349693 | | 5000 | 0.073700 | 0.282631 | 0.343825 | | 5500 | 0.068000 | 0.282344 | 0.341158 | | 6000 | 0.064500 | 0.281591 | 0.342491 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.0+cu102 - Datasets 1.18.3 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id Akashpb13/Hausa_xlsr --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ```
Cedille/fr-boris
Cedille
gptj
9
334
transformers
26
text-generation
true
false
false
mit
['fr']
['c4']
null
0
0
0
0
0
0
0
['pytorch', 'causal-lm']
false
true
true
1,701
# Cedille AI Cedille is a project to bring large language models to non-English languages. ## fr-boris Boris is a 6B parameter autoregressive language model based on the GPT-J architecture and trained using the [mesh-transformer-jax](https://github.com/kingoflolz/mesh-transformer-jax) codebase. Boris was trained on around 78B tokens of French text from the [C4](https://huggingface.co/datasets/c4) dataset. We started training from GPT-J, which has been trained on [The Pile](https://pile.eleuther.ai/). As a consequence the model still has good performance in English language. Boris makes use of the unmodified GPT-2 tokenizer. Boris is named after the great French writer [Boris Vian](https://en.wikipedia.org/wiki/Boris_Vian). # How do I test Cedille? For the time being, the easiest way to test the model is to use our [publicly accessible playground](https://en.cedille.ai/). Cedille is a relatively large model and running it in production can get expensive. Consider contacting us for API access at [email protected]. ## 📊 Cedille paper Our paper is out now! https://arxiv.org/abs/2202.03371 Thanks for citing our work if you make use of Cedille ```bibtex @misc{muller2022cedille, title={Cedille: A large autoregressive French language model}, author={Martin M{\"{u}}ller and Florian Laurent}, year={2022}, eprint={2202.03371}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact us For any custom development please contact us at [email protected]. ## Links * [Official website](https://en.cedille.ai/) * [Blog](https://en.cedille.ai/blog) * [GitHub](https://github.com/coteries/cedille-ai) * [Twitter](https://twitter.com/CedilleAI)
dccuchile/albert-base-spanish
dccuchile
albert
9
221
transformers
2
null
true
true
false
null
['es']
['large_spanish_corpus']
null
0
0
0
0
0
0
0
['albert', 'spanish', 'OpenCENIA']
false
true
true
630
# ALBERT Base Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.0008838834765 - Batch Size: 960 - Warmup ratio: 0.00625 - Warmup steps: 53333.33333 - Goal steps: 8533333.333 - Total steps: 3650000 - Total training time (aprox): 70.4 days. ## Training loss ![https://drive.google.com/uc?export=view&id=1IsxcgMwd7Hl-3bSnNl8W9jUrHJeHtZql](https://drive.google.com/uc?export=view&id=1IsxcgMwd7Hl-3bSnNl8W9jUrHJeHtZql)
dccuchile/albert-large-spanish
dccuchile
albert
9
3
transformers
0
null
true
true
false
null
['es']
['large_spanish_corpus']
null
0
0
0
0
0
0
0
['albert', 'spanish', 'OpenCENIA']
false
true
true
614
# ALBERT Large Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.000625 - Batch Size: 512 - Warmup ratio: 0.003125 - Warmup steps: 12500 - Goal steps: 4000000 - Total steps: 1450000 - Total training time (aprox): 42 days. ## Training loss ![https://drive.google.com/uc?export=view&id=10EiI0Yge3U3CnGrqoMs1yJY020pPz_Io](https://drive.google.com/uc?export=view&id=10EiI0Yge3U3CnGrqoMs1yJY020pPz_Io)
dccuchile/albert-tiny-spanish
dccuchile
albert
9
281
transformers
1
null
true
true
false
null
['es']
['large_spanish_corpus']
null
0
0
0
0
0
0
0
['albert', 'spanish', 'OpenCENIA']
false
true
true
613
# ALBERT Tiny Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.00125 - Batch Size: 2048 - Warmup ratio: 0.0125 - Warmup steps: 125000 - Goal steps: 10000000 - Total steps: 8300000 - Total training time (aprox): 58.2 days ## Training loss ![https://drive.google.com/uc?export=view&id=1KQc8yWZLKvDLjBtu4IOAgpTx0iLcvX_Q](https://drive.google.com/uc?export=view&id=1KQc8yWZLKvDLjBtu4IOAgpTx0iLcvX_Q)
dccuchile/albert-xlarge-spanish
dccuchile
albert
9
3
transformers
0
null
true
true
false
null
['es']
['large_spanish_corpus']
null
0
0
0
0
0
0
0
['albert', 'spanish', 'OpenCENIA']
false
true
true
617
# ALBERT XLarge Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.0003125 - Batch Size: 128 - Warmup ratio: 0.00078125 - Warmup steps: 6250 - Goal steps: 8000000 - Total steps: 2775000 - Total training time (aprox): 64.2 days. ## Training loss ![https://drive.google.com/uc?export=view&id=1rw0vvqZY9LZAzRUACLjmP18Fc6D1fv7x](https://drive.google.com/uc?export=view&id=1rw0vvqZY9LZAzRUACLjmP18Fc6D1fv7x)
dccuchile/albert-xxlarge-spanish
dccuchile
albert
9
25
transformers
0
null
true
true
false
null
['es']
['large_spanish_corpus']
null
0
0
0
0
0
0
0
['albert', 'spanish', 'OpenCENIA']
false
true
true
619
# ALBERT XXLarge Spanish This is an [ALBERT](https://github.com/google-research/albert) model trained on a [big spanish corpora](https://github.com/josecannete/spanish-corpora). The model was trained on a single TPU v3-8 with the following hyperparameters and steps/time: - LR: 0.0003125 - Batch Size: 128 - Warmup ratio: 0.00078125 - Warmup steps: 3125 - Goal steps: 4000000 - Total steps: 1650000 - Total training time (aprox): 70.7 days. ## Training loss ![https://drive.google.com/uc?export=view&id=1a9MHsk-QwBuCMtyDyRvZ5mv9Mzl2dWCn](https://drive.google.com/uc?export=view&id=1a9MHsk-QwBuCMtyDyRvZ5mv9Mzl2dWCn)
CennetOguz/distilbert-base-uncased-finetuned-recipe-1
CennetOguz
distilbert
12
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,327
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-recipe-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.0641 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 3.2689 | | No log | 2.0 | 6 | 3.0913 | | No log | 3.0 | 9 | 3.0641 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
CennetOguz/distilbert-base-uncased-finetuned-recipe
CennetOguz
distilbert
9
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,325
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-recipe This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 3 | 3.2689 | | No log | 2.0 | 6 | 3.0913 | | No log | 3.0 | 9 | 3.0641 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
Chakita/Kalbert
Chakita
albert
25
7
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,653
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Kalbert This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on a kannada news dataset. It achieves the following results on the evaluation set: - Loss: 1.5324 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5835 | 1.0 | 3953 | 1.7985 | | 1.6098 | 2.0 | 7906 | 1.7434 | | 1.5266 | 3.0 | 11859 | 1.6934 | | 1.5179 | 4.0 | 15812 | 1.6665 | | 1.5459 | 5.0 | 19765 | 1.6135 | | 1.5511 | 6.0 | 23718 | 1.6002 | | 1.5209 | 7.0 | 27671 | 1.5657 | | 1.5413 | 8.0 | 31624 | 1.5578 | | 1.4828 | 9.0 | 35577 | 1.5465 | | 1.4651 | 10.0 | 39530 | 1.5451 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper
CheonggyeMountain-Sherpa
null
2
0
null
0
null
false
false
false
cc-by-nc-sa-4.0
['ko']
null
null
0
0
0
0
0
0
0
['gpt2']
false
true
true
1,458
## Model based on [Ko-GPT-Trinity 1.2B (v0.5)](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) ## Example ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", ) model = AutoModelForCausalLM.from_pretrained( "CheonggyeMountain-Sherpa/kogpt-trinity-punct-wrapper", revision="punct_wrapper-related_words-overfit", # or punct_wrapper-related_words-minevalloss pad_token_id=tokenizer.eos_token_id, ).to(device="cuda") model.eval() prompt = "석양이 보이는 경치" wrapped_prompt = f"@{prompt}@<usr>\n" with torch.no_grad(): tokens = tokenizer.encode(wrapped_prompt, return_tensors="pt").to(device="cuda") gen_tokens = model.generate( tokens, max_length=64, repetition_penalty=2.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, bos_token_id=tokenizer.bos_token_id, top_k=16, top_p=0.8, ) generated = tokenizer.decode(gen_tokens[0][len(tokens[0]):]) print(generated) # 해가 지고 있을 무렵 # 나는 석양을 보러 간다 # 붉은 하늘과 하얀 구름이 나를 반겨줄 것 같아서리 # 하지만 내가 본 해는 저물어만 가고 # 구름마저 자취를 감춘 어둠만이 남아있을 뿐이네 # 내가 탄 배는 보이지도 않고 ```
Ching/negation_detector
Ching
roberta
14
6
transformers
0
question-answering
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
234
This question answering model was fine tuned to detect negation expressions How to use: question: negation context: That is not safe! Answer: not question: negation context: Weren't we going to go to the moon? Answer: Weren't
Chiuchiyin/DialoGPT-small-Donald
Chiuchiyin
gpt2
11
2
transformers
0
conversational
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['conversational']
false
true
true
234
Donald Trump DialoGPT Model built by following tutorial by [Ruolin Zheng](https://youtu.be/Rk8eM1p_xgM). The data used for training was 2020 presidential debate. More work is needed to optimize it. I don't have access to larger VRAM.
ChristianOrr/madnet_keras
ChristianOrr
null
7
0
null
0
depth-estimation
false
false
false
apache-2.0
null
['flyingthings-3d', 'kitti']
null
0
0
0
0
0
0
0
['vision', 'deep-stereo', 'depth-estimation', 'Tensorflow2', 'Keras']
false
true
true
5,388
# MADNet Keras MADNet is a deep stereo depth estimation model. Its key defining features are: 1. It has a light-weight architecture which means it has low latency. 2. It supports self-supervised training, so it can be conveniently adapted in the field with no training data. 3. It's a stereo depth model, which means it's capable of high accuracy. The MADNet weights in this repository were trained using a Tensorflow 2 / Keras implementation of the original code. The model was created using the Keras Functional API, which enables the following features: 1. Good optimization. 2. High level Keras methods (.fit, .predict and .evaluate). 3. Little boilerplate code. 4. Decent support from external packages (like Weights and Biases). 5. Callbacks. The weights provided were either trained on the 2012 / 2015 kitti stereo dataset or flyingthings-3d dataset. The weights of the pretrained models from the original paper (tf1_conversion_kitti.h5 and tf1_conversion_synthetic.h5) are provided in tensorflow 2 format. The TF1 weights help speed up fine-tuning, but its recommended to use either synthetic.h5 (trained on flyingthings-3d) or kitti.h5 (trained on 2012 and 2015 kitti stereo datasets). **Abstract**: Deep convolutional neural networks trained end-to-end are the undisputed state-of-the-art methods to regress dense disparity maps directly from stereo pairs. However, such methods suffer from notable accuracy drops when exposed to scenarios significantly different from those seen in the training phase (e.g.real vs synthetic images, indoor vs outdoor, etc). As it is unlikely to be able to gather enough samples to achieve effective training/ tuning in any target domain, we propose to perform unsupervised and continuous online adaptation of a deep stereo network in order to preserve its accuracy independently of the sensed environment. However, such a strategy can be extremely demanding regarding computational resources and thus not enabling real-time performance. Therefore, we address this side effect by introducing a new lightweight, yet effective, deep stereo architecture Modularly ADaptive Network (MADNet) and by developing Modular ADaptation (MAD), an algorithm to train independently only sub-portions of our model. By deploying MADNet together with MAD we propose the first ever realtime self-adaptive deep stereo system. ## Usage Instructions See the accompanying codes readme for details on how to perform training and inferencing with the model: [madnet-deep-stereo-with-keras](https://github.com/ChristianOrr/madnet-deep-stereo-with-keras). ## Training ### TF1 Kitti and TF1 Synthetic Training details for the TF1 weights are available in the supplementary material (at the end) of this paper: [Real-time self-adaptive deep stereo](https://arxiv.org/abs/1810.05424) ### Synthetic The synthetic model was finetuned using the tf1 synthetic weights. It was trained on the flyingthings-3d dataset with the following parameters: - Steps: 1.5 million - Learning Rate: 0.0001 - Decay Rate: 0.999 - Minimum Learning Rate Cap: 0.000001 - Batch Size: 1 - Optimizer: Adam - Image Height: 480 - Image Width: 640 ### Kitti The kitti model was finetuned using the synthetic weights. Tensorboard events file is available in the logs directory. It was trained on the 2012 and 2015 kitti stereo dataset with the following parameters: - Steps: 0.5 million - Learning Rate: 0.0001 - Decay Rate: 0.999 - Minimum Learning Rate Cap: 0.0000001 - Batch Size: 1 - Optimizer: Adam - Image Height: 480 - Image Width: 640 ## BibTeX entry and citation info ```bibtex @InProceedings{Tonioni_2019_CVPR, author = {Tonioni, Alessio and Tosi, Fabio and Poggi, Matteo and Mattoccia, Stefano and Di Stefano, Luigi}, title = {Real-time self-adaptive deep stereo}, booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2019} } ``` ```bibtex @article{Poggi2021continual, author={Poggi, Matteo and Tonioni, Alessio and Tosi, Fabio and Mattoccia, Stefano and Di Stefano, Luigi}, title={Continual Adaptation for Deep Stereo}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, year={2021} } ``` ```bibtex @InProceedings{MIFDB16, author = "N. Mayer and E. Ilg and P. Hausser and P. Fischer and D. Cremers and A. Dosovitskiy and T. Brox", title = "A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation", booktitle = "IEEE International Conference on Computer Vision and Pattern Recognition (CVPR)", year = "2016", note = "arXiv:1512.02134", url = "http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16" } ``` ```bibtex @INPROCEEDINGS{Geiger2012CVPR, author = {Andreas Geiger and Philip Lenz and Raquel Urtasun}, title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2012} } ``` ```bibtex @INPROCEEDINGS{Menze2015CVPR, author = {Moritz Menze and Andreas Geiger}, title = {Object Scene Flow for Autonomous Vehicles}, booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2015} } ```
ChristopherA08/IndoELECTRA
ChristopherA08
electra
5
21
transformers
0
null
true
false
false
null
['id']
['oscar']
null
0
0
0
0
0
0
0
[]
false
true
true
1,019
# IndoBERT (Indonesian BERT Model) ## Model description ELECTRA is a new method for self-supervised language representation learning. This repository contains the pre-trained Electra Base model (tensorflow 1.15.0) trained in a Large Indonesian corpus (~16GB of raw text | ~2B indonesian words). IndoELECTRA is a pre-trained language model based on ELECTRA architecture for the Indonesian Language. This model is base version which use electra-base config. ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("ChristopherA08/IndoELECTRA") model = AutoModel.from_pretrained("ChristopherA08/IndoELECTRA") tokenizer.encode("hai aku mau makan.") [2, 8078, 1785, 2318, 1946, 18, 4] ``` ## Training procedure The training of the model has been performed using Google's original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models.
Cinnamon/electra-small-japanese-discriminator
Cinnamon
electra
7
362
transformers
1
null
true
false
false
apache-2.0
['ja']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,051
## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ## How to use the discriminator in `transformers` ``` from transformers import BertJapaneseTokenizer, ElectraForPreTraining tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-discriminator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForPreTraining.from_pretrained('Cinnamon/electra-small-japanese-discriminator') ```
Cinnamon/electra-small-japanese-generator
Cinnamon
electra
7
12
transformers
2
fill-mask
true
false
false
null
['ja']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,018
## Japanese ELECTRA-small We provide a Japanese **ELECTRA-Small** model, as described in [ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators](https://openreview.net/pdf?id=r1xMH1BtvB). Our pretraining process employs subword units derived from the [Japanese Wikipedia](https://dumps.wikimedia.org/jawiki/latest), using the [Byte-Pair Encoding](https://www.aclweb.org/anthology/P16-1162.pdf) method and building on an initial tokenization with [mecab-ipadic-NEologd](https://github.com/neologd/mecab-ipadic-neologd). For optimal performance, please take care to set your MeCab dictionary appropriately. ``` # ELECTRA-small generator usage from transformers import BertJapaneseTokenizer, ElectraForMaskedLM tokenizer = BertJapaneseTokenizer.from_pretrained('Cinnamon/electra-small-japanese-generator', mecab_kwargs={"mecab_option": "-d /usr/lib/x86_64-linux-gnu/mecab/dic/mecab-ipadic-neologd"}) model = ElectraForMaskedLM.from_pretrained('Cinnamon/electra-small-japanese-generator') ```
CoderEFE/DialoGPT-marxbot
CoderEFE
gpt2
9
3
transformers
0
conversational
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['conversational']
false
true
true
1,209
Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-marxbot") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-marxbot") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("MarxBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
CogComp/bart-faithful-summary-detector
CogComp
bart
9
1
transformers
1
text-classification
true
false
true
cc-by-sa-4.0
['en']
['xsum']
null
0
0
0
0
0
0
0
['text-classification', 'bart', 'xsum']
false
true
true
1,605
# bart-faithful-summary-detector ## Model description A BART (base) model trained to classify whether a summary is *faithful* to the original article. See our [paper in NAACL'21](https://www.seas.upenn.edu/~sihaoc/static/pdf/CZSR21.pdf) for details. ## Usage Concatenate a summary and a source document as input (note that the summary needs to be the **first** sentence). Here's an example usage (with PyTorch) ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CogComp/bart-faithful-summary-detector") model = AutoModelForSequenceClassification.from_pretrained("CogComp/bart-faithful-summary-detector") article = "Ban Ki-Moon was re-elected for a second term by the UN General Assembly, unopposed and unanimously, on 21 June 2011." bad_summary = "Ban Ki-moon was elected for a second term in 2007." good_summary = "Ban Ki-moon was elected for a second term in 2011." bad_pair = tokenizer(text=bad_summary, text_pair=article, return_tensors='pt') good_pair = tokenizer(text=good_summary, text_pair=article, return_tensors='pt') bad_score = model(**bad_pair) good_score = model(**good_pair) print(good_score[0][:, 1] > bad_score[0][:, 1]) # True, label mapping: "0" -> "Hallucinated" "1" -> "Faithful" ``` ### BibTeX entry and citation info ```bibtex @inproceedings{CZSR21, author = {Sihao Chen and Fan Zhang and Kazoo Sone and Dan Roth}, title = {{Improving Faithfulness in Abstractive Summarization with Contrast Candidate Generation and Selection}}, booktitle = {NAACL}, year = {2021} } ```
CogComp/roberta-temporal-predictor
CogComp
roberta
13
5
transformers
0
fill-mask
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,823
# roberta-temporal-predictor A RoBERTa-base model that is fine-tuned on the [The New York Times Annotated Corpus](https://catalog.ldc.upenn.edu/LDC2008T19) to predict temporal precedence of two events. This is used as the ``temporality prediction'' component in our ROCK framework for reasoning about commonsense causality. See our [paper](https://arxiv.org/abs/2202.00436) for more details. # Usage You can directly use this model for filling-mask tasks, as shown in the example widget. However, for better temporal inference, it is recommended to symmetrize the outputs as $$ P(E_1 \prec E_2) = \frac{1}{2} (f(E_1,E_2) + f(E_2,E_1)) $$ where ``f(E_1,E_2)`` denotes the predicted probability for ``E_1`` to occur preceding ``E_2``. For simplicity, we implement the following TempPredictor class that incorporate this symmetrization automatically. Below is an example usage for the ``TempPredictor`` class: ```python from transformers import (RobertaForMaskedLM, RobertaTokenizer) from src.temp_predictor import TempPredictor TORCH_DEV = "cuda:0" # change as needed tp_roberta_ft = src.TempPredictor( model=RobertaForMaskedLM.from_pretrained("CogComp/roberta-temporal-predictor"), tokenizer=RobertaTokenizer.from_pretrained("CogComp/roberta-temporal-predictor"), device=TORCH_DEV ) E1 = "The man turned on the faucet." E2 = "Water flows out." t12 = tp_roberta_ft(E1, E2, top_k=5) print(f"P('{E1}' before '{E2}'): {t12}") ``` # BibTeX entry and citation info ```bib @misc{zhang2022causal, title={Causal Inference Principles for Reasoning about Commonsense Causality}, author={Jiayao Zhang and Hongming Zhang and Dan Roth and Weijie J. Su}, year={2022}, eprint={2202.00436}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
cometrain/neurotitle-rugpt3-small
cometrain
gpt2
9
5
transformers
1
text-generation
true
false
false
mit
['ru', 'en']
['All-NeurIPS-Papers-Scraper']
null
1
1
0
0
0
0
0
['Cometrain AutoCode', 'Cometrain AlphaML']
false
true
true
819
# neurotitle-rugpt3-small Model based on [ruGPT-3](https://huggingface.co/sberbank-ai) for generating scientific paper titles. Trained on [All NeurIPS (NIPS) Papers](https://www.kaggle.com/rowhitswami/nips-papers-1987-2019-updated) dataset. Use exclusively as a crazier alternative to SCIgen. ## Made with Cometrain AlphaML & AutoCode This model was automatically fine-tuned using the Cometrain AlphaML framework and tested with CI/CD pipeline made by Cometrain AutoCode ## Cometrain AlphaML command ```shell $ cometrain create --name neurotitle --model auto --task task_0x2231.txt --output transformers ``` ## Use with Transformers ```python from transformers import pipeline, set_seed generator = pipeline('text-generation', model="CometrainResearch/neurotitle-rugpt3-small") generator("BERT:", max_length=50) ```
Connorvr/TeachingGen
Connorvr
gpt2
10
4
transformers
0
text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
879
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.6.0 - Datasets 2.0.0 - Tokenizers 0.11.6
Coolhand/Abuela
Coolhand
null
2
0
null
0
null
false
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['image_restoration', 'superresolution']
false
true
true
579
@inproceedings{wan2020bringing, title={Bringing Old Photos Back to Life}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={2747--2757}, year={2020} } @article{wan2020old, title={Old Photo Restoration via Deep Latent Space Translation}, author={Wan, Ziyu and Zhang, Bo and Chen, Dongdong and Zhang, Pan and Chen, Dong and Liao, Jing and Wen, Fang}, journal={arXiv preprint arXiv:2009.07047}, year={2020} }
CouchCat/ma_mlc_v7_distil
CouchCat
distilbert
7
1
transformers
0
text-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['multi-label']
false
true
true
592
### Description A Multi-label text classification model trained on a customer feedback data using DistilBert. Possible labels are: - Delivery (delivery status, time of arrival, etc.) - Return (return confirmation, return label requests, etc.) - Product (quality, complaint, etc.) - Monetary (pending transactions, refund, etc.) ### Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_mlc_v7_distil") model = AutoModelForSequenceClassification.from_pretrained("CouchCat/ma_mlc_v7_distil") ```
CouchCat/ma_ner_v6_distil
CouchCat
distilbert
7
9
transformers
0
token-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['ner']
false
true
true
428
### Description A Named Entity Recognition model trained on a customer feedback data using DistilBert. Possible labels are: - PRD: for certain products - BRND: for brands ### Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v6_distil") model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v6_distil") ```
CouchCat/ma_ner_v7_distil
CouchCat
distilbert
7
8
transformers
0
token-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['ner']
false
true
true
770
### Description A Named Entity Recognition model trained on a customer feedback data using DistilBert. Possible labels are in BIO-notation. Performance of the PERS tag could be better because of low data samples: - PROD: for certain products - BRND: for brands - PERS: people names The following tags are simply in place to help better categorize the previous tags - MATR: relating to materials, e.g. cloth, leather, seam, etc. - TIME: time related entities - MISC: any other entity that might skew the results ### Usage ``` from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_ner_v7_distil") model = AutoModelForTokenClassification.from_pretrained("CouchCat/ma_ner_v7_distil") ```
CouchCat/ma_sa_v7_distil
CouchCat
distilbert
8
3
transformers
0
text-classification
true
false
false
mit
['en']
null
null
2
0
0
2
0
0
0
['sentiment-analysis']
false
true
true
414
### Description A Sentiment Analysis model trained on customer feedback data using DistilBert. Possible sentiments are: * negative * neutral * positive ### Usage ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("CouchCat/ma_sa_v7_distil") model = AutoModelForSequenceClassification.from_pretrained("CouchCat/ma_sa_v7_distil") ```
Craig/paraphrase-MiniLM-L6-v2
Craig
bert
12
0
sentence-transformers
0
feature-extraction
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,714
# sentence-transformers/paraphrase-MiniLM-L6-v2 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. This is a clone of the original model, with `pipeline_tag` metadata changed to `feature-extraction`, so it can just return the embedded vector. Otherwise it is unchanged. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
Crasher222/kaggle-comp-test
Crasher222
bert
9
2
transformers
0
text-classification
true
false
false
null
['en']
['Crasher222/autonlp-data-kaggle-test']
60.744727079482495
0
0
0
0
0
0
0
autonlp
false
true
true
858
# Model Finetuned from BERT-base for - Problem type: Multi-class Classification - Model ID: 25805800 ## Validation Metrics - Loss: 0.4422711133956909 - Accuracy: 0.8615328555811976 - Macro F1: 0.8642434650461513 - Micro F1: 0.8615328555811976 - Weighted F1: 0.8617743626671308 - Macro Precision: 0.8649112225076049 - Micro Precision: 0.8615328555811976 - Weighted Precision: 0.8625407179375096 - Macro Recall: 0.8640777539828228 - Micro Recall: 0.8615328555811976 - Weighted Recall: 0.8615328555811976 ## Usage ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Crasher222/kaggle-comp-test") tokenizer = AutoTokenizer.from_pretrained("Crasher222/kaggle-comp-test") inputs = tokenizer("I am in love with you", return_tensors="pt") outputs = model(**inputs) ```
Crives/distilbert-base-uncased-finetuned-emotion
Crives
distilbert
12
9
transformers
0
text-classification
true
false
false
apache-2.0
null
['emotion']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,345
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2175 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7814 | 1.0 | 250 | 0.3105 | 0.907 | 0.9046 | | 0.2401 | 2.0 | 500 | 0.2175 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
Culmenus/IceBERT-finetuned-ner
Culmenus
roberta
14
9
transformers
0
token-classification
true
false
false
gpl-3.0
null
['mim_gold_ner']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,528
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IceBERT-finetuned-ner This model is a fine-tuned version of [vesteinn/IceBERT](https://huggingface.co/vesteinn/IceBERT) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0807 - Precision: 0.8927 - Recall: 0.8632 - F1: 0.8777 - Accuracy: 0.9850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0544 | 1.0 | 2904 | 0.0774 | 0.8859 | 0.8490 | 0.8670 | 0.9833 | | 0.0284 | 2.0 | 5808 | 0.0781 | 0.8709 | 0.8590 | 0.8649 | 0.9840 | | 0.0166 | 3.0 | 8712 | 0.0807 | 0.8927 | 0.8632 | 0.8777 | 0.9850 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
Culmenus/XLMR-ENIS-finetuned-ner
Culmenus
xlm-roberta
12
11
transformers
0
token-classification
true
false
false
agpl-3.0
null
['mim_gold_ner']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,534
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLMR-ENIS-finetuned-ner This model is a fine-tuned version of [vesteinn/XLMR-ENIS](https://huggingface.co/vesteinn/XLMR-ENIS) on the mim_gold_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0891 - Precision: 0.8804 - Recall: 0.8517 - F1: 0.8658 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0573 | 1.0 | 2904 | 0.1024 | 0.8608 | 0.8003 | 0.8295 | 0.9799 | | 0.0307 | 2.0 | 5808 | 0.0899 | 0.8707 | 0.8380 | 0.8540 | 0.9825 | | 0.0198 | 3.0 | 8712 | 0.0891 | 0.8804 | 0.8517 | 0.8658 | 0.9837 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
CuongLD/wav2vec2-large-xlsr-vietnamese
CuongLD
wav2vec2
9
17
transformers
0
automatic-speech-recognition
true
false
true
apache-2.0
['vi']
['common_voice, infore_25h']
null
0
0
0
0
0
0
0
['audio', 'automatic-speech-recognition', 'speech', 'xlsr-fine-tuning-week']
true
true
true
10,017
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), [Infore_25h dataset](https://files.huylenguyen.com/25hours.zip) (Password: BroughtToYouByInfoRe) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("CuongLD/wav2vec2-large-xlsr-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.63 % ## Training The Common Voice `train`, `validation`, and `Infore_25h` datasets were used for training The script used for training can be found [here](https://drive.google.com/file/d/1AW9R8IlsapiSGh9n3aECf23t-zhk3wUh/view?usp=sharing) =======================To here===============================> Your model in then available under *huggingface.co/CuongLD/wav2vec2-large-xlsr-vietnamese* for everybody to use 🎉. ## How to evaluate my trained checkpoint Having uploaded your model, you should now evaluate your model in a final step. This should be as simple as copying the evaluation code of your model card into a python script and running it. Make sure to note the final result on the model card **both** under the YAML tags at the very top **and** below your evaluation code under "Test Results". ## Rules of training and evaluation In this section, we will quickly go over what data is allowed to be used as training data, what kind of data preprocessing is allowed be used, and how the model should be evaluated. To make it very simple regarding the first point: **All data except the official common voice `test` data set can be used as training data**. For models trained in a language that is not included in Common Voice, the author of the model is responsible to leave a reasonable amount of data for evaluation. Second, the rules regarding the preprocessing are not that as straight-forward. It is allowed (and recommended) to normalize the data to only have lower-case characters. It is also allowed (and recommended) to remove typographical symbols and punctuation marks. A list of such symbols can *e.g.* be fonud [here](https://en.wikipedia.org/wiki/List_of_typographical_symbols_and_punctuation_marks) - however here we already must be careful. We should **not** remove a symbol that would change the meaning of the words, *e.g.* in English, we should not remove the single quotation mark `'` since it would change the meaning of the word `"it's"` to `"its"` which would then be incorrect. So the golden rule here is to not remove any characters that could change the meaning of a word into another word. This is not always obvious and should be given some consideration. As another example, it is fine to remove the "Hypen-minus" sign "`-`" since it doesn't change the meaninng of a word to another one. *E.g.* "`fine-tuning`" would be changed to "`finetuning`" which has still the same meaning. Since those choices are not always obvious when in doubt feel free to ask on Slack or even better post on the forum, as was done, *e.g.* [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586). ## Tips and tricks This section summarizes a couple of tips and tricks across various topics. It will continously be updated during the week. ### How to combine multiple datasets into one Check out [this](https://discuss.huggingface.co/t/how-to-combine-local-data-files-with-an-official-dataset/4685) post. ### How to effectively preprocess the data ### How to do efficiently load datasets with limited ram and hard drive space Check out [this](https://discuss.huggingface.co/t/german-asr-fine-tuning-wav2vec2/4558/8?u=patrickvonplaten) post. ### How to do hyperparameter tuning ### How to preprocess and evaluate character based languages ## Further reading material It is recommended that take some time to read up on how Wav2vec2 works in theory. Getting a better understanding of the theory and the inner mechanisms of the model often helps when fine-tuning the model. **However**, if you don't like reading blog posts/papers, don't worry - it is by no means necessary to go through the theory to fine-tune Wav2Vec2 on your language of choice. If you are interested in learning more about the model though, here are a couple of resources that are important to better understand Wav2Vec2: - [Facebook's Wav2Vec2 blog post](https://ai.facebook.com/blog/wav2vec-state-of-the-art-speech-recognition-through-self-supervision/) - [Official Wav2Vec2 paper](https://arxiv.org/abs/2006.11477) - [Official XLSR Wav2vec2 paper](https://arxiv.org/pdf/2006.13979.pdf) - [Hugging Face Blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) - [How does CTC (Connectionist Temporal Classification) work](https://distill.pub/2017/ctc/) It helps to have a good understanding of the following points: - How was XLSR-Wav2Vec2 pretrained? -> Feature vectors were masked and had to be predicted by the model; very similar in spirit to masked language model of BERT. - What parts of XLSR-Wav2Vec2 are responsible for what? What is the feature extractor part used for? -> extract feature vectors from the 1D raw audio waveform; What is the transformer part doing? -> mapping feature vectors to contextualized feature vectors; ... - What part of the model needs to be fine-tuned? -> The pretrained model **does not** include a language head to classify the contextualized features to letters. This is randomly initialized when loading the pretrained checkpoint and has to be fine-tuned. Also, note that the authors recommend to **not** further fine-tune the feature extractor. - What data was used to XLSR-Wav2Vec2? The checkpoint we will use for further fine-tuning was pretrained on **53** languages. - What languages are considered to be similar by XLSR-Wav2Vec2? In the official [XLSR Wav2Vec2 paper](https://arxiv.org/pdf/2006.13979.pdf), the authors show nicely which languages share a common contextualized latent space. It might be useful for you to extend your training data with data of other languages that are considered to be very similar by the model (or you). ## FAQ - Can a participant fine-tune models for more than one language? Yes! A participant can fine-tune models in as many languages she/he likes - Can a participant use extra data (apart from the common voice data)? Yes! All data except the official common voice `test data` can be used for training. If a participant wants to train a model on a language that is not part of Common Voice (which is very much encouraged!), the participant should make sure that some test data is held out to make sure the model is not overfitting. - Can we fine-tune for high-resource languages? Yes! While we do not really recommend people to fine-tune models in English since there are already so many fine-tuned speech recognition models in English. However, it is very much appreciated if participants want to fine-tune models in other "high-resource" languages, such as French, Spanish, or German. For such cases, one probably needs to train locally and apply might have to apply tricks such as lazy data loading (check the ["Lazy data loading"](#how-to-do-lazy-data-loading) section for more details).
D3xter1922/electra-base-discriminator-finetuned-cola
D3xter1922
electra
13
4
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,595
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-discriminator-finetuned-cola This model is a fine-tuned version of [google/electra-base-discriminator](https://huggingface.co/google/electra-base-discriminator) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6367 - Matthews Correlation: 0.6824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4139 | 1.0 | 535 | 0.4137 | 0.6381 | | 0.2452 | 2.0 | 1070 | 0.4887 | 0.6504 | | 0.17 | 3.0 | 1605 | 0.5335 | 0.6757 | | 0.1135 | 4.0 | 2140 | 0.6367 | 0.6824 | | 0.0817 | 5.0 | 2675 | 0.6742 | 0.6755 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
DCU-NLP/bert-base-irish-cased-v1
DCU-NLP
bert
7
24
transformers
3
fill-mask
true
true
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
904
# bert-base-irish-cased-v1 [gaBERT](https://arxiv.org/abs/2107.12930) is a BERT-base model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. ## Model description Encoder-based Transformer to be used to obtain features for finetuning for downstream tasks in Irish. ## Intended uses & limitations Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### Training hyperparameters The following hyperparameters were used during training: - optimizer: None - training_precision: float32 ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1
DCU-NLP/electra-base-irish-cased-discriminator-v1
DCU-NLP
electra
6
0
transformers
0
null
true
false
false
apache-2.0
['ga']
null
null
0
0
0
0
0
0
0
['irish', 'electra']
false
true
true
1,505
# gaELECTRA [gaELECTRA](https://arxiv.org/abs/2107.12930) is an ELECTRA model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. For fine-tuning this model on a token classification task, e.g. Named Entity Recognition, use the discriminator model. ### Limitations and bias Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @article{DBLP:journals/corr/abs-2107-12930, author = {James Barry and Joachim Wagner and Lauren Cassidy and Alan Cowap and Teresa Lynn and Abigail Walsh and M{\'{\i}}che{\'{a}}l J. {\'{O}} Meachair and Jennifer Foster}, title = {gaBERT - an Irish Language Model}, journal = {CoRR}, volume = {abs/2107.12930}, year = {2021}, url = {https://arxiv.org/abs/2107.12930}, archivePrefix = {arXiv}, eprint = {2107.12930}, timestamp = {Fri, 30 Jul 2021 13:03:06 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-12930.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
DCU-NLP/electra-base-irish-cased-generator-v1
DCU-NLP
electra
6
2
transformers
0
fill-mask
true
false
false
apache-2.0
['ga']
null
null
0
0
0
0
0
0
0
['irish', 'electra']
false
true
true
1,505
# gaELECTRA [gaELECTRA](https://arxiv.org/abs/2107.12930) is an ELECTRA model trained on 7.9M Irish sentences. For more details, including the hyperparameters and pretraining corpora used please refer to our paper. For fine-tuning this model on a token classification task, e.g. Named Entity Recognition, use the discriminator model. ### Limitations and bias Some data used to pretrain gaBERT was scraped from the web which potentially contains ethically problematic text (bias, hate, adult content, etc.). Consequently, downstream tasks/applications using gaBERT should be thoroughly tested with respect to ethical considerations. ### BibTeX entry and citation info If you use this model in your research, please consider citing our paper: ``` @article{DBLP:journals/corr/abs-2107-12930, author = {James Barry and Joachim Wagner and Lauren Cassidy and Alan Cowap and Teresa Lynn and Abigail Walsh and M{\'{\i}}che{\'{a}}l J. {\'{O}} Meachair and Jennifer Foster}, title = {gaBERT - an Irish Language Model}, journal = {CoRR}, volume = {abs/2107.12930}, year = {2021}, url = {https://arxiv.org/abs/2107.12930}, archivePrefix = {arXiv}, eprint = {2107.12930}, timestamp = {Fri, 30 Jul 2021 13:03:06 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-12930.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
DJSammy/bert-base-danish-uncased_BotXO-ai
DJSammy
null
6
53
transformers
1
fill-mask
true
false
true
cc-by-4.0
['da']
['common_crawl', 'wikipedia']
null
0
0
0
0
0
0
0
['bert', 'masked-lm']
false
true
true
5,711
# Danish BERT (uncased) model [BotXO.ai](https://www.botxo.ai/) developed this model. For data and training details see their [GitHub repository](https://github.com/botxo/nordic_bert). The original model was trained in TensorFlow then I converted it to Pytorch using [transformers-cli](https://huggingface.co/transformers/converting_tensorflow_models.html?highlight=cli). For TensorFlow version download here: https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1 ## Architecture ```python from transformers import AutoModelForPreTraining model = AutoModelForPreTraining.from_pretrained("DJSammy/bert-base-danish-uncased_BotXO,ai") params = list(model.named_parameters()) print('danish_bert_uncased_v2 has {:} different named parameters.\n'.format(len(params))) print('==== Embedding Layer ====\n') for p in params[0:5]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== First Transformer ====\n') for p in params[5:21]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Last Transformer ====\n') for p in params[181:197]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) print('\n==== Output Layer ====\n') for p in params[197:]: print("{:<55} {:>12}".format(p[0], str(tuple(p[1].size())))) # danish_bert_uncased_v2 has 206 different named parameters. # ==== Embedding Layer ==== # bert.embeddings.word_embeddings.weight (32000, 768) # bert.embeddings.position_embeddings.weight (512, 768) # bert.embeddings.token_type_embeddings.weight (2, 768) # bert.embeddings.LayerNorm.weight (768,) # bert.embeddings.LayerNorm.bias (768,) # ==== First Transformer ==== # bert.encoder.layer.0.attention.self.query.weight (768, 768) # bert.encoder.layer.0.attention.self.query.bias (768,) # bert.encoder.layer.0.attention.self.key.weight (768, 768) # bert.encoder.layer.0.attention.self.key.bias (768,) # bert.encoder.layer.0.attention.self.value.weight (768, 768) # bert.encoder.layer.0.attention.self.value.bias (768,) # bert.encoder.layer.0.attention.output.dense.weight (768, 768) # bert.encoder.layer.0.attention.output.dense.bias (768,) # bert.encoder.layer.0.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.0.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.0.intermediate.dense.weight (3072, 768) # bert.encoder.layer.0.intermediate.dense.bias (3072,) # bert.encoder.layer.0.output.dense.weight (768, 3072) # bert.encoder.layer.0.output.dense.bias (768,) # bert.encoder.layer.0.output.LayerNorm.weight (768,) # bert.encoder.layer.0.output.LayerNorm.bias (768,) # ==== Last Transformer ==== # bert.encoder.layer.11.attention.self.query.weight (768, 768) # bert.encoder.layer.11.attention.self.query.bias (768,) # bert.encoder.layer.11.attention.self.key.weight (768, 768) # bert.encoder.layer.11.attention.self.key.bias (768,) # bert.encoder.layer.11.attention.self.value.weight (768, 768) # bert.encoder.layer.11.attention.self.value.bias (768,) # bert.encoder.layer.11.attention.output.dense.weight (768, 768) # bert.encoder.layer.11.attention.output.dense.bias (768,) # bert.encoder.layer.11.attention.output.LayerNorm.weight (768,) # bert.encoder.layer.11.attention.output.LayerNorm.bias (768,) # bert.encoder.layer.11.intermediate.dense.weight (3072, 768) # bert.encoder.layer.11.intermediate.dense.bias (3072,) # bert.encoder.layer.11.output.dense.weight (768, 3072) # bert.encoder.layer.11.output.dense.bias (768,) # bert.encoder.layer.11.output.LayerNorm.weight (768,) # bert.encoder.layer.11.output.LayerNorm.bias (768,) # ==== Output Layer ==== # bert.pooler.dense.weight (768, 768) # bert.pooler.dense.bias (768,) # cls.predictions.bias (32000,) # cls.predictions.transform.dense.weight (768, 768) # cls.predictions.transform.dense.bias (768,) # cls.predictions.transform.LayerNorm.weight (768,) # cls.predictions.transform.LayerNorm.bias (768,) # cls.seq_relationship.weight (2, 768) # cls.seq_relationship.bias (2,) ``` ## Example Pipeline ```python from transformers import pipeline unmasker = pipeline('fill-mask', model='DJSammy/bert-base-danish-uncased_BotXO,ai') unmasker('København er [MASK] i Danmark.') # Copenhagen is the [MASK] of Denmark. # => # [{'score': 0.788068950176239, # 'sequence': '[CLS] københavn er hovedstad i danmark. [SEP]', # 'token': 12610, # 'token_str': 'hovedstad'}, # {'score': 0.07606703042984009, # 'sequence': '[CLS] københavn er hovedstaden i danmark. [SEP]', # 'token': 8108, # 'token_str': 'hovedstaden'}, # {'score': 0.04299738258123398, # 'sequence': '[CLS] københavn er metropol i danmark. [SEP]', # 'token': 23305, # 'token_str': 'metropol'}, # {'score': 0.008163209073245525, # 'sequence': '[CLS] københavn er ikke i danmark. [SEP]', # 'token': 89, # 'token_str': 'ikke'}, # {'score': 0.006238455418497324, # 'sequence': '[CLS] københavn er ogsa i danmark. [SEP]', # 'token': 25253, # 'token_str': 'ogsa'}] ```
DSI/human-directed-sentiment
DSI
bert
7
1
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
260
** Human-Directed Sentiment Analysis in Arabic A supervised training procedure to classify human-directed-sentiment in a text. We define the human-directed-sentiment as the polarity of one user towards a second person who is involved with him in a discussion.
DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support
DTAI-KULeuven
bert
7
1
transformers
0
text-classification
true
false
true
null
['multilingual', 'nl', 'fr', 'en']
null
null
1
0
1
0
0
0
0
['Tweets', 'Sentiment analysis']
false
true
true
1,175
# Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT [Blog post »](https://people.cs.kuleuven.be/~pieter.delobelle/attitudes-towards-covid-19-measures/?utm_source=huggingface&utm_medium=social&utm_campaign=corona_tweets) · [paper »](http://arxiv.org/abs/2104.09947) This model can be used to determine if a tweet expresses support or not for a curfew. The model was trained on manually labeled tweets from Belgium in Dutch, French and English. We categorized several months worth of these Tweets by topic (government COVID measure) and opinion expressed. Below is a timeline of the relative number of Tweets on the curfew topic (middle) and the fraction of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the number of daily cases in Belgium to give context on the pandemic situation (top). ![chart.png](https://github.com/iPieter/bert-corona-tweets/raw/master/chart.png) Models used in this paper are on HuggingFace: - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
DTAI-KULeuven/mbert-corona-tweets-belgium-topics
DTAI-KULeuven
bert
7
1
transformers
0
text-classification
true
false
true
null
['multilingual', 'nl', 'fr', 'en']
null
null
1
0
1
0
0
0
0
['Dutch', 'French', 'English', 'Tweets', 'Topic classification']
false
true
true
995
# Measuring Shifts in Attitudes Towards COVID-19 Measures in Belgium Using Multilingual BERT [Blog post »](https://people.cs.kuleuven.be/~pieter.delobelle/attitudes-towards-covid-19-measures/?utm_source=huggingface&utm_medium=social&utm_campaign=corona_tweets) · [paper »](http://arxiv.org/abs/2104.09947) We categorized several months worth of these Tweets by topic (government COVID measure) and opinion expressed. Below is a timeline of the relative number of Tweets on the curfew topic (middle) and the fraction of those Tweets that find the curfew too strict, too loose, or a suitable measure (bottom), with the number of daily cases in Belgium to give context on the pandemic situation (top). ![chart.png](https://github.com/iPieter/bert-corona-tweets/raw/master/chart.png) Models used in this paper are on HuggingFace: - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-curfew-support - https://huggingface.co/DTAI-KULeuven/mbert-corona-tweets-belgium-topics
DTAI-KULeuven/robbertje-1-gb-bort
DTAI-KULeuven
roberta
7
45
transformers
0
fill-mask
true
false
false
mit
['nl']
['oscar', 'oscar (NL)', 'dbrd', 'lassy-ud', 'europarl-mono', 'conll2002']
null
0
0
0
0
0
0
0
['Dutch', 'Flemish', 'RoBERTa', 'RobBERT', 'RobBERTje']
false
true
true
3,597
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | this model | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
DTAI-KULeuven/robbertje-1-gb-merged
DTAI-KULeuven
roberta
7
48
transformers
0
fill-mask
true
false
false
mit
['nl']
['oscar', 'oscar (NL)', 'dbrd', 'lassy-ud', 'europarl-mono', 'conll2002']
null
0
0
0
0
0
0
0
['Dutch', 'Flemish', 'RoBERTa', 'RobBERT', 'RobBERTje']
false
true
true
3,592
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | this model | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
DTAI-KULeuven/robbertje-1-gb-non-shuffled
DTAI-KULeuven
roberta
8
19
transformers
0
fill-mask
true
false
false
mit
['nl']
['oscar', 'dbrd', 'lassy-ud', 'europarl-mono', 'conll2002']
null
0
0
0
0
0
0
0
['Dutch', 'Flemish', 'RoBERTa', 'RobBERT', 'RobBERTje']
false
true
true
3,580
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | this model | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-shuffled) | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
DTAI-KULeuven/robbertje-1-gb-shuffled
DTAI-KULeuven
roberta
6
41
transformers
0
fill-mask
true
false
false
mit
['nl']
['oscar', 'oscar (NL)', 'dbrd', 'lassy-ud', 'europarl-mono', 'conll2002']
null
0
0
0
0
0
0
0
['Dutch', 'Flemish', 'RoBERTa', 'RobBERT', 'RobBERTje']
false
true
true
3,588
<p align="center"> <img src="https://github.com/iPieter/robbertje/raw/master/images/robbertje_logo_with_name.png" alt="RobBERTje: A collection of distilled Dutch BERT-based models" width="75%"> </p> # About RobBERTje RobBERTje is a collection of distilled models based on [RobBERT](http://github.com/iPieter/robbert). There are multiple models with different sizes and different training settings, which you can choose for your use-case. We are also continuously working on releasing better-performing models, so watch [the repository](http://github.com/iPieter/robbertje) for updates. # News - **February 21, 2022**: Our paper about RobBERTje has been published in [volume 11 of CLIN journal](https://www.clinjournal.org/clinj/article/view/131)! - **July 2, 2021**: Publicly released 4 RobBERTje models. - **May 12, 2021**: RobBERTje was accepted at [CLIN31](https://www.clin31.ugent.be) for an oral presentation! # The models | Model | Description | Parameters | Training size | Huggingface id | |--------------|-------------|------------------|-------------------|------------------------------------------------------------------------------------| | Non-shuffled | Trained on the non-shuffled variant of the oscar corpus, without any operations to preserve this order during training and distillation. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-non-shuffled](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-non-shuffled) | | Shuffled | Trained on the publicly available and shuffled OSCAR corpus. | 74 M | 1 GB | this model | | Merged (p=0.5) | Same as the non-shuffled variant, but sequential sentences of the same document are merged with a probability of 50%. | 74 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-merged](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-merged) | | BORT | A smaller version with 8 attention heads instead of 12 and 4 layers instead of 6 (and 12 for RobBERT). | 46 M | 1 GB | [DTAI-KULeuven/robbertje-1-gb-bort](https://huggingface.co/DTAI-KULeuven/robbertje-1-gb-bort) | # Results ## Intrinsic results We calculated the _pseudo perplexity_ (PPPL) from [cite](), which is a built-in metric in our distillation library. This metric gives an indication of how well the model captures the input distribution. | Model | PPPL | |-------------------|-----------| | RobBERT (teacher) | 7.76 | | Non-shuffled | 12.95 | | Shuffled | 18.74 | | Merged (p=0.5) | 17.10 | | BORT | 26.44 | ## Extrinsic results We also evaluated our models on sereral downstream tasks, just like the teacher model RobBERT. Since that evaluation, a [Dutch NLI task named SICK-NL](https://arxiv.org/abs/2101.05716) was also released and we evaluated our models with it as well. | Model | DBRD | DIE-DAT | NER | POS |SICK-NL | |------------------|-----------|-----------|-----------|-----------|----------| | RobBERT (teacher)|94.4 | 99.2 |89.1 |96.4 | 84.2 | | Non-shuffled |90.2 | 98.4 |82.9 |95.5 | 83.4 | | Shuffled |92.5 | 98.2 |82.7 |95.6 | 83.4 | | Merged (p=0.5) |92.9 | 96.5 |81.8 |95.2 | 82.8 | | BORT |89.6 | 92.2 |79.7 |94.3 | 81.0 |
alexandrainst/da-binary-emotion-classification-base
alexandrainst
bert
10
455
transformers
1
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
912
# Danish BERT for emotion detection The BERT Emotion model detects whether a Danish text is emotional or not. It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-emotion) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-binary-emotion-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-binary-emotion-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
alexandrainst/da-emotion-classification-base
alexandrainst
bert
10
357
transformers
1
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,249
# Danish BERT for emotion classification The BERT Emotion model classifies a Danish text in one of the following class: * Glæde/Sindsro * Tillid/Accept * Forventning/Interrese * Overasket/Målløs * Vrede/Irritation * Foragt/Modvilje * Sorg/trist * Frygt/Bekymret It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. This model should be used after detecting whether the text contains emotion or not, using the binary [BERT Emotion model](https://huggingface.co/alexandrainst/da-binary-emotion-classification-base). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-emotion) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-emotion-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-emotion-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
alexandrainst/da-hatespeech-classification-base
alexandrainst
bert
8
300
transformers
0
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,208
# Danish BERT for hate speech classification The BERT HateSpeech model classifies offensive Danish text into 4 categories: * `Særlig opmærksomhed` (special attention, e.g. threat) * `Personangreb` (personal attack) * `Sprogbrug` (offensive language) * `Spam & indhold` (spam) This model is intended to be used after the [BERT HateSpeech detection model](https://huggingface.co/alexandrainst/da-hatespeech-detection-base). It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#bertdr) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-hatespeech-classification-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
alexandrainst/da-hatespeech-detection-base
alexandrainst
bert
8
943
transformers
1
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
908
# Danish BERT for hate speech (offensive language) detection The BERT HateSpeech model detects whether a Danish text is offensive or not. It is based on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO which has been fine-tuned on social media data. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#bertdr) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-detection-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-hatespeech-detection-base") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
alexandrainst/da-ner-base
alexandrainst
bert
9
202
transformers
0
token-classification
true
true
false
cc-by-sa-4.0
['da']
['dane']
null
0
0
0
0
0
0
0
[]
false
true
true
814
# BERT fine-tuned for Named Entity Recognition in Danish The model tags tokens (in Danish sentences) with named entity tags (BIO format) [PER, ORG, LOC, MISC]. The pretrained language model used for fine-tuning is the [Danish BERT](https://github.com/certainlyio/nordic_bert) by BotXO. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/ner.html#bert) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForTokenClassification model = BertForTokenClassification.from_pretrained("alexandrainst/da-ner-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-ner-base") ``` ## Training Data The model has been trained on the [DaNE](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#dane).
alexandrainst/da-sentiment-base
alexandrainst
bert
9
7,806
transformers
3
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
3
1
1
1
0
0
0
[]
false
true
true
3,884
# Model Card for Danish BERT Danish BERT Tone for sentiment polarity detection # Model Details ## Model Description The BERT Tone model detects sentiment polarity (positive, neutral or negative) in Danish texts. It has been finetuned on the pretrained Danish BERT model by BotXO. - **Developed by:** DaNLP - **Shared by [Optional]:** Hugging Face - **Model type:** Text Classification - **Language(s) (NLP):** Danish (da) - **License:** cc-by-sa-4.0 - **Related Models:** More information needed - **Parent Model:** BERT - **Resources for more information:** - [GitHub Repo](https://github.com/certainlyio/nordic_bert) - [Associated Documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) # Uses ## Direct Use This model can be used for text classification ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets. ## Training Procedure ### Preprocessing It has been finetuned on the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO. ### Speeds, Sizes, Times More information needed. # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed. ### Factors ### Metrics F1 ## Results More information needed. # Model Examination More information needed. # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed. - **Hours used:** More information needed. - **Cloud Provider:** More information needed. - **Compute Region:** More information needed. - **Carbon Emitted:** More information needed. # Technical Specifications [optional] ## Model Architecture and Objective More information needed. ## Compute Infrastructure More information needed. ### Hardware More information needed. ### Software More information needed. # Citation **BibTeX:** More information needed. **APA:** More information needed. # Glossary [optional] More information needed. # More Information [optional] More information needed. # Model Card Authors [optional] DaNLP in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed. # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-sentiment-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-sentiment-base") ``` </details>
alexandrainst/da-subjectivivity-classification-base
alexandrainst
bert
10
295
transformers
1
text-classification
true
true
false
cc-by-sa-4.0
['da']
['DDSC/twitter-sent', 'DDSC/europarl']
null
1
0
1
0
0
0
0
[]
false
true
true
1,033
# Danish BERT Tone for the detection of subjectivity/objectivity The BERT Tone model detects whether a text (in Danish) is subjective or objective. The model is based on the finetuning of the pretrained [Danish BERT](https://github.com/certainlyio/nordic_bert) model by BotXO. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/sentiment_analysis.html#bert-tone) for more details. Here is how to use the model: ```python from transformers import BertTokenizer, BertForSequenceClassification model = BertForSequenceClassification.from_pretrained("alexandrainst/da-subjectivivity-classification-base") tokenizer = BertTokenizer.from_pretrained("alexandrainst/da-subjectivivity-classification-base") ``` ## Training data The data used for training come from the [Twitter Sentiment](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#twitsent) and [EuroParl sentiment 2](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#europarl-sentiment2) datasets.
alexandrainst/da-hatespeech-detection-small
alexandrainst
electra
7
1,362
transformers
0
text-classification
true
false
false
cc-by-4.0
['da']
null
null
1
1
0
0
0
0
0
[]
false
true
true
877
# Danish ELECTRA for hate speech (offensive language) detection The ELECTRA Offensive model detects whether a Danish text is offensive or not. It is based on the pretrained [Danish Ælæctra](Maltehb/aelaectra-danish-electra-small-cased) model. See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/hatespeech.html#electra) for more details. Here is how to use the model: ```python from transformers import ElectraTokenizer, ElectraForSequenceClassification model = ElectraForSequenceClassification.from_pretrained("alexandrainst/da-hatespeech-detection-small") tokenizer = ElectraTokenizer.from_pretrained("alexandrainst/da-hatespeech-detection-small") ``` ## Training data The data used for training has not been made publicly available. It consists of social media data manually annotated in collaboration with Danmarks Radio.
alexandrainst/da-ned-base
alexandrainst
xlm-roberta
8
1
transformers
0
text-classification
true
true
false
cc-by-sa-4.0
['da']
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,604
# XLM-Roberta fine-tuned for Named Entity Disambiguation Given a sentence and a knowledge graph context, the model detects whether a specific entity (represented by the knowledge graph context) is mentioned in the sentence (binary classification). The base language model used is the [xlm-roberta-base](https://huggingface.co/xlm-roberta-base). Here is how to use the model: ```python from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification model = XLMRobertaForSequenceClassification.from_pretrained("alexandrainst/da-ned-base") tokenizer = XLMRobertaTokenizer.from_pretrained("alexandrainst/da-ned-base") ``` The tokenizer takes 2 strings has input: the sentence and the knowledge graph (KG) context. Here is an example: ```python sentence = "Karen Blixen vendte tilbage til Danmark, hvor hun boede resten af sit liv på Rungstedlund, som hun arvede efter sin mor i 1939" kg_context = "udmærkelser modtaget Kritikerprisen udmærkelser modtaget Tagea Brandts Rejselegat udmærkelser modtaget Ingenio et arti udmærkelser modtaget Holbergmedaljen udmærkelser modtaget De Gyldne Laurbær mor Ingeborg Dinesen ægtefælle Bror von Blixen-Finecke køn kvinde Commons-kategori Karen Blixen LCAuth no95003722 VIAF 90663542 VIAF 121643918 GND-identifikator 118637878 ISNI 0000 0001 2096 6265 ISNI 0000 0003 6863 4408 ISNI 0000 0001 1891 0457 fødested Rungstedlund fødested Rungsted dødssted Rungstedlund dødssted København statsborgerskab Danmark NDL-nummer 00433530 dødsdato +1962-09-07T00:00:00Z dødsdato +1962-01-01T00:00:00Z fødselsdato +1885-04-17T00:00:00Z fødselsdato +1885-01-01T00:00:00Z AUT NKC jn20000600905 AUT NKC jo2015880827 AUT NKC xx0196181 emnets hovedkategori Kategori:Karen Blixen tilfælde af menneske billede Karen Blixen cropped from larger original.jpg IMDb-identifikationsnummer nm0227598 Freebase-ID /m/04ymd8w BNF 118857710 beskæftigelse skribent beskæftigelse selvbiograf beskæftigelse novelleforfatter ..." ``` A KG context, for a specific entity, can be generated from its Wikidata page. In the previous example, the KG context is a string representation of the Wikidata page of [Karen Blixen (QID=Q182804)](https://www.wikidata.org/wiki/Q182804). See the [DaNLP documentation](https://danlp-alexandra.readthedocs.io/en/latest/docs/tasks/ned.html#xlmr) for more details about how to generate a KG context. ## Training Data The model has been trained on the [DaNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#daned) and [DaWikiNED](https://danlp-alexandra.readthedocs.io/en/latest/docs/datasets.html#dawikined) datasets.
DanL/scientific-challenges-and-directions
DanL
bert
10
68
transformers
0
text-classification
true
false
false
null
['en']
['DanL/scientific-challenges-and-directions-dataset']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'text-classification']
true
true
true
3,770
# scientific-challenges-and-directions We present a novel resource to help scientists and medical professionals discover challenges and potential directions across scientific literature, focusing on a broad corpus pertaining to the COVID-19 pandemic and related historical research. At a high level, the _challenges_ and _directions_ are defined as follows: * **Challenge**: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or knowledge gap. * **Research direction**: A sentence mentioning suggestions or needs for further research, hypotheses, speculations, indications or hints that an issue is worthy of exploration. * This model here is described in our paper: [A Search Engine for Discovery of Scientific Challenges and Directions](https://arxiv.org/abs/2108.13751) (though we've upgraded the infrastructure since the paper was released - there are slight differences in the results). * Our dataset can be found [here](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset). * Please cite our paper if you use our datasets or models in your project. See the [BibTeX](#citation). * Feel free to [email us](#contact-us). * Also, check out [our search engine](https://challenges.apps.allenai.org/), as an example application. ## Model description This model is a fine-tuned version of [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the [scientific-challenges-and-directions-dataset](https://huggingface.co/datasets/DanL/scientific-challenges-and-directions-dataset), designed for multi-label text classification. ## Training and evaluation data The scientific-challenges-and-directions model is trained based on a dataset that is a collection of 2894 sentences and their surrounding contexts, from 1786 full-text papers in the CORD-19 corpus, labeled for classification of challenges and directions by expert annotators with biomedical and bioNLP backgrounds. For full details on the train/test/split of the data see section 3.1 in our [paper](https://arxiv.org/abs/2108.13751) ## Example notebook We include an example notebook that uses the model for inference in our [repo](https://github.com/Dan-La/scientific-challenges-and-directions). See `Inference_Notebook.ipynb`. A training notebook is also included. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning rate: 2e-05 - train batch size: 8 - eval batch size: 4 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr scheduler type: linear - lr scheduler warmup steps: 500 - num epochs: 30 ### Training results The achieves the following results on the test set: - Precision Challenge: 0.768719 - Recall Challenge: 0.780405 - F1 Challenge: 0.774518 - Precision Direction: 0.758112 - Recall Direction: 0.774096 - F1 Direction: 0.766021 - Precision (micro avg. on both labels): 0.764894 - Recall (micro avg. on both labels): 0.778139 - F1 (micro avg. on both labels): 0.771459 ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 ## Citation If using our dataset and models, please cite: ``` @misc{lahav2021search, title={A Search Engine for Discovery of Scientific Challenges and Directions}, author={Dan Lahav and Jon Saad Falcon and Bailey Kuehl and Sophie Johnson and Sravanthi Parasa and Noam Shomron and Duen Horng Chau and Diyi Yang and Eric Horvitz and Daniel S. Weld and Tom Hope}, year={2021}, eprint={2108.13751}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## Contact us Please don't hesitate to reach out. **Email:** `[email protected]`,`[email protected]`.
Darkrider/covidbert_medmarco
Darkrider
bert
8
1
transformers
0
text-classification
true
false
true
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,422
Fine-tuned CovidBERT on Med-Marco Dataset for passage ranking # CovidBERT-MedNLI This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**. It is further fine-tuned Med-Marco Dataset. MacAvaney et.al in their [paper](https://arxiv.org/abs/2010.05987) titled “SLEDGE-Z: A Zero-Shot Baseline for COVID-19 Literature Search” used MedSyn a lexicon of layperson and expert terminology for various medical conditions to filter for medical questions. One can also replace this by UMLs ontologies but the beauty of MedSyn is that the terms are more general human conversation lingo and not terms based on scientific literature. Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba) **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`.
Darkrider/covidbert_mednli
Darkrider
null
11
0
transformers
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,090
# CovidBERT-MedNLI This is the model **CovidBERT** trained by DeepSet on AllenAI's [CORD19 Dataset](https://pages.semanticscholar.org/coronavirus-research) of scientific articles about coronaviruses. The model uses the original BERT wordpiece vocabulary and was subsequently fine-tuned on the [SNLI](https://nlp.stanford.edu/projects/snli/) and the [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) datasets using the [`sentence-transformers` library](https://github.com/UKPLab/sentence-transformers/) to produce universal sentence embeddings [1] using the **average pooling strategy** and a **softmax loss**. It is further fine-tuned on both MedNLI datasets available at Physionet. [ACL-BIONLP 2019](https://physionet.org/content/mednli-bionlp19/1.0.1/) [MedNLI from MIMIC](https://physionet.org/content/mednli/1.0.0/) Parameter details for the original training on CORD-19 are available on [DeepSet's MLFlow](https://public-mlflow.deepset.ai/#/experiments/2/runs/ba27d00c30044ef6a33b1d307b4a6cba) **Base model**: `deepset/covid_bert_base` from HuggingFace's `AutoModel`.
DarshanDeshpande/marathi-distilbert
DarshanDeshpande
distilbert
8
4
transformers
3
fill-mask
true
true
false
apache-2.0
['mr']
['Oscar Corpus, News, Stories']
null
0
0
0
0
0
0
0
['fill-mask']
false
true
true
1,835
# Marathi DistilBERT ## Model description This model is an adaptation of DistilBERT (Victor Sanh et al., 2019) for Marathi language. This version of Marathi-DistilBERT is trained from scratch on approximately 11.2 million sentences. ``` DISCLAIMER This model has not been thoroughly tested and may contain biased opinions or inappropriate language. User discretion is advised ``` ## Training data The training data has been extracted from a variety of sources, mainly including: 1. Oscar Corpus 2. Marathi Newspapers 3. Marathi storybooks and articles The data is cleaned by removing all languages other than Marathi, while preserving common punctuations ## Training procedure The model is trained from scratch using an Adam optimizer with a learning rate of 1e-4 and default β1 and β2 values of 0.9 and 0.999 respectively with a total batch size of 256 on a v3-8 TPU and mask probability of 15%. ## Example ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="DarshanDeshpande/marathi-distilbert", tokenizer="DarshanDeshpande/marathi-distilbert", ) fill_mask("हा खरोखर चांगला [MASK] आहे.") ``` ### BibTeX entry and citation info ```bibtex @misc{sanh2020distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf}, year={2020}, eprint={1910.01108}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <h3>Authors </h3> <h5>1. Darshan Deshpande: <a href="https://github.com/DarshanDeshpande">GitHub</a>, <a href="https://www.linkedin.com/in/darshan-deshpande/">LinkedIn</a><h5> <h5>2. Harshavardhan Abichandani: <a href="https://github.com/Baras64">GitHub</a>, <a href="http://​www.linkedin.com/in/harsh-abhi">LinkedIn</a><h5>
Daryaflp/roberta-retrained_ru_covid
Daryaflp
roberta
13
4
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,027
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-retrained_ru_covid This model is a fine-tuned version of [blinoff/roberta-base-russian-v0](https://huggingface.co/blinoff/roberta-base-russian-v0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
DataikuNLP/TinyBERT_General_4L_312D
DataikuNLP
bert
6
61
transformers
0
null
true
false
true
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
1,479
TinyBERT: Distilling BERT for Natural Language Understanding ======== **This model is a copy of [this model repository](https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D) from Huawei Noah at the specific commit `34707a33cd59a94ecde241ac209bf35103691b43`.** TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand. For more details about the techniques of TinyBERT, refer to our paper: [TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351) Citation ======== If you find TinyBERT useful in your research, please cite the following paper: ``` @article{jiao2019tinybert, title={Tinybert: Distilling bert for natural language understanding}, author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun}, journal={arXiv preprint arXiv:1909.10351}, year={2019} } ```
DataikuNLP/average_word_embeddings_glove.6B.300d
DataikuNLP
null
8
0
sentence-transformers
0
sentence-similarity
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity']
false
true
true
2,246
# average_word_embeddings_glove.6B.300d **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d) from sentence-transformers at the specific commit `5d2b7d1c127036ae98b9d487eca4d48744edc709`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 300 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/average_word_embeddings_glove.6B.300d) ## Full Model Architecture ``` SentenceTransformer( (0): WordEmbeddings( (emb_layer): Embedding(400001, 300) ) (1): Pooling({'word_embedding_dimension': 300, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
DataikuNLP/camembert-base
DataikuNLP
camembert
7
1
transformers
0
fill-mask
true
true
false
mit
['fr']
['oscar']
null
0
0
0
0
0
0
0
[]
false
true
true
5,142
# CamemBERT: a Tasty French Language Model **This model is a copy of [this model repository](https://huggingface.co/camembert-base) at the specific commit `482393b6198924f9da270b1aaf37d238aafca99b`.** ## Introduction [CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa model. It is now available on Hugging Face in 6 different versions with varying number of parameters, amount of pretraining data and pretraining data source domains. For further information or requests, please go to [Camembert Website](https://camembert-model.fr/) ## Pre-trained models | Model | #params | Arch. | Training data | |--------------------------------|--------------------------------|-------|-----------------------------------| | `camembert-base` | 110M | Base | OSCAR (138 GB of text) | | `camembert/camembert-large` | 335M | Large | CCNet (135 GB of text) | | `camembert/camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) | | `camembert/camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) | | `camembert/camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) | | `camembert/camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) | ## How to use CamemBERT with HuggingFace ##### Load CamemBERT and its sub-word tokenizer : ```python from transformers import CamembertModel, CamembertTokenizer # You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large". tokenizer = CamembertTokenizer.from_pretrained("camembert-base") camembert = CamembertModel.from_pretrained("camembert-base") camembert.eval() # disable dropout (or leave in train mode to finetune) ``` ##### Filling masks using pipeline ```python from transformers import pipeline camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base") results = camembert_fill_mask("Le camembert est <mask> :)") # results #[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200}, # {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183}, # {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202}, # {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528}, # {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}] ``` ##### Extract contextual embedding features from Camembert output ```python import torch # Tokenize in sub-words with SentencePiece tokenized_sentence = tokenizer.tokenize("J'aime le camembert !") # ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!'] # 1-hot encode and add special starting and end tokens encoded_sentence = tokenizer.encode(tokenized_sentence) # [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6] # NB: Can be done in one step : tokenize.encode("J'aime le camembert !") # Feed tokens to Camembert as a torch tensor (batch dim 1) encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0) embeddings, _ = camembert(encoded_sentence) # embeddings.detach() # embeddings.size torch.Size([1, 10, 768]) # tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116], # [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766], # [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446], # ..., ``` ##### Extract contextual embedding features from all Camembert layers ```python from transformers import CamembertConfig # (Need to reload the model with new config) config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True) camembert = CamembertModel.from_pretrained("camembert-base", config=config) embeddings, _, all_layer_embeddings = camembert(encoded_sentence) # all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers) all_layer_embeddings[5] # layer 5 contextual embedding : size torch.Size([1, 10, 768]) #tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210], # [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982], # [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699], # ..., ``` ## Authors CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot. ## Citation If you use our work, please cite: ```bibtex @inproceedings{martin2020camembert, title={CamemBERT: a Tasty French Language Model}, author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, year={2020} } ```
DataikuNLP/distiluse-base-multilingual-cased-v1
DataikuNLP
distilbert
14
2
sentence-transformers
0
sentence-similarity
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
2,424
# DataikuNLP/distiluse-base-multilingual-cased-v1 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1) from sentence-transformers at the specific commit `3a706e4d65c04f868c4684adfd4da74141be8732`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 512 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/distiluse-base-multilingual-cased-v1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distiluse-base-multilingual-cased-v1) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
DataikuNLP/paraphrase-MiniLM-L6-v2
DataikuNLP
bert
12
4
sentence-transformers
0
sentence-similarity
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,750
# DataikuNLP/paraphrase-MiniLM-L6-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2/) from sentence-transformers at the specific commit `c4dfcde8a3e3e17e85cd4f0ec1925a266187f48e`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-MiniLM-L6-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
DataikuNLP/paraphrase-albert-small-v2
DataikuNLP
albert
12
3
sentence-transformers
0
sentence-similarity
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,770
# DataikuNLP/paraphrase-albert-small-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2/) from sentence-transformers at the specific commit `1eb1996223dd90a4c25be2fc52f6f336419a0d52`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-albert-small-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-albert-small-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-albert-small-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-albert-small-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 100, 'do_lower_case': False}) with Transformer model: AlbertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2
DataikuNLP
bert
13
54
sentence-transformers
0
sentence-similarity
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,833
# DataikuNLP/paraphrase-multilingual-MiniLM-L12-v2 **This model is a copy of [this model repository](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) from sentence-transformers at the specific commit `d66eff4d8a8598f264f166af8db67f7797164651`.** This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```