repo_id
stringlengths 4
122
| author
stringlengths 2
38
⌀ | model_type
stringlengths 2
33
⌀ | files_per_repo
int64 2
39k
| downloads_30d
int64 0
33.7M
| library
stringlengths 2
37
⌀ | likes
int64 0
4.87k
| pipeline
stringlengths 5
30
⌀ | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
33
⌀ | languages
stringlengths 2
1.63k
⌀ | datasets
stringlengths 2
2.58k
⌀ | co2
stringlengths 6
258
⌀ | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
46
| prs_closed
int64 0
34
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 2
classes | has_text
bool 1
class | text_length
int64 201
598k
| readme
stringlengths 0
598k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4
|
DrishtiSharma
|
wav2vec2
| 13 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['sr']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'generated_from_trainer', 'hf-asr-leaderboard', 'model_for_talk', 'mozilla-foundation/common_voice_8_0', 'robust-speech-event', 'sr']
| true | true | true | 3,216 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-sr-v4
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5570
- Wer: 0.3038
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset mozilla-foundation/common_voice_8_0 --config sr --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-sr-v4 --dataset speech-recognition-community-v2/dev_data --config sr --split validation --chunk_length_s 10 --stride_length_s 1
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 8.2934 | 7.5 | 300 | 2.9777 | 0.9995 |
| 1.5049 | 15.0 | 600 | 0.5036 | 0.4806 |
| 0.3263 | 22.5 | 900 | 0.5822 | 0.4055 |
| 0.2008 | 30.0 | 1200 | 0.5609 | 0.4032 |
| 0.1543 | 37.5 | 1500 | 0.5203 | 0.3710 |
| 0.1158 | 45.0 | 1800 | 0.6458 | 0.3985 |
| 0.0997 | 52.5 | 2100 | 0.6227 | 0.4013 |
| 0.0834 | 60.0 | 2400 | 0.6048 | 0.3836 |
| 0.0665 | 67.5 | 2700 | 0.6197 | 0.3686 |
| 0.0602 | 75.0 | 3000 | 0.5418 | 0.3453 |
| 0.0524 | 82.5 | 3300 | 0.5310 | 0.3486 |
| 0.0445 | 90.0 | 3600 | 0.5599 | 0.3374 |
| 0.0406 | 97.5 | 3900 | 0.5958 | 0.3327 |
| 0.0358 | 105.0 | 4200 | 0.6017 | 0.3262 |
| 0.0302 | 112.5 | 4500 | 0.5613 | 0.3248 |
| 0.0285 | 120.0 | 4800 | 0.5659 | 0.3462 |
| 0.0213 | 127.5 | 5100 | 0.5568 | 0.3206 |
| 0.0215 | 135.0 | 5400 | 0.6524 | 0.3472 |
| 0.0162 | 142.5 | 5700 | 0.6223 | 0.3458 |
| 0.0137 | 150.0 | 6000 | 0.6625 | 0.3313 |
| 0.0114 | 157.5 | 6300 | 0.5739 | 0.3336 |
| 0.0101 | 165.0 | 6600 | 0.5906 | 0.3285 |
| 0.008 | 172.5 | 6900 | 0.5982 | 0.3112 |
| 0.0076 | 180.0 | 7200 | 0.5399 | 0.3094 |
| 0.0071 | 187.5 | 7500 | 0.5387 | 0.2991 |
| 0.0057 | 195.0 | 7800 | 0.5570 | 0.3038 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2
|
DrishtiSharma
|
wav2vec2
| 15 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['vot']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'vot', 'robust-speech-event', 'hf-asr-leaderboard']
| true | true | true | 1,927 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-vot-final-a2
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - VOT dataset.
It achieves the following results on the evaluation set:
- Loss: 2.8745
- Wer: 0.8333
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-vot-final-a2 --dataset mozilla-foundation/common_voice_8_0 --config vot --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Votic language isn't available in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 340
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 11.1216 | 33.33 | 100 | 4.2848 | 1.0 |
| 2.9982 | 66.67 | 200 | 2.8665 | 1.0 |
| 1.5476 | 100.0 | 300 | 2.3022 | 0.8889 |
| 0.2776 | 133.33 | 400 | 2.7480 | 0.8889 |
| 0.1136 | 166.67 | 500 | 2.5383 | 0.8889 |
| 0.0489 | 200.0 | 600 | 2.8745 | 0.8333 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-300m-kk-n2
|
DrishtiSharma
|
wav2vec2
| 18 | 10 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['kk']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'kk', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 2,488 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - KK dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7149
- Wer: 0.451
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-kk-n2 --dataset mozilla-foundation/common_voice_8_0 --config kk --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Kazakh language not found in speech-recognition-community-v2/dev_data!
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000222
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 150.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 9.6799 | 9.09 | 200 | 3.6119 | 1.0 |
| 3.1332 | 18.18 | 400 | 2.5352 | 1.005 |
| 1.0465 | 27.27 | 600 | 0.6169 | 0.682 |
| 0.3452 | 36.36 | 800 | 0.6572 | 0.607 |
| 0.2575 | 45.44 | 1000 | 0.6527 | 0.578 |
| 0.2088 | 54.53 | 1200 | 0.6828 | 0.551 |
| 0.158 | 63.62 | 1400 | 0.7074 | 0.5575 |
| 0.1309 | 72.71 | 1600 | 0.6523 | 0.5595 |
| 0.1074 | 81.8 | 1800 | 0.7262 | 0.5415 |
| 0.087 | 90.89 | 2000 | 0.7199 | 0.521 |
| 0.0711 | 99.98 | 2200 | 0.7113 | 0.523 |
| 0.0601 | 109.09 | 2400 | 0.6863 | 0.496 |
| 0.0451 | 118.18 | 2600 | 0.6998 | 0.483 |
| 0.0378 | 127.27 | 2800 | 0.6971 | 0.4615 |
| 0.0319 | 136.36 | 3000 | 0.7119 | 0.4475 |
| 0.0305 | 145.44 | 3200 | 0.7181 | 0.459 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-300m-mt-o1
|
DrishtiSharma
|
wav2vec2
| 18 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['mt']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'mt', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 1,755 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1987
- Wer: 0.1920
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-mt-o1 --dataset mozilla-foundation/common_voice_8_0 --config mt --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Maltese language not found in speech-recognition-community-v2/dev_data!
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.1721 | 18.02 | 2000 | 0.3831 | 0.4066 |
| 0.7849 | 36.04 | 4000 | 0.2191 | 0.2417 |
| 0.6723 | 54.05 | 6000 | 0.2056 | 0.2134 |
| 0.6015 | 72.07 | 8000 | 0.2008 | 0.2031 |
| 0.5386 | 90.09 | 10000 | 0.1967 | 0.1953 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5
|
DrishtiSharma
|
wav2vec2
| 18 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pa-IN']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'pa-IN', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 2,141 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8881
- Wer: 0.4175
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-pa-IN-r5 --dataset mozilla-foundation/common_voice_8_0 --config pa-IN --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Punjabi language isn't available in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000111
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 10.695 | 18.52 | 500 | 3.5681 | 1.0 |
| 3.2718 | 37.04 | 1000 | 2.3081 | 0.9643 |
| 0.8727 | 55.56 | 1500 | 0.7227 | 0.5147 |
| 0.3349 | 74.07 | 2000 | 0.7498 | 0.4959 |
| 0.2134 | 92.59 | 2500 | 0.7779 | 0.4720 |
| 0.1445 | 111.11 | 3000 | 0.8120 | 0.4594 |
| 0.1057 | 129.63 | 3500 | 0.8225 | 0.4610 |
| 0.0826 | 148.15 | 4000 | 0.8307 | 0.4351 |
| 0.0639 | 166.67 | 4500 | 0.8967 | 0.4316 |
| 0.0528 | 185.19 | 5000 | 0.8875 | 0.4238 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11
|
DrishtiSharma
|
wav2vec2
| 18 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['rm-sursilv']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'hf-asr-leaderboard', 'robust-speech-event']
| true | true | true | 1,928 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-SURSILV dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2511
- Wer: 0.2415
#### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-sursilv-d11 --dataset mozilla-foundation/common_voice_8_0 --config rm-sursilv --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Romansh-Sursilv language isn't available in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 125.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 2.3958 | 17.44 | 1500 | 0.6808 | 0.6521 |
| 0.9663 | 34.88 | 3000 | 0.3023 | 0.3718 |
| 0.7963 | 52.33 | 4500 | 0.2588 | 0.3046 |
| 0.6893 | 69.77 | 6000 | 0.2436 | 0.2718 |
| 0.6148 | 87.21 | 7500 | 0.2521 | 0.2572 |
| 0.5556 | 104.65 | 9000 | 0.2490 | 0.2442 |
| 0.5258 | 122.09 | 10500 | 0.2515 | 0.2442 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1
|
DrishtiSharma
|
wav2vec2
| 18 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['rm-vallader']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'rm-vallader', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 1,845 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - RM-VALLADER dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2754
- Wer: 0.2831
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-300m-rm-vallader-d1 --dataset mozilla-foundation/common_voice_8_0 --config rm-vallader --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Romansh-Vallader language not found in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.927 | 15.15 | 500 | 2.9196 | 1.0 |
| 1.3835 | 30.3 | 1000 | 0.5879 | 0.5866 |
| 0.7415 | 45.45 | 1500 | 0.3077 | 0.3316 |
| 0.5575 | 60.61 | 2000 | 0.2735 | 0.2954 |
| 0.4581 | 75.76 | 2500 | 0.2707 | 0.2802 |
| 0.3977 | 90.91 | 3000 | 0.2785 | 0.2809 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-myv-a1
|
DrishtiSharma
|
wav2vec2
| 18 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['myv']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'myv', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 2,893 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MYV dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0356
- Wer: 0.6524
### Evaluation Commands
**1. To evaluate on mozilla-foundation/common_voice_8_0 with test split**
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-myv-a1 --dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs
**2. To evaluate on speech-recognition-community-v2/dev_data**
Erzya language not found in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 200.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:------:|
| 5.649 | 9.62 | 500 | 3.0038 | 1.0 |
| 1.6272 | 19.23 | 1000 | 0.7362 | 0.7819 |
| 1.1354 | 28.85 | 1500 | 0.6410 | 0.7111 |
| 1.0424 | 38.46 | 2000 | 0.6907 | 0.7431 |
| 0.9293 | 48.08 | 2500 | 0.7249 | 0.7102 |
| 0.8246 | 57.69 | 3000 | 0.7422 | 0.6966 |
| 0.7837 | 67.31 | 3500 | 0.7413 | 0.6813 |
| 0.7147 | 76.92 | 4000 | 0.7873 | 0.6930 |
| 0.6276 | 86.54 | 4500 | 0.8038 | 0.6677 |
| 0.6041 | 96.15 | 5000 | 0.8240 | 0.6831 |
| 0.5336 | 105.77 | 5500 | 0.8748 | 0.6749 |
| 0.4705 | 115.38 | 6000 | 0.9006 | 0.6497 |
| 0.43 | 125.0 | 6500 | 0.8954 | 0.6551 |
| 0.3859 | 134.62 | 7000 | 0.9074 | 0.6614 |
| 0.3342 | 144.23 | 7500 | 0.9693 | 0.6560 |
| 0.3155 | 153.85 | 8000 | 1.0073 | 0.6691 |
| 0.2673 | 163.46 | 8500 | 1.0170 | 0.6632 |
| 0.2409 | 173.08 | 9000 | 1.0304 | 0.6709 |
| 0.2189 | 182.69 | 9500 | 0.9965 | 0.6546 |
| 0.1973 | 192.31 | 10000 | 1.0360 | 0.6551 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
### Evaluation Command
!python eval.py \
--model_id DrishtiSharma/wav2vec2-large-xls-r-300m-myv-v1 \
--dataset mozilla-foundation/common_voice_8_0 --config myv --split test --log_outputs
|
DrishtiSharma/wav2vec2-xls-r-pa-IN-a1
|
DrishtiSharma
|
wav2vec2
| 18 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pa-IN']
|
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer']
| true | true | true | 1,855 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1508
- Wer: 0.4908
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5841 | 9.26 | 500 | 3.2514 | 0.9941 |
| 0.3992 | 18.52 | 1000 | 0.8790 | 0.6107 |
| 0.2409 | 27.78 | 1500 | 1.0012 | 0.6366 |
| 0.1447 | 37.04 | 2000 | 1.0167 | 0.6276 |
| 0.1109 | 46.3 | 2500 | 1.0638 | 0.5653 |
| 0.0797 | 55.56 | 3000 | 1.1447 | 0.5715 |
| 0.0636 | 64.81 | 3500 | 1.1503 | 0.5316 |
| 0.0466 | 74.07 | 4000 | 1.2227 | 0.5386 |
| 0.0372 | 83.33 | 4500 | 1.1214 | 0.5225 |
| 0.0239 | 92.59 | 5000 | 1.1375 | 0.4998 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-sl-a1
|
DrishtiSharma
|
wav2vec2
| 18 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['sl']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'generated_from_trainer', 'hf-asr-leaderboard', 'model_for_talk', 'mozilla-foundation/common_voice_8_0', 'robust-speech-event', 'sl']
| true | true | true | 2,516 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2756
- Wer: 0.2279
### Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a1 --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 10 --stride_length_s 1
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3881 | 6.1 | 500 | 2.9710 | 1.0 |
| 2.6401 | 12.2 | 1000 | 1.7677 | 0.9734 |
| 1.5152 | 18.29 | 1500 | 0.5564 | 0.6011 |
| 1.2191 | 24.39 | 2000 | 0.4319 | 0.4390 |
| 1.0237 | 30.49 | 2500 | 0.3141 | 0.3175 |
| 0.8892 | 36.59 | 3000 | 0.2748 | 0.2689 |
| 0.8296 | 42.68 | 3500 | 0.2680 | 0.2534 |
| 0.7602 | 48.78 | 4000 | 0.2820 | 0.2506 |
| 0.7186 | 54.88 | 4500 | 0.2672 | 0.2398 |
| 0.6887 | 60.98 | 5000 | 0.2729 | 0.2402 |
| 0.6507 | 67.07 | 5500 | 0.2767 | 0.2361 |
| 0.6226 | 73.17 | 6000 | 0.2817 | 0.2332 |
| 0.6024 | 79.27 | 6500 | 0.2679 | 0.2279 |
| 0.5787 | 85.37 | 7000 | 0.2837 | 0.2316 |
| 0.5744 | 91.46 | 7500 | 0.2838 | 0.2284 |
| 0.5556 | 97.56 | 8000 | 0.2763 | 0.2281 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
DrishtiSharma/wav2vec2-xls-r-sl-a2
|
DrishtiSharma
|
wav2vec2
| 18 | 7 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['sl']
|
['mozilla-foundation/common_voice_8_0']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'mozilla-foundation/common_voice_8_0', 'generated_from_trainer', 'sl', 'robust-speech-event', 'model_for_talk', 'hf-asr-leaderboard']
| true | true | true | 2,399 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2855
- Wer: 0.2401
##Evaluation Commands
1. To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-xls-r-sl-a2 --dataset mozilla-foundation/common_voice_8_0 --config sl --split test --log_outputs
2. To evaluate on speech-recognition-community-v2/dev_data
Votic language not found in speech-recognition-community-v2/dev_data
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.9294 | 6.1 | 500 | 2.9712 | 1.0 |
| 2.8305 | 12.2 | 1000 | 1.7073 | 0.9479 |
| 1.4795 | 18.29 | 1500 | 0.5756 | 0.6397 |
| 1.3433 | 24.39 | 2000 | 0.4968 | 0.5424 |
| 1.1766 | 30.49 | 2500 | 0.4185 | 0.4743 |
| 1.0017 | 36.59 | 3000 | 0.3303 | 0.3578 |
| 0.9358 | 42.68 | 3500 | 0.3003 | 0.3051 |
| 0.8358 | 48.78 | 4000 | 0.3045 | 0.2884 |
| 0.7647 | 54.88 | 4500 | 0.2866 | 0.2677 |
| 0.7482 | 60.98 | 5000 | 0.2829 | 0.2585 |
| 0.6943 | 67.07 | 5500 | 0.2782 | 0.2478 |
| 0.6586 | 73.17 | 6000 | 0.2911 | 0.2537 |
| 0.6425 | 79.27 | 6500 | 0.2817 | 0.2462 |
| 0.6067 | 85.37 | 7000 | 0.2910 | 0.2436 |
| 0.5974 | 91.46 | 7500 | 0.2875 | 0.2430 |
| 0.5812 | 97.56 | 8000 | 0.2852 | 0.2396 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|
Duc/distilbert-base-uncased-finetuned-ner
|
Duc
|
distilbert
| 13 | 9 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,555 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9262
- Recall: 0.9375
- F1: 0.9318
- Accuracy: 0.9841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2424 | 1.0 | 878 | 0.0684 | 0.9096 | 0.9206 | 0.9150 | 0.9813 |
| 0.0524 | 2.0 | 1756 | 0.0607 | 0.9188 | 0.9349 | 0.9268 | 0.9835 |
| 0.0304 | 3.0 | 2634 | 0.0604 | 0.9262 | 0.9375 | 0.9318 | 0.9841 |
### Framework versions
- Transformers 4.12.3
- Pytorch 1.9.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|
EColi/sponsorblock-base-v1
|
EColi
|
t5
| 15 | 1 |
transformers
| 1 |
text2text-generation
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 4,344 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# out
This model is a fine-tuned version of [/1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/](https://huggingface.co//1TB_SSD/SB_AI/out_epoch1/out/checkpoint-1115000/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0645
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 2518227880
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| 0.0867 | 0.07 | 75000 | 0.0742 |
| 0.0783 | 0.13 | 150000 | 0.0695 |
| 0.0719 | 0.2 | 225000 | 0.0732 |
| 0.0743 | 0.27 | 300000 | 0.0663 |
| 0.0659 | 0.34 | 375000 | 0.0686 |
| 0.0664 | 0.4 | 450000 | 0.0683 |
| 0.0637 | 0.47 | 525000 | 0.0680 |
| 0.0655 | 0.54 | 600000 | 0.0641 |
| 0.0676 | 0.6 | 675000 | 0.0644 |
| 0.0704 | 0.67 | 750000 | 0.0645 |
| 0.0687 | 0.74 | 825000 | 0.0610 |
| 0.059 | 0.81 | 900000 | 0.0652 |
| 0.0666 | 0.87 | 975000 | 0.0619 |
| 0.0624 | 0.94 | 1050000 | 0.0619 |
| 0.0625 | 1.01 | 1125000 | 0.0667 |
| 0.0614 | 1.03 | 1150000 | 0.0658 |
| 0.0597 | 1.05 | 1175000 | 0.0683 |
| 0.0629 | 1.07 | 1200000 | 0.0691 |
| 0.0603 | 1.1 | 1225000 | 0.0678 |
| 0.0601 | 1.12 | 1250000 | 0.0746 |
| 0.0606 | 1.14 | 1275000 | 0.0691 |
| 0.0671 | 1.16 | 1300000 | 0.0702 |
| 0.0625 | 1.19 | 1325000 | 0.0661 |
| 0.0617 | 1.21 | 1350000 | 0.0688 |
| 0.0579 | 1.23 | 1375000 | 0.0679 |
| 0.0663 | 1.25 | 1400000 | 0.0634 |
| 0.0583 | 1.28 | 1425000 | 0.0638 |
| 0.0623 | 1.3 | 1450000 | 0.0681 |
| 0.0615 | 1.32 | 1475000 | 0.0670 |
| 0.0592 | 1.34 | 1500000 | 0.0666 |
| 0.0626 | 1.37 | 1525000 | 0.0666 |
| 0.063 | 1.39 | 1550000 | 0.0647 |
| 0.0648 | 1.41 | 1575000 | 0.0653 |
| 0.0611 | 1.43 | 1600000 | 0.0700 |
| 0.0622 | 1.46 | 1625000 | 0.0634 |
| 0.0617 | 1.48 | 1650000 | 0.0651 |
| 0.0613 | 1.5 | 1675000 | 0.0634 |
| 0.0639 | 1.52 | 1700000 | 0.0661 |
| 0.0615 | 1.54 | 1725000 | 0.0644 |
| 0.0605 | 1.57 | 1750000 | 0.0662 |
| 0.0622 | 1.59 | 1775000 | 0.0656 |
| 0.0585 | 1.61 | 1800000 | 0.0633 |
| 0.0628 | 1.63 | 1825000 | 0.0625 |
| 0.0638 | 1.66 | 1850000 | 0.0662 |
| 0.0599 | 1.68 | 1875000 | 0.0664 |
| 0.0583 | 1.7 | 1900000 | 0.0668 |
| 0.0543 | 1.72 | 1925000 | 0.0631 |
| 0.06 | 1.75 | 1950000 | 0.0629 |
| 0.0615 | 1.77 | 1975000 | 0.0644 |
| 0.0587 | 1.79 | 2000000 | 0.0663 |
| 0.0647 | 1.81 | 2025000 | 0.0654 |
| 0.0604 | 1.84 | 2050000 | 0.0639 |
| 0.0641 | 1.86 | 2075000 | 0.0636 |
| 0.0604 | 1.88 | 2100000 | 0.0636 |
| 0.0654 | 1.9 | 2125000 | 0.0652 |
| 0.0588 | 1.93 | 2150000 | 0.0638 |
| 0.0616 | 1.95 | 2175000 | 0.0657 |
| 0.0598 | 1.97 | 2200000 | 0.0646 |
| 0.0633 | 1.99 | 2225000 | 0.0645 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1+cu113
- Datasets 1.17.0
- Tokenizers 0.10.3
|
ELiRF/NASCA
|
ELiRF
|
bart
| 10 | 6 |
transformers
| 0 |
summarization
| true | false | false | null |
['ca']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization']
| false | true | true | 3,909 |
**IMPORTANT:** On the 5th of April 2022, we detected a mistake in the configuration file; thus, the model was not generating the summaries correctly, and it was underperforming in all scenarios. For this reason, if you had used the model until that day, we would be glad if you would re-evaluate the model if you are publishing some results with it. We apologize for the inconvenience and thank you for your understanding.
# NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish
Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish.
# The NASca model
News Abstractive Summarization for Catalan (NASca) is a Transformer encoder-decoder model, with the same hyper-parameters than BART, to perform summarization of Catalan news articles. It is pre-trained on a combination of several self-supervised tasks that help to increase the abstractivity of the generated summaries. Four pre-training tasks have been combined: sentence permutation, text infilling, Gap Sentence Generation, and Next Segment Generation. Catalan newspapers, the Catalan subset of the OSCAR corpus and Wikipedia articles in Catalan were used for pre-training the model (9.3GB of raw text -2.5 millions of documents-).
NASca is finetuned for the summarization task on 636.596 (document, summary) pairs from the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA).
### BibTeX entry
```bibtex
@Article{app11219872,
AUTHOR = {Ahuir, Vicent and Hurtado, Lluís-F. and González, José Ángel and Segarra, Encarna},
TITLE = {NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish},
JOURNAL = {Applied Sciences},
VOLUME = {11},
YEAR = {2021},
NUMBER = {21},
ARTICLE-NUMBER = {9872},
URL = {https://www.mdpi.com/2076-3417/11/21/9872},
ISSN = {2076-3417},
DOI = {10.3390/app11219872}
}
```
|
ELiRF/NASES
|
ELiRF
|
bart
| 10 | 20 |
transformers
| 1 |
summarization
| true | false | false | null |
['es']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization']
| false | true | true | 3,871 |
**IMPORTANT:** On the 5th of April 2022, we detected a mistake in the configuration file; thus, the model was not generating the summaries correctly, and it was underperforming in all scenarios. For this reason, if you had used the model until that day, we would be glad if you would re-evaluate the model if you are publishing some results with it. We apologize for the inconvenience and thank you for your understanding.
# NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish
Most of the models proposed in the literature for abstractive summarization are generally suitable for the English language but not for other languages. Multilingual models were introduced to address that language constraint, but despite their applicability being broader than that of the monolingual models, their performance is typically lower, especially for minority languages like Catalan. In this paper, we present a monolingual model for abstractive summarization of textual content in the Catalan language. The model is a Transformer encoder-decoder which is pretrained and fine-tuned specifically for the Catalan language using a corpus of newspaper articles. In the pretraining phase, we introduced several self-supervised tasks to specialize the model on the summarization task and to increase the abstractivity of the generated summaries. To study the performance of our proposal in languages with higher resources than Catalan, we replicate the model and the experimentation for the Spanish language. The usual evaluation metrics, not only the most used ROUGE measure but also other more semantic ones such as BertScore, do not allow to correctly evaluate the abstractivity of the generated summaries. In this work, we also present a new metric, called content reordering, to evaluate one of the most common characteristics of abstractive summaries, the rearrangement of the original content. We carried out an exhaustive experimentation to compare the performance of the monolingual models proposed in this work with two of the most widely used multilingual models in text summarization, mBART and mT5. The experimentation results support the quality of our monolingual models, especially considering that the multilingual models were pretrained with many more resources than those used in our models. Likewise, it is shown that the pretraining tasks helped to increase the degree of abstractivity of the generated summaries. To our knowledge, this is the first work that explores a monolingual approach for abstractive summarization both in Catalan and Spanish.
# The NASes model
News Abstractive Summarization for Spanish (NASes) is a Transformer encoder-decoder model, with the same hyper-parameters than BART, to perform summarization of Spanish news articles. It is pre-trained on a combination of several self-supervised tasks that help to increase the abstractivity of the generated summaries. Four pre-training tasks have been combined: sentence permutation, text infilling, Gap Sentence Generation, and Next Segment Generation. Spanish newspapers, and Wikipedia articles in Spanish were used for pre-training the model (21GB of raw text -8.5 millions of documents-).
NASes is finetuned for the summarization task on 1.802.919 (document, summary) pairs from the Dataset for Automatic summarization of Catalan and Spanish newspaper Articles (DACSA).
### BibTeX entry
```bibtex
@Article{app11219872,
AUTHOR = {Ahuir, Vicent and Hurtado, Lluís-F. and González, José Ángel and Segarra, Encarna},
TITLE = {NASca and NASes: Two Monolingual Pre-Trained Models for Abstractive Summarization in Catalan and Spanish},
JOURNAL = {Applied Sciences},
VOLUME = {11},
YEAR = {2021},
NUMBER = {21},
ARTICLE-NUMBER = {9872},
URL = {https://www.mdpi.com/2076-3417/11/21/9872},
ISSN = {2076-3417},
DOI = {10.3390/app11219872}
}
```
|
EMBEDDIA/crosloengual-bert
|
EMBEDDIA
|
bert
| 7 | 745 |
transformers
| 3 |
fill-mask
| true | false | true |
cc-by-4.0
|
['hr', 'sl', 'en', 'multilingual']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 962 |
# CroSloEngual BERT
CroSloEngual BERT is a trilingual model, using bert-base architecture, trained on Croatian, Slovenian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't.
Evaluation is presented in our article:
```
@Inproceedings{ulcar-robnik2020finest,
author = "Ulčar, M. and Robnik-Šikonja, M.",
year = 2020,
title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models",
editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A",
booktitle = "Text, Speech, and Dialogue {TSD 2020}",
series = "Lecture Notes in Computer Science",
volume = 12284,
publisher = "Springer",
url = "https://doi.org/10.1007/978-3-030-58323-1_11",
}
```
The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
|
EMBEDDIA/est-roberta
|
EMBEDDIA
|
camembert
| 9 | 174 |
transformers
| 2 |
fill-mask
| true | false | false |
cc-by-sa-4.0
|
['et']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 579 |
# Usage
Load in transformers library with:
```
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/est-roberta")
model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/est-roberta")
```
# Est-RoBERTa
Est-RoBERTa model is a monolingual Estonian BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The Estonian corpora used for training the model have 2.51 billion tokens in total. The subword vocabulary contains 40,000 tokens.
Est-RoBERTa was trained for 40 epochs.
|
EMBEDDIA/finest-bert
|
EMBEDDIA
|
bert
| 7 | 463 |
transformers
| 2 |
fill-mask
| true | false | true |
cc-by-4.0
|
['fi', 'et', 'en', 'multilingual']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 948 |
# FinEst BERT
FinEst BERT is a trilingual model, using bert-base architecture, trained on Finnish, Estonian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't.
Evaluation is presented in our article:
```
@Inproceedings{ulcar-robnik2020finest,
author = "Ulčar, M. and Robnik-Šikonja, M.",
year = 2020,
title = "{FinEst BERT} and {CroSloEngual BERT}: less is more in multilingual models",
editor = "Sojka, P and Kopeček, I and Pala, K and Horák, A",
booktitle = "Text, Speech, and Dialogue {TSD 2020}",
series = "Lecture Notes in Computer Science",
volume = 12284,
publisher = "Springer",
url = "https://doi.org/10.1007/978-3-030-58323-1_11",
}
```
The preprint is available at [arxiv.org/abs/2006.07890](https://arxiv.org/abs/2006.07890).
|
EMBEDDIA/litlat-bert
|
EMBEDDIA
|
xlm-roberta
| 9 | 32 |
transformers
| 3 |
fill-mask
| true | false | false |
cc-by-sa-4.0
|
['lt', 'lv', 'en', 'multilingual']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 887 |
# LitLat BERT
LitLat BERT is a trilingual model, using xlm-roberta-base architecture, trained on Lithuanian, Latvian, and English corpora. Focusing on three languages, the model performs better than [multilingual BERT](https://huggingface.co/bert-base-multilingual-cased), while still offering an option for cross-lingual knowledge transfer, which a monolingual model wouldn't.
### Named entity recognition evaluation
We compare LitLat BERT with multilingual BERT (mBERT), XLM-RoBERTa (XLM-R) and monolingual Latvian BERT (LVBERT) (Znotins and Barzdins, 2020). The report the results as a macro F1 score of 3 named entity classes shared in all three datasets: person, location, organization.
Language | mBERT | XLM-R | LVBERT | LitLat
---|---|---|---|---
Latvian | 0.830 | 0.865 | 0.797 | **0.881**
Lithuanian | 0.797 | 0.817 | / | **0.850**
English | 0.939 | 0.937 | / | **0.943**
|
EMBEDDIA/sloberta
|
EMBEDDIA
|
camembert
| 9 | 683 |
transformers
| 3 |
fill-mask
| true | false | false |
cc-by-sa-4.0
|
['sl']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 943 |
# Usage
Load in transformers library with:
```
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("EMBEDDIA/sloberta")
model = AutoModelForMaskedLM.from_pretrained("EMBEDDIA/sloberta")
```
# SloBERTa
SloBERTa model is a monolingual Slovene BERT-like model. It is closely related to French Camembert model https://camembert-model.fr/. The corpora used for training the model have 3.47 billion tokens in total. The subword vocabulary contains 32,000 tokens. The scripts and programs used for data preparation and training the model are available on https://github.com/clarinsi/Slovene-BERT-Tool
SloBERTa was trained for 200,000 iterations or about 98 epochs.
## Corpora
The following corpora were used for training the model:
* Gigafida 2.0
* Kas 1.0
* Janes 1.0 (only Janes-news, Janes-forum, Janes-blog, Janes-wiki subcorpora)
* Slovenian parliamentary corpus siParl 2.0
* slWaC
|
EMBO/bio-lm
|
EMBO
|
roberta
| 7 | 6 |
transformers
| 0 |
fill-mask
| true | false | true | null |
['english']
|
['EMBO/biolang']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['language model']
| false | true | true | 2,147 |
# bio-lm
## Model description
This model is a [RoBERTa base pre-trained model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang).
## Intended uses & limitations
#### How to use
The intended use of this model is to be fine-tuned for downstream tasks, token classification in particular.
To have a quick check of the model as-is in a fill-mask task:
```python
from transformers import pipeline, RobertaTokenizerFast
tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512)
text = "Let us try this model to see if it <mask>."
fill_mask = pipeline(
"fill-mask",
model='EMBO/bio-lm',
tokenizer=tokenizer
)
fill_mask(text)
```
#### Limitations and bias
This model should be fine-tuned on a specifi task like token classification.
The model must be used with the `roberta-base` tokenizer.
## Training data
The model was trained with a masked language modeling taskon the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang) wich includes 12Mio examples from abstracts and figure legends extracted from papers published in life sciences.
## Training procedure
The training was run on a NVIDIA DGX Station with 4XTesla V100 GPUs.
Training code is available at https://github.com/source-data/soda-roberta
- Command: `python -m lm.train /data/json/oapmc_abstracts_figs/ MLM`
- Tokenizer vocab size: 50265
- Training data: EMBO/biolang MLM
- Training with: 12005390 examples
- Evaluating on: 36713 examples
- Epochs: 3.0
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- tensorboard run: lm-MLM-2021-01-27T15-17-43.113766
End of training:
```
trainset: 'loss': 0.8653350830078125
validation set: 'eval_loss': 0.8192330598831177, 'eval_recall': 0.8154601116513597
```
## Eval results
Eval on test set:
```
recall: 0.814471959728645
```
|
EMBO/sd-ner
|
EMBO
|
roberta
| 11 | 12 |
transformers
| 0 |
token-classification
| true | false | true |
agpl-3.0
|
['english']
|
['EMBO/sd-nlp']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['token classification']
| false | true | true | 3,799 |
# sd-ner
## Model description
This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of English scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `NER` configuration to perform Named Entity Recognition of bioentities.
## Intended uses & limitations
#### How to use
The intended use of this model is for Named Entity Recognition of biological entities used in SourceData annotations (https://sourcedata.embo.org), including small molecules, gene products (genes and proteins), subcellular components, cell line and cell types, organ and tissues, species as well as experimental methods.
To have a quick check of the model:
```python
from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification
example = """<s> F. Western blot of input and eluates of Upf1 domains purification in a Nmd4-HA strain. The band with the # might corresponds to a dimer of Upf1-CH, bands marked with a star correspond to residual signal with the anti-HA antibodies (Nmd4). Fragments in the eluate have a smaller size because the protein A part of the tag was removed by digestion with the TEV protease. G6PDH served as a loading control in the input samples </s>"""
tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512)
model = RobertaForTokenClassification.from_pretrained('EMBO/sd-ner')
ner = pipeline('ner', model, tokenizer=tokenizer)
res = ner(example)
for r in res:
print(r['word'], r['entity'])
```
#### Limitations and bias
The model must be used with the `roberta-base` tokenizer.
## Training data
The model was trained for token classification using the [EMBO/sd-nlp dataset](https://huggingface.co/datasets/EMBO/sd-nlp) dataset which includes manually annotated examples.
## Training procedure
The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs.
Training code is available at https://github.com/source-data/soda-roberta
- Model fine-tuned: EMBO/bio-lm
- Tokenizer vocab size: 50265
- Training data: EMBO/sd-nlp
- Dataset configuration: NER
- Training with 48771 examples.
- Evaluating on 13801 examples.
- Training on 15 features: O, I-SMALL_MOLECULE, B-SMALL_MOLECULE, I-GENEPROD, B-GENEPROD, I-SUBCELLULAR, B-SUBCELLULAR, I-CELL, B-CELL, I-TISSUE, B-TISSUE, I-ORGANISM, B-ORGANISM, I-EXP_ASSAY, B-EXP_ASSAY
- Epochs: 0.6
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
## Eval results
Testing on 7178 examples of test set with `sklearn.metrics`:
```
precision recall f1-score support
CELL 0.69 0.81 0.74 5245
EXP_ASSAY 0.56 0.57 0.56 10067
GENEPROD 0.77 0.89 0.82 23587
ORGANISM 0.72 0.82 0.77 3623
SMALL_MOLECULE 0.70 0.80 0.75 6187
SUBCELLULAR 0.65 0.72 0.69 3700
TISSUE 0.62 0.73 0.67 3207
micro avg 0.70 0.79 0.74 55616
macro avg 0.67 0.77 0.72 55616
weighted avg 0.70 0.79 0.74 55616
{'test_loss': 0.1830928772687912, 'test_accuracy_score': 0.9334821000160841, 'test_precision': 0.6987463009514112, 'test_recall': 0.789682825086306, 'test_f1': 0.7414366506288511, 'test_runtime': 61.0547, 'test_samples_per_second': 117.567, 'test_steps_per_second': 1.851}
```
|
EMBO/sd-panelization
|
EMBO
|
roberta
| 11 | 6 |
transformers
| 0 |
token-classification
| true | false | true |
agpl-3.0
|
['english']
|
['EMBO/sd-nlp']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['token classification']
| false | true | true | 3,248 |
# sd-panelization
## Model description
This model is a [RoBERTa base model](https://huggingface.co/roberta-base) that was further trained using a masked language modeling task on a compendium of english scientific textual examples from the life sciences using the [BioLang dataset](https://huggingface.co/datasets/EMBO/biolang). It was then fine-tuned for token classification on the SourceData [sd-nlp](https://huggingface.co/datasets/EMBO/sd-nlp) dataset with the `PANELIZATION` task to perform 'parsing' or 'segmentation' of figure legends into fragments corresponding to sub-panels.
Figures are usually composite representations of results obtained with heterogeneous experimental approaches and systems. Breaking figures into panels allows identifying more coherent descriptions of individual scientific experiments.
## Intended uses & limitations
#### How to use
The intended use of this model is for 'parsing' figure legends into sub-fragments corresponding to individual panels as used in SourceData annotations (https://sourcedata.embo.org).
To have a quick check of the model:
```python
from transformers import pipeline, RobertaTokenizerFast, RobertaForTokenClassification
example = """Fig 4. a, Volume density of early (Avi) and late (Avd) autophagic vacuoles.a, Volume density of early (Avi) and late (Avd) autophagic vacuoles from four independent cultures. Examples of Avi and Avd are shown in b and c, respectively. Bars represent 0.4����m. d, Labelling density of cathepsin-D as estimated in two independent experiments. e, Labelling density of LAMP-1."""
tokenizer = RobertaTokenizerFast.from_pretrained('roberta-base', max_len=512)
model = RobertaForTokenClassification.from_pretrained('EMBO/sd-panelization')
ner = pipeline('ner', model, tokenizer=tokenizer)
res = ner(example)
for r in res: print(r['word'], r['entity'])
```
#### Limitations and bias
The model must be used with the `roberta-base` tokenizer.
## Training data
The model was trained for token classification using the [`EMBO/sd-nlp PANELIZATION`](https://huggingface.co/datasets/EMBO/sd-nlp) dataset which includes manually annotated examples.
## Training procedure
The training was run on an NVIDIA DGX Station with 4XTesla V100 GPUs.
Training code is available at https://github.com/source-data/soda-roberta
- Model fine-tuned: EMBO/bio-lm
- Tokenizer vocab size: 50265
- Training data: EMBO/sd-nlp
- Dataset configuration: PANELIZATION
- TTraining with 2175 examples.
- Evaluating on 622 examples.
- Training on 2 features: `O`, `B-PANEL_START`
- Epochs: 1.3
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
## Eval results
Testing on 1802 examples from test set with `sklearn.metrics`:
```
precision recall f1-score support
PANEL_START 0.89 0.95 0.92 5427
micro avg 0.89 0.95 0.92 5427
macro avg 0.89 0.95 0.92 5427
weighted avg 0.89 0.95 0.92 5427
```
|
EasthShin/Android_Ios_Classification
|
EasthShin
|
bert
| 8 | 1 |
transformers
| 0 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,265 |
## Bert-base-uncased for Android-Ios Question Classification
**Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Android-Ios-Classification-Workspace)
<br>
**Android-Ios-Classification DEMO**: [Ainize Endpoint](https://main-android-ios-classification-east-h-shin.endpoint.ainize.ai/)
<br>
**Demo web Code**: [Github](https://github.com/EastHShin/Android-Ios-Classification)
<br>
**Android-Ios-Classification API**: [Ainize API](https://ainize.ai/EastHShin/Android-Ios-Classification)
<br>
<br>
## Overview
**Language model**: bert-base-cased
<br>
**Language**: English
<br>
**Training data**: Question classification Android-Ios dataset from [Kaggle](https://www.kaggle.com/xhlulu/question-classification-android-or-ios)
## Usage
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
model_path = "EasthShin/Android_Ios_Classification"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
classifier = pipeline('text-classification', model=model_path, tokenizer=tokenizer)
question = "I bought goodnote in Appstore"
result = dict()
result[0] = classifier(question)[0]
```
|
EasthShin/Klue-CommonSense-model
|
EasthShin
|
bert
| 8 | 6 |
transformers
| 1 |
question-answering
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,699 |
#### Klue-bert base for Common Sense QA
#### Klue-CommonSense-model DEMO: [Ainize DEMO](https://main-klue-common-sense-qa-east-h-shin.endpoint.ainize.ai/)
#### Klue-CommonSense-model API: [Ainize API](https://ainize.ai/EastHShin/Klue-CommonSense_QA?branch=main)
### Overview
**Language model**: klue/bert-base
<br>
**Language**: Korean
<br>
**Downstream-task**: Extractive QA
<br>
**Training data**: Common sense Data from [Mindslab](https://mindslab.ai:8080/kr/company)
<br>
**Eval data**: Common sense Data from [Mindslab](https://mindslab.ai:8080/kr/company)
<br>
**Code**: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/EastHShin/Klue-CommonSense-workspace)
<br>
### Usage
### In Transformers
```
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("EasthShin/Klue-CommonSense-model")
model = AutoModelForQuestionAnswering.from_pretrained("EasthShin/Klue-CommonSense-model")
context = "your context"
question = "your question"
encodings = tokenizer(context, question, max_length=512, truncation=True,
padding="max_length", return_token_type_ids=False)
encodings = {key: torch.tensor([val]) for key, val in encodings.items()}
input_ids = encodings["input_ids"]
attention_mask = encodings["attention_mask"]
pred = model(input_ids, attention_mask=attention_mask)
start_logits, end_logits = pred.start_logits, pred.end_logits
token_start_index, token_end_index = start_logits.argmax(dim=-1), end_logits.argmax(dim=-1)
pred_ids = input_ids[0][token_start_index: token_end_index + 1]
prediction = tokenizer.decode(pred_ids)
```
|
EasthShin/Youth_Chatbot_Kogpt2-base
|
EasthShin
|
gpt2
| 7 | 3 |
transformers
| 0 |
text-generation
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,451 |
## Youth_Chatbot_KoGPT2-base
**Demo Web**: [Ainize Endpoint](https://main-youth-chatbot-ko-gpt2-base-east-h-shin.endpoint.ainize.ai/)
<br>
**Demo Web Code**: [Github](https://github.com/EastHShin/Youth_Chatbot_KoGPT2-base)
<br>
**Youth-Chatbot API**: [Ainize API](https://ainize.ai/EastHShin/Youth_Chatbot_KoGPT2-base_API?branch=main)
<br>
<br>
## Overview
**Language model**: KoGPT2
<br>
**Language**: Korean
<br>
**Training data**: [Aihub](https://aihub.or.kr/aidata/7978)
## Usage
```
from transformers import PreTrainedTokenizerFast, GPT2LMHeadModel
U_TKN = '<usr>'
S_TKN = '<sys>'
MASK = '<unused0>'
SENT = '<unused1>'
tokenizer = PreTrainedTokenizerFast.from_pretrained("EasthShin/Youth_Chatbot_Kogpt2-base",
bos_token='</s>', eos_token='</s>', unk_token='<unk>',
pad_token='<pad>', mask_token=MASK)
model = GPT2LMHeadModel.from_pretrained('EasthShin/Youth_Chatbot_Kogpt2-base')
input_ids = tokenizer.encode(U_TKN + {your text} + sent + S_TKN)
gen_ids = model.generate(torch.tensor([input_ids]),
max_length=128,
repetition_penalty= 2.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
use_cache=True)
generated = tokenizer.decode(gen_ids[0, :].tolist())
print(generated)
```
|
Ebtihal/AraBertMo_base_V1
|
Ebtihal
|
bert
| 7 | 3 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,491 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V1' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 10010| 1 | 64 | 157 | 2m 2s | 9.0183 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V1")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V1")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V2
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,491 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V2' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 20020| 2 | 64 | 626 | 19m 2s | 8.437 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V2")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V2")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V3
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,497 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V3' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 30024| 3 | 64 | 1410 | 3h 10m 31s | 8.0201 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V3")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V3")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V4
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,497 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V4' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 40032| 4 | 64 | 2500 | 5h 10m 20s | 7.6544 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V4")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V4")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V5
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,497 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V5' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 50046| 5 | 64 | 3910 | 6h 49m 59s | 7.4599 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V5")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V5")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V6
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null |
['ar']
|
['OSCAR']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fill-Mask
| false | true | true | 1,495 |
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V6' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 50046| 6 | 64 | 4692 | 5h 41m 9s | 7.3099 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V6")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V6")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V7
|
Ebtihal
|
bert
| 8 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,735 |
Arabic Model AraBertMo_base_V7
---
language: ar
tags: Fill-Mask
datasets: OSCAR
widget:
- text: " السلام عليكم ورحمة[MASK] وبركاتة"
- text: " اهلا وسهلا بكم في [MASK] من سيربح المليون"
- text: " مرحبا بك عزيزي الزائر [MASK] موقعنا "
---
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V7' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 50046| 7 | 64 | 5915 | 5h 23m 5s | 7.1381 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V7")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V7")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V8
|
Ebtihal
|
bert
| 7 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,729 |
Arabic Model AraBertMo_base_V8
---
language: ar
tags: Fill-Mask
datasets: OSCAR
widget:
- text: " السلام عليكم ورحمة[MASK] وبركاتة"
- text: " اهلا وسهلا بكم في [MASK] من سيربح المليون"
- text: " مرحبا بك عزيزي الزائر [MASK] موقعنا "
---
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert). AraBERTMo_base uses the same BERT-Base config. AraBERTMo_base now comes in 10 new variants All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name. Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V8' model was pre-trained on ~3 million words: [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 40032| 8 | 64 | 5008 | 10h 5m 57s | 7.2164 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V8")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V8")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Ebtihal/AraBertMo_base_V9
|
Ebtihal
|
bert
| 8 | 2 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,736 |
Arabic Model AraBertMo_base_V9
---
language: ar
tags: Fill-Mask
datasets: OSCAR
widget:
- text: " السلام عليكم ورحمة[MASK] وبركاتة"
- text: " اهلا وسهلا بكم في [MASK] من سيربح المليون"
- text: " مرحبا بك عزيزي الزائر [MASK] موقعنا "
---
# Arabic BERT Model
**AraBERTMo** is an Arabic pre-trained language model based on [Google's BERT architechture](https://github.com/google-research/bert).
AraBERTMo_base uses the same BERT-Base config.
AraBERTMo_base now comes in 10 new variants
All models are available on the `HuggingFace` model page under the [Ebtihal](https://huggingface.co/Ebtihal/) name.
Checkpoints are available in PyTorch formats.
## Pretraining Corpus
`AraBertMo_base_V9' model was pre-trained on ~3 million words:
- [OSCAR](https://traces1.inria.fr/oscar/) - Arabic version "unshuffled_deduplicated_ar".
## Training results
this model achieves the following results:
| Task | Num examples | Num Epochs | Batch Size | steps | Wall time | training loss|
|:----:|:----:|:----:|:----:|:-----:|:----:|:-----:|
| Fill-Mask| 30024| 9 | 64 | 4230 | 7h 57m 42s | 7.3264 |
## Load Pretrained Model
You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("Ebtihal/AraBertMo_base_V9")
model = AutoModelForMaskedLM.from_pretrained("Ebtihal/AraBertMo_base_V9")
```
## This model was built for master's degree research in an organization:
- [University of kufa](https://uokufa.edu.iq/).
- [Faculty of Computer Science and Mathematics](https://mathcomp.uokufa.edu.iq/).
- **Department of Computer Science**
|
Edomonndo/opus-mt-en-ro-finetuned-en-to-ro
|
Edomonndo
|
marian
| 13 | 4 |
transformers
| 0 |
text2text-generation
| true | false | false | null | null |
['wmt16']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 1,273 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-en-ro-finetuned-en-to-ro
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ro](https://huggingface.co/Helsinki-NLP/opus-mt-en-ro) on the wmt16 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2886
- Bleu: 28.1641
- Gen Len: 34.1071
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
| 0.7436 | 1.0 | 38145 | 1.2886 | 28.1641 | 34.1071 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.10.2
- Tokenizers 0.10.3
|
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_test
|
Edomonndo
|
marian
| 157 | 2 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 1,955 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ja-en-finetuned-ja-to-en_test
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4737
- Bleu: 80.2723
- Gen Len: 16.5492
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.1237 | 1.0 | 247 | 0.6131 | 60.9383 | 16.4152 |
| 0.5395 | 2.0 | 494 | 0.5274 | 67.5705 | 16.2883 |
| 0.3584 | 3.0 | 741 | 0.5122 | 71.3098 | 16.3777 |
| 0.2563 | 4.0 | 988 | 0.4887 | 73.6639 | 16.401 |
| 0.138 | 5.0 | 1235 | 0.4796 | 76.7942 | 16.4873 |
| 0.0979 | 6.0 | 1482 | 0.4849 | 76.9404 | 16.6162 |
| 0.0792 | 7.0 | 1729 | 0.4806 | 78.9831 | 16.5442 |
| 0.0569 | 8.0 | 1976 | 0.4765 | 79.3461 | 16.4873 |
| 0.0299 | 9.0 | 2223 | 0.4751 | 79.7901 | 16.4863 |
| 0.0204 | 10.0 | 2470 | 0.4737 | 80.2723 | 16.5492 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|
Edomonndo/opus-mt-ja-en-finetuned-ja-to-en_xml
|
Edomonndo
|
marian
| 17 | 1 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 1,953 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ja-en-finetuned-ja-to-en_xml
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ja-en](https://huggingface.co/Helsinki-NLP/opus-mt-ja-en) on an unkown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7520
- Bleu: 73.8646
- Gen Len: 27.0884
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.0512 | 1.0 | 748 | 0.8333 | 59.8234 | 27.905 |
| 0.6076 | 2.0 | 1496 | 0.7817 | 62.5606 | 26.1834 |
| 0.4174 | 3.0 | 2244 | 0.7817 | 64.8346 | 28.2918 |
| 0.2971 | 4.0 | 2992 | 0.7653 | 67.6013 | 27.2222 |
| 0.2172 | 5.0 | 3740 | 0.7295 | 69.4017 | 27.0174 |
| 0.1447 | 6.0 | 4488 | 0.7522 | 68.8355 | 28.2865 |
| 0.0953 | 7.0 | 5236 | 0.7596 | 71.4743 | 27.1861 |
| 0.0577 | 8.0 | 5984 | 0.7469 | 72.0684 | 26.921 |
| 0.04 | 9.0 | 6732 | 0.7526 | 73.2821 | 27.1365 |
| 0.0213 | 10.0 | 7480 | 0.7520 | 73.8646 | 27.0884 |
### Framework versions
- Transformers 4.9.1
- Pytorch 1.10.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese
|
Edresson
|
wav2vec2
| 14 | 6 |
transformers
| 1 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'portuguese-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,475 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and TTS-Portuguese Corpus in Portuguese
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using the Common Voice 7.0 and TTS-Portuguese Corpus.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-portuguese")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian
|
Edresson
|
wav2vec2
| 14 | 8 |
transformers
| 2 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['ru']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'ru', 'russian-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,437 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned with Common Voice and M-AILABS in Russian
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using the Common Voice 7.0 and M-AILABS.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common-Voice_plus_TTS-Dataset-russian")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-portuguese
|
Edresson
|
wav2vec2
| 15 | 9 |
transformers
| 2 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'Portuguese-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,633 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned in Portuguese using the Common Voice 7.0, TTS-Portuguese Corpus plus data augmentation
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) Wav2vec2 Large 100k Voxpopuli fine-tuned in Portuguese using the Common Voice 7.0, TTS-Portuguese plus data augmentation method based on TTS and voice conversion.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-portuguese")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian
|
Edresson
|
wav2vec2
| 14 | 8 |
transformers
| 2 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'Russian-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,601 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese
|
Edresson
|
wav2vec2
| 14 | 12 |
transformers
| 1 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'portuguese-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,538 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Portuguese
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Portuguese using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-portuguese")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian
|
Edresson
|
wav2vec2
| 14 | 5 |
transformers
| 2 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['Common Voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'Russian-speech-corpus', 'automatic-speech-recognition', 'speech', 'PyTorch']
| false | true | true | 1,525 |
# Wav2vec2 Large 100k Voxpopuli fine-tuned with a single-speaker dataset plus Data Augmentation in Russian
[Wav2vec2 Large 100k Voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) fine-tuned in Russian using a single-speaker dataset plus a data augmentation method based on TTS and voice conversion.
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-TTS-Dataset-plus-data-augmentation-russian")
```
# Results
For the results check the [paper](https://arxiv.org/abs/2204.00618)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")
resampler = torchaudio.transforms.Resampl(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Edresson/wav2vec2-large-xlsr-coraa-portuguese
|
Edresson
|
wav2vec2
| 8 | 2,039 |
transformers
| 11 |
automatic-speech-recognition
| true | false | false |
apache-2.0
|
['pt']
|
['CORAA']
| null | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
['audio', 'speech', 'wav2vec2', 'pt', 'portuguese-speech-corpus', 'automatic-speech-recognition', 'hf-asr-leaderboard', 'speech', 'PyTorch']
| true | true | true | 1,326 |
# Wav2vec 2.0 trained with CORAA Portuguese Dataset
This a the demonstration of a fine-tuned Wav2vec model for Portuguese using the following [CORAA dataset](https://github.com/nilc-nlp/CORAA)
# Use this model
```python
from transformers import AutoTokenizer, Wav2Vec2ForCTC
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-xlsr-coraa-portuguese")
```
# Results
For the results check the [CORAA article](https://arxiv.org/abs/2110.15731)
# Example test with Common Voice Dataset
```python
dataset = load_dataset("common_voice", "pt", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
```
```python
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
```
|
Einmalumdiewelt/PegasusXSUM_GNAD
|
Einmalumdiewelt
|
pegasus
| 16 | 101 |
transformers
| 0 |
summarization
| true | false | false | null |
['de']
| null | null | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
['generated_from_trainer', 'summarization']
| true | true | true | 1,117 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PegasusXSUM_GNAD
This model is a fine-tuned version of [Einmalumdiewelt/PegasusXSUM_GNAD](https://huggingface.co/Einmalumdiewelt/PegasusXSUM_GNAD) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4386
- Rouge1: 26.7818
- Rouge2: 7.6864
- Rougel: 18.6264
- Rougelsum: 22.822
- Gen Len: 67.076
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
Einmalumdiewelt/T5-Base_GNAD
|
Einmalumdiewelt
|
t5
| 16 | 20,774 |
transformers
| 3 |
summarization
| true | false | false | null |
['de']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer', 'summarization']
| true | true | true | 1,107 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5-Base_GNAD
This model is a fine-tuned version of [Einmalumdiewelt/T5-Base_GNAD](https://huggingface.co/Einmalumdiewelt/T5-Base_GNAD) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1025
- Rouge1: 27.5357
- Rouge2: 8.5623
- Rougel: 19.1508
- Rougelsum: 23.9029
- Gen Len: 52.7253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1
|
EleutherAI/enformer-191k
|
EleutherAI
|
enformer
| 4 | 2 |
transformers
| 1 | null | true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,501 |
# Enformer
Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer).
This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.45.
This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch).
Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence.
We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details.
### How to use
Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage.
### Citation info
```
Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x
```
|
EleutherAI/enformer-191k_corr_coef_obj
|
EleutherAI
|
enformer
| 4 | 1 |
transformers
| 0 | null | true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,501 |
# Enformer
Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer).
This particular model was trained on sequences of 196,608 basepairs, target length 896, with shift augmentation but without reverse complement, on poisson loss objective. Final human pearson R of ~0.49.
This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch).
Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence.
We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details.
### How to use
Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage.
### Citation info
```
Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x
```
|
EleutherAI/enformer-corr_coef_obj
|
EleutherAI
|
enformer
| 4 | 1 |
transformers
| 0 | null | true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,473 |
# Enformer
Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer).
This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 3 days with sequence augmentations and pearson correlation objective.
This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch).
Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence.
We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details.
### How to use
Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage.
### Citation info
```
Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x
```
|
EleutherAI/enformer-preview
|
EleutherAI
|
enformer
| 4 | 1 |
transformers
| 2 | null | true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 1,462 |
# Enformer
Enformer model. It was introduced in the paper [Effective gene expression prediction from sequence by integrating long-range interactions.](https://www.nature.com/articles/s41592-021-01252-x) by Avsec et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/enformer).
This particular model was trained on sequences of 131,072 basepairs, target length 896 on v3-64 TPUs for 2 and a half days without augmentations and poisson loss.
This repo contains the weights of the PyTorch implementation by Phil Wang as seen in the [enformer-pytorch repository](https://github.com/lucidrains/enformer-pytorch).
Disclaimer: The team releasing Enformer did not write a model card for this model so this model card has been written by the Hugging Face team.
## Model description
Enformer is a neural network architecture based on the Transformer that led to greatly increased accuracy in predicting gene expression from DNA sequence.
We refer to the [paper](https://www.nature.com/articles/s41592-021-01252-x) published in Nature for details.
### How to use
Refer to the README of [enformer-pytorch](https://github.com/lucidrains/enformer-pytorch) regarding usage.
### Citation info
```
Avsec, Ž., Agarwal, V., Visentin, D. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods 18, 1196–1203 (2021). https://doi.org/10.1038/s41592-021-01252-x
```
|
EleutherAI/gpt-j-6B
|
EleutherAI
|
gptj
| 12 | 1,043,717 |
transformers
| 591 |
text-generation
| true | true | true |
apache-2.0
|
['en']
|
['the_pile']
| null | 5 | 0 | 1 | 4 | 9 | 3 | 6 |
['pytorch', 'causal-lm']
| false | true | true | 9,968 |
# GPT-J 6B
## Model Description
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
<figure>
| Hyperparameter | Value |
|----------------------|------------|
| \\(n_{parameters}\\) | 6053381344 |
| \\(n_{layers}\\) | 28* |
| \\(d_{model}\\) | 4096 |
| \\(d_{ff}\\) | 16384 |
| \\(n_{heads}\\) | 16 |
| \\(d_{head}\\) | 256 |
| \\(n_{ctx}\\) | 2048 |
| \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) |
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
<figcaption><p><strong>*</strong> Each layer consists of one feedforward block and one self attention block.</p>
<p><strong>†</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
GPT-2/GPT-3.
## Training data
GPT-J 6B was trained on [the Pile](https://pile.eleuther.ai), a large-scale curated dataset created by [EleutherAI](https://www.eleuther.ai).
## Training procedure
This model was trained for 402 billion tokens over 383,500 steps on TPU v3-256 pod. It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token correctly.
## Intended Use and Limitations
GPT-J learns an inner representation of the English language that can be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating text from a prompt.
### How to use
This model can be easily loaded using the `AutoModelForCausalLM` functionality:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
```
### Limitations and Biases
The core functionality of GPT-J is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. When prompting GPT-J it is important to remember that the statistically most likely next token is often not the token that produces the most "accurate" text. Never depend upon GPT-J to produce factually accurate output.
GPT-J was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending upon use case GPT-J may produce socially unacceptable text. See [Sections 5 and 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-J will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Evaluation results
<figure>
| Model | Public | Training FLOPs | LAMBADA PPL ↓ | LAMBADA Acc ↑ | Winogrande ↑ | Hellaswag ↑ | PIQA ↑ | Dataset Size (GB) |
|--------------------------|-------------|----------------|--- |--- |--- |--- |--- |-------------------|
| Random Chance | ✓ | 0 | ~a lot | ~0% | 50% | 25% | 25% | 0 |
| GPT-3 Ada‡ | ✗ | ----- | 9.95 | 51.6% | 52.9% | 43.4% | 70.5% | ----- |
| GPT-2 1.5B | ✓ | ----- | 10.63 | 51.21% | 59.4% | 50.9% | 70.8% | 40 |
| GPT-Neo 1.3B‡ | ✓ | 3.0e21 | 7.50 | 57.2% | 55.0% | 48.9% | 71.1% | 825 |
| Megatron-2.5B* | ✗ | 2.4e21 | ----- | 61.7% | ----- | ----- | ----- | 174 |
| GPT-Neo 2.7B‡ | ✓ | 6.8e21 | 5.63 | 62.2% | 56.5% | 55.8% | 73.0% | 825 |
| GPT-3 1.3B*‡ | ✗ | 2.4e21 | 5.44 | 63.6% | 58.7% | 54.7% | 75.1% | ~800 |
| GPT-3 Babbage‡ | ✗ | ----- | 5.58 | 62.4% | 59.0% | 54.5% | 75.5% | ----- |
| Megatron-8.3B* | ✗ | 7.8e21 | ----- | 66.5% | ----- | ----- | ----- | 174 |
| GPT-3 2.7B*‡ | ✗ | 4.8e21 | 4.60 | 67.1% | 62.3% | 62.8% | 75.6% | ~800 |
| Megatron-11B† | ✓ | 1.0e22 | ----- | ----- | ----- | ----- | ----- | 161 |
| **GPT-J 6B‡** | **✓** | **1.5e22** | **3.99** | **69.7%** | **65.3%** | **66.1%** | **76.5%** | **825** |
| GPT-3 6.7B*‡ | ✗ | 1.2e22 | 4.00 | 70.3% | 64.5% | 67.4% | 78.0% | ~800 |
| GPT-3 Curie‡ | ✗ | ----- | 4.00 | 69.3% | 65.6% | 68.5% | 77.9% | ----- |
| GPT-3 13B*‡ | ✗ | 2.3e22 | 3.56 | 72.5% | 67.9% | 70.9% | 78.5% | ~800 |
| GPT-3 175B*‡ | ✗ | 3.1e23 | 3.00 | 76.2% | 70.2% | 78.9% | 81.0% | ~800 |
| GPT-3 Davinci‡ | ✗ | ----- | 3.0 | 75% | 72% | 78% | 80% | ----- |
<figcaption><p>Models roughly sorted by performance, or by FLOPs if not available.</p>
<p><strong>*</strong> Evaluation numbers reported by their respective authors. All other numbers are provided by
running <a href="https://github.com/EleutherAI/lm-evaluation-harness/"><code>lm-evaluation-harness</code></a> either with released
weights or with API access. Due to subtle implementation differences as well as different zero shot task framing, these
might not be directly comparable. See <a href="https://blog.eleuther.ai/gpt3-model-sizes/">this blog post</a> for more
details.</p>
<p><strong>†</strong> Megatron-11B provides no comparable metrics, and several implementations using the released weights do not
reproduce the generation quality and evaluations. (see <a href="https://github.com/huggingface/transformers/pull/10301">1</a>
<a href="https://github.com/pytorch/fairseq/issues/2358">2</a> <a href="https://github.com/pytorch/fairseq/issues/2719">3</a>)
Thus, evaluation was not attempted.</p>
<p><strong>‡</strong> These models have been trained with data which contains possible test set contamination. The OpenAI GPT-3 models
failed to deduplicate training data for certain test sets, while the GPT-Neo models as well as this one is
trained on the Pile, which has not been deduplicated against any test sets.</p></figcaption></figure>
## Citation and Related Information
### BibTeX entry
To cite this model:
```bibtex
@misc{gpt-j,
author = {Wang, Ben and Komatsuzaki, Aran},
title = {{GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
To cite the codebase that trained this model:
```bibtex
@misc{mesh-transformer-jax,
author = {Wang, Ben},
title = {{Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX}},
howpublished = {\url{https://github.com/kingoflolz/mesh-transformer-jax}},
year = 2021,
month = May
}
```
If you use this model, we would love to hear about it! Reach out on [GitHub](https://github.com/kingoflolz/mesh-transformer-jax), Discord, or shoot Ben an email.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/), as well as the Cloud TPU team for providing early access to the [Cloud TPU VM](https://cloud.google.com/blog/products/compute/introducing-cloud-tpu-vms) Alpha.
Thanks to everyone who have helped out one way or another (listed alphabetically):
- [James Bradbury](https://twitter.com/jekbradbury) for valuable assistance with debugging JAX issues.
- [Stella Biderman](https://www.stellabiderman.com), [Eric Hallahan](https://twitter.com/erichallahan), [Kurumuz](https://github.com/kurumuz/), and [Finetune](https://github.com/finetuneanon/) for converting the model to be compatible with the `transformers` package.
- [Leo Gao](https://twitter.com/nabla_theta) for running zero shot evaluations for the baseline models for the table.
- [Laurence Golding](https://github.com/researcher2/) for adding some features to the web demo.
- [Aran Komatsuzaki](https://twitter.com/arankomatsuzaki) for advice with experiment design and writing the blog posts.
- [Janko Prester](https://github.com/jprester/) for creating the web demo frontend.
|
EleutherAI/gpt-neo-1.3B
|
EleutherAI
|
gpt_neo
| 10 | 154,247 |
transformers
| 117 |
text-generation
| true | false | true |
mit
|
['en']
|
['the_pile']
| null | 2 | 1 | 0 | 1 | 1 | 0 | 1 |
['text generation', 'pytorch', 'causal-lm']
| false | true | true | 4,477 |
# GPT-Neo 1.3B
## Model Description
GPT-Neo 1.3B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 1.3B represents the number of parameters of this particular pre-trained model.
## Training data
GPT-Neo 1.3B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
## Training procedure
This model was trained on the Pile for 380 billion tokens over 362,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
## Intended Use and Limitations
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-1.3B')
>>> generator("EleutherAI has", do_sample=True, min_length=50)
[{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Eval results
### Linguistic Reasoning
| Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag |
| ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- |
| **GPT-Neo 1.3B** | **0.7527** | **6.159** | **13.10** | **7.498** | **57.23%** | **55.01%** | **38.66%** |
| GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% |
| GPT-Neo 2.7B | 0.7165 | 5.646 | 11.39 | 5.626 | 62.22% | 56.50% | 42.73% |
| GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% |
### Physical and Scientific Reasoning
| Model and Size | MathQA | PubMedQA | Piqa |
| ---------------- | ---------- | ---------- | ----------- |
| **GPT-Neo 1.3B** | **24.05%** | **54.40%** | **71.11%** |
| GPT-2 1.5B | 23.64% | 58.33% | 70.78% |
| GPT-Neo 2.7B | 24.72% | 57.54% | 72.14% |
| GPT-3 Ada | 24.29% | 52.80% | 68.88% |
### Down-Stream Applications
TBD
### BibTeX entry and citation info
To cite this model, please use
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
@article{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
|
EleutherAI/gpt-neo-125M
|
EleutherAI
|
gpt_neo
| 10 | 226,095 |
transformers
| 58 |
text-generation
| true | false | true |
mit
|
['en']
|
['the_pile']
| null | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
['text generation', 'pytorch', 'causal-lm']
| false | true | true | 3,336 |
# GPT-Neo 125M
## Model Description
GPT-Neo 125M is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 125M represents the number of parameters of this particular pre-trained model.
## Training data
GPT-Neo 125M was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
## Training procedure
This model was trained on the Pile for 300 billion tokens over 572,300 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
## Intended Use and Limitations
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-125M')
>>> generator("EleutherAI has", do_sample=True, min_length=20)
[{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Eval results
TBD
### Down-Stream Applications
TBD
### BibTeX entry and citation info
To cite this model, use
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
@article{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
|
EleutherAI/gpt-neo-2.7B
|
EleutherAI
|
gpt_neo
| 10 | 253,464 |
transformers
| 225 |
text-generation
| true | false | true |
mit
|
['en']
|
['the_pile']
| null | 0 | 0 | 0 | 0 | 3 | 3 | 0 |
['text generation', 'pytorch', 'causal-lm']
| false | true | true | 4,899 |
# GPT-Neo 2.7B
## Model Description
GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model.
## Training data
GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model.
## Training procedure
This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss.
## Intended Use and Limitations
This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt.
### How to use
You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run:
```py
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
>>> generator("EleutherAI has", do_sample=True, min_length=50)
[{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}]
```
### Limitations and Biases
GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work.
GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile.
As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Eval results
All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM).
### Linguistic Reasoning
| Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag |
| ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- |
| GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% |
| GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% |
| **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** |
| GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% |
### Physical and Scientific Reasoning
| Model and Size | MathQA | PubMedQA | Piqa |
| ---------------- | ---------- | ---------- | ----------- |
| GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% |
| GPT-2 1.5B | 23.64% | 58.33% | 70.78% |
| **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** |
| GPT-3 Ada | 24.29% | 52.80% | 68.88% |
### Down-Stream Applications
TBD
### BibTeX entry and citation info
To cite this model, use
```bibtex
@software{gpt-neo,
author = {Black, Sid and
Leo, Gao and
Wang, Phil and
Leahy, Connor and
Biderman, Stella},
title = {{GPT-Neo: Large Scale Autoregressive Language
Modeling with Mesh-Tensorflow}},
month = mar,
year = 2021,
note = {{If you use this software, please cite it using
these metadata.}},
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.5297715},
url = {https://doi.org/10.5281/zenodo.5297715}
}
@article{gao2020pile,
title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling},
author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others},
journal={arXiv preprint arXiv:2101.00027},
year={2020}
}
```
|
Elron/bleurt-base-128
|
Elron
|
bert
| 8 | 58 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 999 |
\n## BLEURT
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
## Usage Example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-base-128")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-base-128")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([0.3598, 0.0723])
```
|
Elron/bleurt-base-512
|
Elron
|
bert
| 8 | 432 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 999 |
\n## BLEURT
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
## Usage Example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-base-512")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-base-512")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([1.0327, 0.2055])
```
|
Elron/bleurt-large-128
|
Elron
|
bert
| 8 | 39 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,003 |
\n## BLEURT
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
## Usage Example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-large-128")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-large-128")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([ 0.0020, -0.6647])
```
|
Elron/bleurt-large-512
|
Elron
|
bert
| 8 | 27,744 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 998 |
## BLEURT
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
## Usage Example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-large-512")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-large-512")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([0.9877, 0.0475])
```
|
Elron/bleurt-tiny-128
|
Elron
|
bert
| 8 | 17 |
transformers
| 1 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 1,001 |
\n## BLEURT
Pytorch version of the original BLEURT models from ACL paper ["BLEURT: Learning Robust Metrics for Text Generation"](https://aclanthology.org/2020.acl-main.704/) by
Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research.
The code for model conversion was originated from [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) mentioned [here](https://github.com/huggingface/datasets/issues/224).
## Usage Example
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([-1.0563, -0.3004])
```
|
Elron/bleurt-tiny-512
|
Elron
|
bert
| 8 | 64,801 |
transformers
| 2 |
text-classification
| true | false | false | null | null | null | null | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
['text-classification', 'bert']
| false | true | true | 4,596 |
# Model Card for bleurt-tiny-512
# Model Details
## Model Description
Pytorch version of the original BLEURT models from ACL paper
- **Developed by:** Elron Bandel, Thibault Sellam, Dipanjan Das and Ankur P. Parikh of Google Research
- **Shared by [Optional]:** Elron Bandel
- **Model type:** Text Classification
- **Language(s) (NLP):** More information needed
- **License:** More information needed
- **Parent Model:** BERT
- **Resources for more information:**
- [GitHub Repo](https://github.com/google-research/bleurt/tree/master)
- [Associated Paper](https://aclanthology.org/2020.acl-main.704/)
- [Blog Post](https://ai.googleblog.com/2020/05/evaluating-natural-language-generation.html)
# Uses
## Direct Use
This model can be used for the task of Text Classification
## Downstream Use [Optional]
More information needed.
## Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
# Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
## Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
# Training Details
## Training Data
The model authors note in the [associated paper](https://aclanthology.org/2020.acl-main.704.pdf):
> We use years 2017 to 2019 of the WMT Metrics Shared Task, to-English language pairs. For each year, we used the of- ficial WMT test set, which include several thou- sand pairs of sentences with human ratings from the news domain. The training sets contain 5,360, 9,492, and 147,691 records for each year.
## Training Procedure
### Preprocessing
More information needed
### Speeds, Sizes, Times
More information needed
# Evaluation
## Testing Data, Factors & Metrics
### Testing Data
The test sets for years 2018 and 2019 [of the WMT Metrics Shared Task, to-English language pairs.] are noisier,
### Factors
More information needed
### Metrics
More information needed
## Results
More information needed
# Model Examination
More information needed
# Environmental Impact
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** More information needed
- **Hours used:** More information needed
- **Cloud Provider:** More information needed
- **Compute Region:** More information needed
- **Carbon Emitted:** More information needed
# Technical Specifications [optional]
## Model Architecture and Objective
More information needed
## Compute Infrastructure
More information needed
### Hardware
More information needed
### Software
More information needed.
# Citation
**BibTeX:**
```bibtex
@inproceedings{sellam2020bleurt,
title = {BLEURT: Learning Robust Metrics for Text Generation},
author = {Thibault Sellam and Dipanjan Das and Ankur P Parikh},
year = {2020},
booktitle = {Proceedings of ACL}
}
```
# Glossary [optional]
More information needed
# More Information [optional]
More information needed
# Model Card Authors [optional]
Elron Bandel in collaboration with Ezi Ozoani and the Hugging Face team
# Model Card Contact
More information needed
# How to Get Started with the Model
Use the code below to get started with the model.
<details>
<summary> Click to expand </summary>
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Elron/bleurt-tiny-512")
model = AutoModelForSequenceClassification.from_pretrained("Elron/bleurt-tiny-512")
model.eval()
references = ["hello world", "hello world"]
candidates = ["hi universe", "bye world"]
with torch.no_grad():
scores = model(**tokenizer(references, candidates, return_tensors='pt'))[0].squeeze()
print(scores) # tensor([-0.9414, -0.5678])
```
See [this notebook](https://colab.research.google.com/drive/1KsCUkFW45d5_ROSv2aHtXgeBa2Z98r03?usp=sharing) for model conversion code.
</details>
|
Emanuel/autonlp-pos-tag-bosque
|
Emanuel
|
bert
| 9 | 37 |
transformers
| 2 |
token-classification
| true | false | false | null |
['pt']
|
['Emanuel/autonlp-data-pos-tag-bosque']
|
6.2107269129101805
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
autonlp
| false | true | true | 1,106 |
# Model Trained Using AutoNLP
- Problem type: Entity Extraction
- Model ID: 21124427
- CO2 Emissions (in grams): 6.2107269129101805
## Validation Metrics
- Loss: 0.09813392907381058
- Accuracy: 0.9714309035997062
- Precision: 0.9721275936822545
- Recall: 0.9735345807918949
- F1: 0.9728305785123967
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Emanuel/autonlp-pos-tag-bosque-21124427
```
Or Python API:
```
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("Emanuel/autonlp-pos-tag-bosque")
tokenizer = AutoTokenizer.from_pretrained("Emanuel/autonlp-pos-tag-bosque")
inputs = tokenizer("A noiva casa de branco", return_tensors="pt")
outputs = model(**inputs)
labelids = outputs.logits.squeeze().argmax(axis=-1)
labels = [model.config.id2label[int(x)] for x in labelids]
labels = labels[1:-1]# Filter start and end of sentence symbols
```
|
Emanuel/bertweet-emotion-base
|
Emanuel
|
roberta
| 21 | 1,387 |
transformers
| 1 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 3 | 0 | 3 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 519 |
# bertweet-emotion-base
This model is a fine-tuned version of [Bertweet](https://huggingface.co/vinai/bertweet-base). It achieves the following results on the evaluation set:
- Loss: 0.1172
- Accuracy: 0.945
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- lr_scheduler_type: linear
- num_epochs: 6.0
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Emanuel/roebrta-base-val-test
|
Emanuel
|
roberta
| 14 | 2 |
transformers
| 0 |
fill-mask
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,082 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# language-modeling
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4229
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: tpu
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.8.1+cu102
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Emanuel/twitter-emotion-deberta-v3-base
|
Emanuel
|
deberta-v2
| 17 | 55 |
transformers
| 1 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 3 | 0 | 3 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 537 |
# twitter-emotion-deberta-v3-base
This model is a fine-tuned version of [DeBERTa-v3](https://huggingface.co/microsoft/deberta-v3-base). It achieves the following results on the evaluation set:
- Loss: 0.1474
- Accuracy: 0.937
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 80
- eval_batch_size: 80
- lr_scheduler_type: linear
- num_epochs: 6.0
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu113
- Datasets 1.15.1
- Tokenizers 0.10.3
|
Emmanuel/bert-finetuned-ner
|
Emmanuel
|
bert
| 14 | 5 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,519 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0603
- Precision: 0.9317
- Recall: 0.9510
- F1: 0.9413
- Accuracy: 0.9866
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0872 | 1.0 | 1756 | 0.0660 | 0.9152 | 0.9350 | 0.9250 | 0.9827 |
| 0.0386 | 2.0 | 3512 | 0.0579 | 0.9374 | 0.9498 | 0.9436 | 0.9864 |
| 0.0225 | 3.0 | 5268 | 0.0603 | 0.9317 | 0.9510 | 0.9413 | 0.9866 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
EngNada/wav2vec2-large-xlsr-53-demo-colab
|
EngNada
|
wav2vec2
| 13 | 6 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,318 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xlsr-53-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 7.9807
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 22.8021 | 1.78 | 80 | 7.9807 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|
EnsarEmirali/distilbert-base-uncased-finetuned-emotion
|
EnsarEmirali
|
distilbert
| 12 | 6 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,339 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2131
- Accuracy: 0.9265
- F1: 0.9269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8031 | 1.0 | 250 | 0.2973 | 0.9125 | 0.9110 |
| 0.2418 | 2.0 | 500 | 0.2131 | 0.9265 | 0.9269 |
### Framework versions
- Transformers 4.12.5
- Pytorch 1.10.1
- Datasets 1.16.1
- Tokenizers 0.10.3
|
ErykWdowiak/GPTalian
|
ErykWdowiak
|
gpt2
| 15 | 8 |
transformers
| 0 |
text-generation
| true | false | true |
apache-2.0
|
['en', 'it', 'scn', 'nap']
| null | null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['exbert', 'gpt2']
| false | true | true | 610 |
# GPTalian
This is a GPT2 model of Italian regional languages trained on [collections of Italian "dialect poetry"](http://dialectpoetry.com) by Luigi Bonaffini.
This is a multilingual model. Italians use the word "dialect" to describe their regional languages, but they are separate languages. And there's a lot of English in this dataset too.
The challenge of this project is to train a model to write the languages of Italy.
For those who do not know Italian, here's some (lowercase) text that you can type into the API box:
- oggi si parla il dialetto
- la sua poesia viene di
- ma non sempre trova
|
Evgeneus/distilbert-base-uncased-finetuned-ner
|
Evgeneus
|
distilbert
| 15 | 4 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,372 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0845
- Precision: 0.8754
- Recall: 0.9058
- F1: 0.8904
- Accuracy: 0.9763
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2529 | 1.0 | 878 | 0.0845 | 0.8754 | 0.9058 | 0.8904 | 0.9763 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|
Eyvaz/wav2vec2-base-russian-big-kaggle
|
Eyvaz
|
wav2vec2
| 12 | 8 |
transformers
| 1 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,072 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-russian-big-kaggle
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Eyvaz/wav2vec2-base-russian-demo-kaggle
|
Eyvaz
|
wav2vec2
| 22 | 7 |
transformers
| 1 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 3,047 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-russian-demo-kaggle
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.9997
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 12
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0102 | 1.03 | 500 | inf | 0.9997 |
| 0.0068 | 2.06 | 1000 | inf | 0.9997 |
| 0.0 | 3.09 | 1500 | inf | 0.9997 |
| 0.0313 | 4.12 | 2000 | inf | 0.9997 |
| 0.0 | 5.15 | 2500 | inf | 0.9997 |
| 0.0052 | 6.19 | 3000 | inf | 0.9997 |
| 0.0287 | 7.22 | 3500 | inf | 0.9997 |
| 0.0 | 8.25 | 4000 | inf | 0.9997 |
| 0.01 | 9.28 | 4500 | inf | 0.9997 |
| 0.0 | 10.31 | 5000 | inf | 0.9997 |
| 0.3919 | 11.34 | 5500 | inf | 0.9997 |
| 0.0 | 12.37 | 6000 | inf | 0.9997 |
| 0.0 | 13.4 | 6500 | inf | 0.9997 |
| 0.0 | 14.43 | 7000 | inf | 0.9997 |
| 0.6422 | 15.46 | 7500 | inf | 0.9997 |
| 0.0 | 16.49 | 8000 | inf | 0.9997 |
| 0.0 | 17.53 | 8500 | inf | 0.9997 |
| 0.0 | 18.56 | 9000 | inf | 0.9997 |
| 0.0 | 19.59 | 9500 | inf | 0.9997 |
| 0.0 | 20.62 | 10000 | inf | 0.9997 |
| 0.0427 | 21.65 | 10500 | inf | 0.9997 |
| 0.0 | 22.68 | 11000 | inf | 0.9997 |
| 0.0 | 23.71 | 11500 | inf | 0.9997 |
| 0.0 | 24.74 | 12000 | inf | 0.9997 |
| 0.0091 | 25.77 | 12500 | inf | 0.9997 |
| 0.1243 | 26.8 | 13000 | inf | 0.9997 |
| 0.0 | 27.83 | 13500 | inf | 0.9997 |
| 0.0 | 28.87 | 14000 | inf | 0.9997 |
| 0.0 | 29.9 | 14500 | inf | 0.9997 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1
- Datasets 1.13.3
- Tokenizers 0.10.3
|
FOFer/distilbert-base-uncased-finetuned-squad
|
FOFer
|
distilbert
| 12 | 3 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad_v2']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,288 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad_v2 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2169 | 1.0 | 8235 | 1.1950 |
| 0.9396 | 2.0 | 16470 | 1.2540 |
| 0.7567 | 3.0 | 24705 | 1.4306 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
FabioDataGeek/distilbert-base-uncased-finetuned-emotion
|
FabioDataGeek
|
distilbert
| 14 | 6 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,343 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2196
- Accuracy: 0.926
- F1: 0.9258
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.8279 | 1.0 | 250 | 0.3208 | 0.9025 | 0.8979 |
| 0.2538 | 2.0 | 500 | 0.2196 | 0.926 | 0.9258 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
|
Fan-s/reddit-tc-bert
|
Fan-s
|
bert
| 10 | 1 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 2,140 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-uncased-base
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an Reddit-dialogue dataset.
This model can be used for Text Classification: Given two sentences, see if they are related.
It achieves the following results on the evaluation set:
- Loss: 0.2297
- Accuracy: 0.9267
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 320
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.0
- Tokenizers 0.11.0
## Usage (HuggingFace Transformers)
You can use the model like this:
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# label_list
label_list = ['matched', 'unmatched']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("Fan-s/reddit-tc-bert", use_fast=True)
model = AutoModelForSequenceClassification.from_pretrained("Fan-s/reddit-tc-bert")
# Set the input
post = "don't make gravy with asbestos."
response = "i'd expect someone with a culinary background to know that. since we're talking about school dinner ladies, they need to learn this pronto."
# Predict whether the two sentences are matched
def predict(post, response, max_seq_length=128):
with torch.no_grad():
args = (post, response)
input = tokenizer(*args, padding="max_length", max_length=max_seq_length, truncation=True, return_tensors="pt")
output = model(**input)
logits = output.logits
item = torch.argmax(logits, dim=1)
predict_label = label_list[item]
return predict_label, logits
predict_label, logits = predict(post, response)
# Matched
print("predict_label:", predict_label)
```
|
FardinSaboori/bert-finetuned-squad
|
FardinSaboori
|
bert
| 12 | 3 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 955 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-squad
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
FarisHijazi/wav2vec2-large-xls-r-300m-turkish-colab
|
FarisHijazi
|
wav2vec2
| 11 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null |
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,108 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-turkish-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 256
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 1.13.3
- Tokenizers 0.10.3
|
Fauzan/autonlp-judulberita-32517788
|
Fauzan
|
bert
| 9 | 1 |
transformers
| 0 |
text-classification
| true | false | false | null |
['unk']
|
['Fauzan/autonlp-data-judulberita']
|
0.9413042739759596
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
autonlp
| false | true | true | 1,005 |
# Model Trained Using AutoNLP
- Problem type: Binary Classification
- Model ID: 32517788
- CO2 Emissions (in grams): 0.9413042739759596
## Validation Metrics
- Loss: 0.32112351059913635
- Accuracy: 0.8641304347826086
- Precision: 0.8055555555555556
- Recall: 0.8405797101449275
- AUC: 0.9493383742911153
- F1: 0.8226950354609929
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Fauzan/autonlp-judulberita-32517788
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Fauzan/autonlp-judulberita-32517788", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Fauzan/autonlp-judulberita-32517788", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)
```
|
Fengkai/distilbert-base-uncased-finetuned-emotion
|
Fengkai
|
distilbert
| 21 | 27 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['emotion']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,563 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1495
- Accuracy: 0.9385
- F1: 0.9383
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1739 | 1.0 | 250 | 0.1827 | 0.931 | 0.9302 |
| 0.1176 | 2.0 | 500 | 0.1567 | 0.9325 | 0.9326 |
| 0.0994 | 3.0 | 750 | 0.1555 | 0.9385 | 0.9389 |
| 0.08 | 4.0 | 1000 | 0.1496 | 0.9445 | 0.9443 |
| 0.0654 | 5.0 | 1250 | 0.1495 | 0.9385 | 0.9383 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Ferch423/gpt2-small-portuguese-wikipediabio
|
Ferch423
|
gpt2
| 11 | 8 |
transformers
| 0 |
text-generation
| true | false | true | null |
['pt']
|
['wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['pt', 'wikipedia', 'gpt2', 'finetuning']
| false | true | true | 398 |
# GPT2-SMALL-PORTUGUESE-WIKIPEDIABIO
This is a finetuned model version of gpt2-small-portuguese(https://huggingface.co/pierreguillou/gpt2-small-portuguese) by pierreguillou.
It was trained on a person abstract dataset extracted from DBPEDIA (over 100000 people's abstracts). The model is intended as a simple and fun experiment for generating texts abstracts based on ordinary people's names.
|
Fhrozen/test_an4
|
Fhrozen
| null | 31 | 1 |
espnet
| 0 |
automatic-speech-recognition
| false | false | false |
cc-by-4.0
|
['en']
|
['an4']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['espnet', 'audio', 'automatic-speech-recognition']
| false | true | true | 7,699 |
## ESPnet2 ASR model
### `Fhrozen/test_an4`
This model was trained by Fhrozen using an4 recipe in [espnet](https://github.com/espnet/espnet/).
### Demo: How to use in ESPnet2
```bash
cd espnet
git checkout b8df4c928e132acff78d196988bdb68a66987952
pip install -e .
cd egs2/an4/asr1
./run.sh --skip_data_prep false --skip_train true --download_model Fhrozen/test_an4
```
<!-- Generated by scripts/utils/show_asr_result.sh -->
# RESULTS
## Environments
- date: `Wed Oct 20 00:00:46 JST 2021`
- python version: `3.9.7 (default, Sep 16 2021, 13:09:58) [GCC 7.5.0]`
- espnet version: `espnet 0.10.4a1`
- pytorch version: `pytorch 1.9.0`
- Git hash: `b8df4c928e132acff78d196988bdb68a66987952`
- Commit date: `Tue Oct 19 07:48:11 2021 -0400`
## asr_train_raw_en_bpe30
### WER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|773|4.0|22.3|73.7|0.1|96.1|100.0|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|591|2.7|21.8|75.5|0.0|97.3|100.0|
### CER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2565|17.2|16.4|66.4|1.0|83.8|100.0|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|1915|15.5|16.4|68.1|0.9|85.5|100.0|
### TER
|dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err|
|---|---|---|---|---|---|---|---|---|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/test|130|2695|21.1|15.6|63.3|0.9|79.9|100.0|
|inference_lm_lm_train_lm_en_bpe30_valid.loss.ave_asr_model_valid.acc.best/train_dev|100|2015|19.4|15.6|65.0|0.9|81.5|100.0|
## ASR config
<details><summary>expand</summary>
```
config: null
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/asr_train_raw_en_bpe30
ngpu: 0
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: null
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - train
- loss
- min
- - valid
- loss
- min
- - train
- acc
- max
- - valid
- acc
- max
keep_nbest_models:
- 10
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_en_bpe30/train/speech_shape
- exp/asr_stats_raw_en_bpe30/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_en_bpe30/valid/speech_shape
- exp/asr_stats_raw_en_bpe30/valid/text_shape.bpe
batch_type: folded
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/train_nodev/wav.scp
- speech
- sound
- - dump/raw/train_nodev/text
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/train_dev/wav.scp
- speech
- sound
- - dump/raw/train_dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adadelta
optim_conf: {}
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ▁
- T
- E
- O
- R
- Y
- A
- H
- U
- S
- I
- F
- B
- L
- P
- D
- G
- M
- C
- V
- X
- J
- K
- Z
- W
- N
- Q
- <sos/eos>
init: null
input_size: null
ctc_conf:
dropout_rate: 0.0
ctc_type: builtin
reduce: true
ignore_nan_grad: true
model_conf:
ctc_weight: 0.5
ignore_id: -1
lsm_weight: 0.0
length_normalized_loss: false
report_cer: true
report_wer: true
sym_space: <space>
sym_blank: <blank>
extract_feats_in_collect_stats: true
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram30/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
frontend: default
frontend_conf:
fs: 16k
specaug: null
specaug_conf: {}
normalize: global_mvn
normalize_conf:
stats_file: exp/asr_stats_raw_en_bpe30/train/feats_stats.npz
preencoder: null
preencoder_conf: {}
encoder: rnn
encoder_conf: {}
postencoder: null
postencoder_conf: {}
decoder: rnn
decoder_conf: {}
required:
- output_dir
- token_list
version: 0.10.4a1
distributed: false
```
</details>
## LM config
<details><summary>expand</summary>
```
config: conf/train_lm.yaml
print_config: false
log_level: INFO
dry_run: false
iterator_type: sequence
output_dir: exp/lm_train_lm_en_bpe30
ngpu: 0
seed: 0
num_workers: 1
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: null
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
- - valid
- loss
- min
keep_nbest_models: 1
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 1
no_forward_run: false
resume: true
train_dtype: float32
use_amp: false
log_interval: null
use_tensorboard: true
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param: []
num_iters_per_epoch: null
batch_size: 256
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/lm_stats_en_bpe30/train/text_shape.bpe
valid_shape_file:
- exp/lm_stats_en_bpe30/valid/text_shape.bpe
batch_type: folded
valid_batch_type: null
fold_length:
- 150
sort_in_batch: descending
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
train_data_path_and_name_and_type:
- - dump/raw/lm_train.txt
- text
- text
valid_data_path_and_name_and_type:
- - dump/raw/train_dev/text
- text
- text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
optim: adam
optim_conf:
lr: 0.1
scheduler: null
scheduler_conf: {}
token_list:
- <blank>
- <unk>
- ▁
- T
- E
- O
- R
- Y
- A
- H
- U
- S
- I
- F
- B
- L
- P
- D
- G
- M
- C
- V
- X
- J
- K
- Z
- W
- N
- Q
- <sos/eos>
init: null
model_conf:
ignore_id: 0
use_preprocessor: true
token_type: bpe
bpemodel: data/en_token_list/bpe_unigram30/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
lm: seq_rnn
lm_conf:
unit: 650
nlayers: 2
required:
- output_dir
- token_list
version: 0.10.4a1
distributed: false
```
</details>
|
Fiddi/distilbert-base-uncased-finetuned-ner
|
Fiddi
|
distilbert
| 19 | 9 |
transformers
| 0 |
token-classification
| true | false | false |
apache-2.0
| null |
['conll2003']
| null | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,555 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0604
- Precision: 0.9291
- Recall: 0.9376
- F1: 0.9333
- Accuracy: 0.9841
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2412 | 1.0 | 878 | 0.0688 | 0.9178 | 0.9246 | 0.9212 | 0.9815 |
| 0.0514 | 2.0 | 1756 | 0.0608 | 0.9251 | 0.9344 | 0.9298 | 0.9832 |
| 0.0304 | 3.0 | 2634 | 0.0604 | 0.9291 | 0.9376 | 0.9333 | 0.9841 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.12.1
- Tokenizers 0.10.3
|
Fidlobabovic/beta-kvantorium-simple-small
|
Fidlobabovic
|
roberta
| 11 | 5 |
transformers
| 0 |
fill-mask
| true | false | true | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 487 |
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective:
Automate communication with the Quantorium community and mentors.
|
Fidlobabovic/beta-kvantorium-small
|
Fidlobabovic
|
roberta
| 8 | 5 |
transformers
| 0 |
fill-mask
| true | false | true | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 651 |
Beta-kavntorium-simple-small is a transformers model RoBerta pretrained on a large corpus of Russion kvantorim data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with objective:
Automate communication with the Quantorium community and mentors.
https://sun9-49.userapi.com/impg/CIJZKA_r9xoLYd47Lvjv_8jyu6epadPyergP3Q/zw3J_E6IlJo.jpg?size=546x385&quality=96&sign=139fa29b864d36958feab4731cc684dc&type=album
|
Finnish-NLP/convbert-base-finnish
|
Finnish-NLP
|
convbert
| 15 | 0 |
transformers
| 1 |
feature-extraction
| true | true | false |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'convbert']
| false | true | true | 7,847 |
# ConvBERT for Finnish
Pretrained ConvBERT model on Finnish language using a replaced token detection (RTD) objective. ConvBERT was introduced in
[this paper](https://arxiv.org/abs/2008.02496)
and first released at [this page](https://github.com/yitu-opensource/ConvBert).
**Note**: this model is the ConvBERT discriminator model intented to be used for fine-tuning on downstream tasks like text classification. The ConvBERT generator model intented to be used for fill-mask task is released here [Finnish-NLP/convbert-base-generator-finnish](https://huggingface.co/Finnish-NLP/convbert-base-generator-finnish)
## Model description
Finnish ConvBERT is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN).
This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ConvBERT model as inputs.
Compared to BERT and ELECTRA models, ConvBERT model utilizes a span-based
dynamic convolution to replace some of the global self-attention heads for modeling local input sequence
dependencies. These convolution heads, together with the rest of the self-attention
heads, form a new mixed attention block that should be more efficient at both global
and local context learning.
## Intended uses & limitations
You can use the raw model for extracting features or fine-tune it to a downstream task like text classification.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import ConvBertTokenizer, ConvBertModel
import torch
tokenizer = ConvBertTokenizer.from_pretrained("Finnish-NLP/convbert-base-finnish")
model = ConvBertModel.from_pretrained("Finnish-NLP/convbert-base-finnish")
inputs = tokenizer("Joka kuuseen kurkottaa, se katajaan kapsahtaa", return_tensors="pt")
outputs = model(**inputs)
print(outputs.last_hidden_state)
```
and in TensorFlow:
```python
from transformers import ConvBertTokenizer, TFConvBertModel
tokenizer = ConvBertTokenizer.from_pretrained("Finnish-NLP/convbert-base-finnish")
model = TFConvBertModel.from_pretrained("Finnish-NLP/convbert-base-finnish")
inputs = tokenizer("Joka kuuseen kurkottaa, se katajaan kapsahtaa", return_tensors="tf")
outputs = model(inputs)
print(outputs.last_hidden_state)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
## Training data
This Finnish ConvBERT model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 1e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after.
Training code was from the official [ConvBERT repository](https://github.com/yitu-opensource/ConvBert) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/convbert/CHEATSHEET.md).
## Evaluation results
Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length.
When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model and to our other models:
| | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length |
|-----------------------------------------------|----------|---------------------|---------------------|----------------------|
|Finnish-NLP/convbert-base-finnish |86.98 |94.04 |95.02 |71.87 |
|Finnish-NLP/electra-base-discriminator-finnish |86.25 |93.78 |94.77 |70.20 |
|Finnish-NLP/roberta-large-wechsel-finnish |88.19 |**94.91** |95.18 |74.47 |
|Finnish-NLP/roberta-large-finnish-v2 |88.17 |94.46 |95.22 |74.83 |
|Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 |
|TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |94.90 |**95.49** |**76.07** |
To conclude, this ConvBERT model wins the ELECTRA model while losing to other models but is still fairly competitive compared to our roberta-large models when taking into account that this ConvBERT model has 106M parameters when roberta-large models have 355M parameters. ConvBERT winning the ELECTRA is also in line with the findings of the [ConvBERT paper](https://arxiv.org/abs/2008.02496).
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/convbert-base-generator-finnish
|
Finnish-NLP
|
convbert
| 9 | 3 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'convbert']
| false | true | true | 6,090 |
# ConvBERT for Finnish
Pretrained ConvBERT model on Finnish language using a replaced token detection (RTD) objective. ConvBERT was introduced in
[this paper](https://arxiv.org/abs/2008.02496)
and first released at [this page](https://github.com/yitu-opensource/ConvBert).
**Note**: this model is the ConvBERT generator model intented to be used for the fill-mask task. The ConvBERT discriminator model intented to be used for fine-tuning on downstream tasks like text classification is released here [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish)
## Model description
Finnish ConvBERT is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN).
This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ConvBERT model as inputs.
Compared to BERT and ELECTRA models, ConvBERT model utilizes a span-based
dynamic convolution to replace some of the global self-attention heads for modeling local input sequence
dependencies. These convolution heads, together with the rest of the self-attention
heads, form a new mixed attention block that should be more efficient at both global
and local context learning.
## Intended uses & limitations
You can use this generator model mainly just for the fill-mask task. For other tasks, check the [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish) model instead.
### How to use
Here is how to use this model directly with a pipeline for fill-mask task:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Finnish-NLP/convbert-base-generator-finnish')
>>> unmasker("Moikka olen [MASK] kielimalli.")
[{'score': 0.08341152966022491,
'token': 4619,
'token_str': 'suomalainen',
'sequence': 'Moikka olen suomalainen kielimalli.'},
{'score': 0.02831297740340233,
'token': 25583,
'token_str': 'ranskalainen',
'sequence': 'Moikka olen ranskalainen kielimalli.'},
{'score': 0.027857203036546707,
'token': 37714,
'token_str': 'kiinalainen',
'sequence': 'Moikka olen kiinalainen kielimalli.'},
{'score': 0.027701903134584427,
'token': 21614,
'token_str': 'ruotsalainen',
'sequence': 'Moikka olen ruotsalainen kielimalli.'},
{'score': 0.026388710364699364,
'token': 591,
'token_str': 'hyvä',
'sequence': 'Moikka olen hyvä kielimalli.'}]
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
## Training data
This Finnish ConvBERT model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 1e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after.
Training code was from the official [ConvBERT repository](https://github.com/yitu-opensource/ConvBert) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/convbert/CHEATSHEET.md).
## Evaluation results
For evaluation results, check the [Finnish-NLP/convbert-base-finnish](https://huggingface.co/Finnish-NLP/convbert-base-finnish) model repository instead.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/electra-base-discriminator-finnish
|
Finnish-NLP
|
electra
| 12 | 2 |
transformers
| 1 | null | true | false | false |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'electra']
| false | true | true | 7,368 |
# ELECTRA for Finnish
Pretrained ELECTRA model on Finnish language using a replaced token detection (RTD) objective. ELECTRA was introduced in
[this paper](https://openreview.net/pdf?id=r1xMH1BtvB)
and first released at [this page](https://github.com/google-research/electra).
**Note**: this model is the ELECTRA discriminator model intented to be used for fine-tuning on downstream tasks like text classification. The ELECTRA generator model intented to be used for fill-mask task is released here [Finnish-NLP/electra-base-generator-finnish](https://huggingface.co/Finnish-NLP/electra-base-generator-finnish)
## Model description
Finnish ELECTRA is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN).
This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ELECTRA model as inputs.
## Intended uses & limitations
You can use the raw model for extracting features or fine-tune it to a downstream task like text classification.
### How to use
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import ElectraTokenizer, ElectraModel
import torch
tokenizer = ElectraTokenizer.from_pretrained("Finnish-NLP/electra-base-discriminator-finnish")
model = ElectraModel.from_pretrained("Finnish-NLP/electra-base-discriminator-finnish")
inputs = tokenizer("Joka kuuseen kurkottaa, se katajaan kapsahtaa", return_tensors="pt")
outputs = model(**inputs)
print(outputs.last_hidden_state)
```
and in TensorFlow:
```python
from transformers import ElectraTokenizer, TFElectraModel
tokenizer = ElectraTokenizer.from_pretrained("Finnish-NLP/electra-base-discriminator-finnish")
model = TFElectraModel.from_pretrained("Finnish-NLP/electra-base-discriminator-finnish", from_pt=True)
inputs = tokenizer("Joka kuuseen kurkottaa, se katajaan kapsahtaa", return_tensors="tf")
outputs = model(inputs)
print(outputs.last_hidden_state)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
## Training data
This Finnish ELECTRA model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 2e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after.
Training code was from the official [ELECTRA repository](https://github.com/google-research/electra) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/electra/CHEATSHEET.md).
## Evaluation results
Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length.
When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model and to our other models:
| | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length |
|-----------------------------------------------|----------|---------------------|---------------------|----------------------|
|Finnish-NLP/electra-base-discriminator-finnish |86.25 |93.78 |94.77 |70.20 |
|Finnish-NLP/convbert-base-finnish |86.98 |94.04 |95.02 |71.87 |
|Finnish-NLP/roberta-large-wechsel-finnish |88.19 |**94.91** |95.18 |74.47 |
|Finnish-NLP/roberta-large-finnish-v2 |88.17 |94.46 |95.22 |74.83 |
|Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 |
|TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |94.90 |**95.49** |**76.07** |
To conclude, this ELECTRA model loses to other models but is still fairly competitive compared to our roberta-large models when taking into account that this ELECTRA model has 110M parameters when roberta-large models have 355M parameters.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/electra-base-generator-finnish
|
Finnish-NLP
|
electra
| 8 | 4 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'electra']
| false | true | true | 5,754 |
# ELECTRA for Finnish
Pretrained ELECTRA model on Finnish language using a replaced token detection (RTD) objective. ELECTRA was introduced in
[this paper](https://openreview.net/pdf?id=r1xMH1BtvB)
and first released at [this page](https://github.com/google-research/electra).
**Note**: this model is the ELECTRA generator model intented to be used for the fill-mask task. The ELECTRA discriminator model intented to be used for fine-tuning on downstream tasks like text classification is released here [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish)
## Model description
Finnish ELECTRA is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the replaced token detection (RTD) objective. Instead of masking the input like in BERT's masked language modeling (MLM) objective, this approach corrupts the input by replacing some tokens with plausible alternatives sampled from a small generator model. Then, instead of training a model that predicts the original identities of the corrupted tokens, a discriminative model is trained that predicts whether each token in the corrupted input was replaced by a generator model's sample or not. Thus, this training approach resembles Generative Adversarial Nets (GAN).
This way, the model learns an inner representation of the Finnish language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ELECTRA model as inputs.
## Intended uses & limitations
You can use this generator model mainly just for the fill-mask task. For other tasks, check the [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish) model instead.
### How to use
Here is how to use this model directly with a pipeline for fill-mask task:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Finnish-NLP/electra-base-generator-finnish')
>>> unmasker("Moikka olen [MASK] kielimalli.")
[{'score': 0.0708453431725502,
'token': 4619,
'token_str': 'suomalainen',
'sequence': 'Moikka olen suomalainen kielimalli.'},
{'score': 0.042563650757074356,
'token': 1153,
'token_str': 'uusi',
'sequence': 'Moikka olen uusi kielimalli.'},
{'score': 0.03219178691506386,
'token': 591,
'token_str': 'hyvä',
'sequence': 'Moikka olen hyvä kielimalli.'},
{'score': 0.03175133094191551,
'token': 3134,
'token_str': 'vanha',
'sequence': 'Moikka olen vanha kielimalli.'},
{'score': 0.019662367179989815,
'token': 25583,
'token_str': 'ranskalainen',
'sequence': 'Moikka olen ranskalainen kielimalli.'}]
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
## Training data
This Finnish ELECTRA model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using WordPiece and a vocabulary size of 50265. The inputs are sequences of 512 consecutive tokens. Texts are not lower cased so this model is case-sensitive: it makes a difference between finnish and Finnish.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 1M steps. The optimizer used was a AdamW with learning rate 2e-4, learning rate warmup for 20000 steps and linear decay of the learning rate after.
Training code was from the official [ELECTRA repository](https://github.com/google-research/electra) and also some instructions was used from [here](https://github.com/stefan-it/turkish-bert/blob/master/electra/CHEATSHEET.md).
## Evaluation results
For evaluation results, check the [Finnish-NLP/electra-base-discriminator-finnish](https://huggingface.co/Finnish-NLP/electra-base-discriminator-finnish) model repository instead.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/gpt2-finnish
|
Finnish-NLP
|
gpt2
| 18 | 140 |
transformers
| 1 |
text-generation
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'gpt2']
| false | true | true | 7,837 |
# GPT-2 for Finnish
Pretrained GPT-2 model on Finnish language using a causal language modeling (CLM) objective. GPT-2 was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
**Note**: this model is quite small 117M parameter variant as in Huggingface's [GPT-2 config](https://huggingface.co/gpt2), so not the famous big 1.5B parameter variant by OpenAI. We also have bigger 345M parameter variant [gpt2-medium-finnish](https://huggingface.co/Finnish-NLP/gpt2-medium-finnish) and 774M parameter variant [gpt2-large-finnish](https://huggingface.co/Finnish-NLP/gpt2-large-finnish) available which perform better compared to this model.
## Model description
Finnish GPT-2 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation:
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='Finnish-NLP/gpt2-finnish')
>>> generator("Tekstiä tuottava tekoäly on", max_length=30, num_return_sequences=5)
[{'generated_text': 'Tekstiä tuottava tekoäly on kuin onkin hyvin pieni. Sitä voi käyttää myös hyvin nopeasti ja myös täysin automatisoituna, eikä sitä tarvitse käydä läpi. Se'},
{'generated_text': 'Tekstiä tuottava tekoäly on saanut jalansijaa, mutta Suomessa se on jo ehtinyt hajota käsiin, koska sen avulla ei pystytä tuottamaan täysin ajantasaisia'},
{'generated_text': 'Tekstiä tuottava tekoäly on tehnyt työtä kymmenien vuosien ajan ja ottanut käyttöön jo yli kahden vuosikymmenen ajan tekoälyn ratkaisuja. Tekoäly on jo pitkään tehnyt työtä'},
{'generated_text': 'Tekstiä tuottava tekoäly on tekoälyn sovellus, jota käytetään esimerkiksi liiketoiminnan ja päätöksenteon tukena. Työhön liittyy data-analyysin ohella tekoälyn avulla esimerkiksi tekoäl'},
{'generated_text': 'Tekstiä tuottava tekoäly on juuri nyt erityisen hyödyllinen, koska se tunnistaa käyttäjän tietokoneen ruudulla olevat ilmoitukset, kuten näytön värin ja osoittimet ilman välkyn'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-finnish')
model = GPT2Model.from_pretrained('Finnish-NLP/gpt2-finnish')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-finnish')
model = TFGPT2Model.from_pretrained('Finnish-NLP/gpt2-finnish', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
As with all language models, it is hard to predict in advance how the Finnish GPT-2 will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Training data
This Finnish GPT-2 model was pretrained on the combination of six datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 512 consecutive tokens.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 300k steps (a bit over 2 epochs, 256 batch size). The optimizer used was a second-order optimization method called [Distributed Shampoo](https://github.com/google-research/google-research/tree/master/scalable_shampoo) with learning rate 1e-4, learning rate warmup for 4000 steps and cosine decay of the learning rate after.
At first, commonly used Adam optimizer was tried but there were significant issues getting the model to converge even with multiple different learning rate trials so then Adam optimizer was replaced with the Distributed Shampoo which worked a lot better.
## Evaluation results
Evaluation was done using the *validation* split of the [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned) dataset with [Perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) (smaller score the better) as the evaluation metric. As seen from the table below, this model (the first row of the table) loses to our bigger model variants.
| | Perplexity |
|------------------------------------------|------------|
|Finnish-NLP/gpt2-finnish |44.19 |
|Finnish-NLP/gpt2-medium-finnish |34.08 |
|Finnish-NLP/gpt2-large-finnish |**30.74** |
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/gpt2-large-finnish
|
Finnish-NLP
|
gpt2
| 17 | 114 |
transformers
| 1 |
text-generation
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'gpt2']
| false | true | true | 7,197 |
# GPT-2 large for Finnish
Pretrained GPT-2 large model on Finnish language using a causal language modeling (CLM) objective. GPT-2 was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
**Note**: this model is 774M parameter variant as in Huggingface's [GPT-2-large config](https://huggingface.co/gpt2-large), so not the famous big 1.5B parameter variant by OpenAI.
## Model description
Finnish GPT-2 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation:
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='Finnish-NLP/gpt2-large-finnish')
>>> generator("Tekstiä tuottava tekoäly on", max_length=30, num_return_sequences=5)
[{'generated_text': 'Tekstiä tuottava tekoäly on valmis yhteistyöhön ihmisen kanssa: Tekoäly hoitaa ihmisen puolesta tekstin tuottamisen. Se myös ymmärtää, missä vaiheessa tekstiä voidaan alkaa kirjoittamaan'},
{'generated_text': 'Tekstiä tuottava tekoäly on älykäs, mutta se ei ole vain älykkäisiin koneisiin kuuluva älykäs olento, vaan se on myös kone. Se ei'},
{'generated_text': 'Tekstiä tuottava tekoäly on ehkä jo pian todellisuutta - se voisi tehdä myös vanhustenhoidosta nykyistä ä tuottava tekoäly on ehkä jo pian todellisuutta - se voisi tehdä'},
{'generated_text': 'Tekstiä tuottava tekoäly on kehitetty ihmisen ja ihmisen aivoihin yhteistyössä neurotieteiden ja käyttäytymistieteen tutkijatiimin kanssa. Uusi teknologia avaa aivan uudenlaisia tutkimusi'},
{'generated_text': 'Tekstiä tuottava tekoäly on kuin tietokone, jonka kanssa voi elää. Tekoälyn avulla voi kirjoittaa mitä tahansa, mistä tahansa ja miten paljon. Tässä'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-large-finnish')
model = GPT2Model.from_pretrained('Finnish-NLP/gpt2-large-finnish')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-large-finnish')
model = TFGPT2Model.from_pretrained('Finnish-NLP/gpt2-large-finnish', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
As with all language models, it is hard to predict in advance how the Finnish GPT-2 will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Training data
This Finnish GPT-2 model was pretrained on the combination of six datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 512 consecutive tokens.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 640k steps (a bit over 1 epoch, 64 batch size). The optimizer used was a AdamW with learning rate 4e-5, learning rate warmup for 4000 steps and cosine decay of the learning rate after.
## Evaluation results
Evaluation was done using the *validation* split of the [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned) dataset with [Perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) (smaller score the better) as the evaluation metric. As seen from the table below, this model (the first row of the table) performs better than our smaller model variants.
| | Perplexity |
|------------------------------------------|------------|
|Finnish-NLP/gpt2-large-finnish |**30.74** |
|Finnish-NLP/gpt2-medium-finnish |34.08 |
|Finnish-NLP/gpt2-finnish |44.19 |
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/gpt2-medium-finnish
|
Finnish-NLP
|
gpt2
| 18 | 69 |
transformers
| 2 |
text-generation
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'gpt2']
| false | true | true | 7,653 |
# GPT-2 medium for Finnish
Pretrained GPT-2 medium model on Finnish language using a causal language modeling (CLM) objective. GPT-2 was introduced in
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
and first released at [this page](https://openai.com/blog/better-language-models/).
**Note**: this model is 345M parameter variant as in Huggingface's [GPT-2-medium config](https://huggingface.co/gpt2-medium), so not the famous big 1.5B parameter variant by OpenAI. We also have bigger 774M parameter variant [gpt2-large-finnish](https://huggingface.co/Finnish-NLP/gpt2-large-finnish) available which performs better compared to this model.
## Model description
Finnish GPT-2 is a transformers model pretrained on a very large corpus of Finnish data in a self-supervised fashion. This
means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots
of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,
it was trained to guess the next word in sentences.
More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,
shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the
predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a
prompt.
## Intended uses & limitations
You can use the raw model for text generation or fine-tune it to a downstream task. See the
[model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you.
### How to use
You can use this model directly with a pipeline for text generation:
```python
>>> from transformers import pipeline
>>> generator = pipeline('text-generation', model='Finnish-NLP/gpt2-medium-finnish')
>>> generator("Tekstiä tuottava tekoäly on", max_length=30, num_return_sequences=5)
[{'generated_text': 'Tekstiä tuottava tekoäly on tullut ihmisten arkeen viime vuosina. Se auttaa hahmottamaan ja tulkitsemaan monimutkaisia kokonaisuuksia ja ilmiöitä, joita ihmiset tekevät esimerkiksi ruokakaupassa'},
{'generated_text': 'Tekstiä tuottava tekoäly on jo ottanut haltuunsa myös ihmisten käyttämiä sovelluksia ja esimerkiksi pankkipalveluita. Sen vuoksi tekoäly on tärkeä kumppani etenkin yritysten liiketoiminnan kehittämisessä.-'},
{'generated_text': 'Tekstiä tuottava tekoäly on tekoälylle luonnollinen valinta, sillä sen avulla voi kommunikoida ihmisten kanssa hyvin pitkälle samalla tavalla kuin tietokoneiden kanssa. Se on kehittynyt muun'},
{'generated_text': 'Tekstiä tuottava tekoäly on ihmisen kehittämä tekoäly, jota ei vielä ole pystytty rakentamaan. Tekoäly kykenee toimimaan esimerkiksi matemaattisissa, tilastollisissa ja sosiaalisissa'},
{'generated_text': 'Tekstiä tuottava tekoäly on jo niin iso juttu ettei sitä kannata rajoittaakaan. Ja jos se saadaan käyttöön, niin se voi jo pian syrjäyttää perinteisen'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-medium-finnish')
model = GPT2Model.from_pretrained('Finnish-NLP/gpt2-medium-finnish')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('Finnish-NLP/gpt2-medium-finnish')
model = TFGPT2Model.from_pretrained('Finnish-NLP/gpt2-medium-finnish', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from neutral. Therefore, the model can have biased predictions. This bias will also affect all fine-tuned versions of this model.
As with all language models, it is hard to predict in advance how the Finnish GPT-2 will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results.
## Training data
This Finnish GPT-2 model was pretrained on the combination of six datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive 2011-2018](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Yle Finnish News Archive 2019-2020](http://urn.fi/urn:nbn:fi:lb-2021050401)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a
vocabulary size of 50,257. The inputs are sequences of 512 consecutive tokens.
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 360k steps (a bit over 1 epoch, 128 batch size). The optimizer used was a AdamW with learning rate 1e-4, learning rate warmup for 4000 steps and cosine decay of the learning rate after.
## Evaluation results
Evaluation was done using the *validation* split of the [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned) dataset with [Perplexity](https://huggingface.co/course/chapter7/3#perplexity-for-language-models) (smaller score the better) as the evaluation metric. As seen from the table below, this model (the first row of the table) performs better than our smaller [gpt2-finnish](https://huggingface.co/Finnish-NLP/gpt2-finnish) model variant but loses to our bigger [gpt2-large-finnish](https://huggingface.co/Finnish-NLP/gpt2-large-finnish) model.
| | Perplexity |
|------------------------------------------|------------|
|Finnish-NLP/gpt2-medium-finnish |34.08 |
|Finnish-NLP/gpt2-finnish |44.19 |
|Finnish-NLP/gpt2-large-finnish |**30.74** |
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen, [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/roberta-large-finnish-v2
|
Finnish-NLP
|
roberta
| 17 | 18 |
transformers
| 0 |
fill-mask
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'roberta']
| false | true | true | 8,912 |
# RoBERTa large model for Finnish
This **Finnish-NLP/roberta-large-finnish-v2** model is a new version of the previously trained [Finnish-NLP/roberta-large-finnish](https://huggingface.co/Finnish-NLP/roberta-large-finnish) model. Training hyperparameters were same but the training dataset was cleaned better with the goal to get better performing language model through the better cleaned data. Based on the model evaluations (check the table at the end), slightly better cleaned data didn't seem to produce better performing model.
Pretrained RoBERTa model on Finnish language using a masked language modeling (MLM) objective. RoBERTa was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between finnish and Finnish.
## Model description
Finnish RoBERTa is a transformers model pretrained on a large corpus of Finnish data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the RoBERTa model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Finnish-NLP/roberta-large-finnish-v2')
>>> unmasker("Moikka olen <mask> kielimalli.")
[{'score': 0.04741518571972847,
'token': 763,
'token_str': ' hyvä',
'sequence': 'Moikka olen hyvä kielimalli.'},
{'score': 0.036977022886276245,
'token': 505,
'token_str': ' myös',
'sequence': 'Moikka olen myös kielimalli.'},
{'score': 0.025283709168434143,
'token': 3089,
'token_str': ' huono',
'sequence': 'Moikka olen huono kielimalli.'},
{'score': 0.022848006337881088,
'token': 1852,
'token_str': ' toinen',
'sequence': 'Moikka olen toinen kielimalli.'},
{'score': 0.019232941791415215,
'token': 1029,
'token_str': ' siis',
'sequence': 'Moikka olen siis kielimalli.'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish-v2')
model = RobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish-v2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish-v2')
model = TFRobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish-v2', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions.
## Training data
This Finnish RoBERTa model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 520k train steps (2 epochs, batch size 512) with a sequence length of 128 and continuing for 520k steps (1 epoch, batch size 64) with a sequence length of 512. The optimizer used for the 128 sequence training was AdamW, and for the 512 sequence training it was Adafactor (to save memory). Learning rate was 2e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), learning rate warmup for 1500 steps and linear decay of the learning rate after.
## Evaluation results
Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length.
When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model and to our previous [Finnish-NLP/roberta-large-finnish](https://huggingface.co/Finnish-NLP/roberta-large-finnish) model:
| | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length |
|----------------------------------------|----------|---------------------|---------------------|----------------------|
|Finnish-NLP/roberta-large-finnish-v2 |88.17 |94.46 |95.22 |74.83 |
|Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 |
|TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |**94.90** |**95.49** |**76.07** |
To conclude, this model didn't significantly improve compared to our previous [Finnish-NLP/roberta-large-finnish](https://huggingface.co/Finnish-NLP/roberta-large-finnish) model. This model is also slightly (~ 1%) losing to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Finnish-NLP/roberta-large-finnish
|
Finnish-NLP
|
roberta
| 18 | 27 |
transformers
| 2 |
fill-mask
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'roberta']
| false | true | true | 8,236 |
# RoBERTa large model for Finnish
Pretrained RoBERTa model on Finnish language using a masked language modeling (MLM) objective. RoBERTa was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta). This model is case-sensitive: it
makes a difference between finnish and Finnish.
## Model description
Finnish RoBERTa is a transformers model pretrained on a large corpus of Finnish data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the RoBERTa model as inputs.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Finnish-NLP/roberta-large-finnish')
>>> unmasker("Moikka olen <mask> kielimalli.")
[{'sequence': 'Moikka olen hyvä kielimalli.',
'score': 0.1535797119140625,
'token': 767,
'token_str': ' hyvä'},
{'sequence': 'Moikka olen paras kielimalli.',
'score': 0.04795042425394058,
'token': 2888,
'token_str': ' paras'},
{'sequence': 'Moikka olen huono kielimalli.',
'score': 0.04251479730010033,
'token': 3217,
'token_str': ' huono'},
{'sequence': 'Moikka olen myös kielimalli.',
'score': 0.027469098567962646,
'token': 520,
'token_str': ' myös'},
{'sequence': 'Moikka olen se kielimalli.',
'score': 0.013878575526177883,
'token': 358,
'token_str': ' se'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish')
model = RobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-finnish')
model = TFRobertaModel.from_pretrained('Finnish-NLP/roberta-large-finnish', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions.
## Training data
This Finnish RoBERTa model was pretrained on the combination of five datasets:
- [mc4](https://huggingface.co/datasets/mc4), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 78GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 2 epochs with a sequence length of 128 and continuing for one more epoch with a sequence length of 512. The optimizer used is Adafactor with a learning rate of 2e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), learning rate warmup for 1500 steps and linear decay of the learning rate after.
## Evaluation results
Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length.
When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) and to our previous [Finnish RoBERTa-large](https://huggingface.co/flax-community/RoBERTa-large-finnish) trained during the Hugging Face JAX/Flax community week:
| | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length |
|----------------------------------------|----------|---------------------|---------------------|----------------------|
|Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 |
|TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |**94.90** |**95.49** |**76.07** |
|flax-community/RoBERTa-large-finnish |87.72 |94.42 |95.06 |73.67 |
To conclude, this model improves on our previous [Finnish RoBERTa-large](https://huggingface.co/flax-community/RoBERTa-large-finnish) model trained during the Hugging Face JAX/Flax community week but is still slightly (~ 1%) losing to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
- Tommi Vehviläinen [Hugging Face profile](https://huggingface.co/Tommi)
Feel free to contact us for more details 🤗
|
Finnish-NLP/roberta-large-wechsel-finnish
|
Finnish-NLP
|
roberta
| 16 | 1 |
transformers
| 1 |
fill-mask
| true | false | true |
apache-2.0
|
['fi']
|
['Finnish-NLP/mc4_fi_cleaned', 'wikipedia']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['finnish', 'roberta']
| false | true | true | 10,586 |
# RoBERTa large model trained with WECHSEL method for Finnish
Pretrained RoBERTa model on Finnish language using a masked language modeling (MLM) objective with WECHSEL method. RoBERTa was introduced in
[this paper](https://arxiv.org/abs/1907.11692) and first released in
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/roberta).
WECHSEL method (Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models) was introduced in [this paper](https://arxiv.org/abs/2112.06598) and first released in [this repository](https://github.com/CPJKU/wechsel).
This model is case-sensitive: it makes a difference between finnish and Finnish.
## Model description
Finnish RoBERTa is a transformers model pretrained on a large corpus of Finnish data in a self-supervised fashion. This means
it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate inputs and labels from those texts.
More precisely, it was pretrained with the Masked language modeling (MLM) objective. Taking a sentence, the model
randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict
the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one
after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to
learn a bidirectional representation of the sentence.
This way, the model learns an inner representation of the Finnish language that can then be used to extract features
useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard
classifier using the features produced by the RoBERTa model as inputs.
## WECHSEL method
Using the WECHSEL method, we first took the pretrained English [roberta-large](https://huggingface.co/roberta-large) model, changed its tokenizer with our Finnish tokenizer and initialized model's token embeddings such that they are close to semantically similar English tokens by utilizing multilingual static word embeddings (by fastText) covering English and Finnish. We were able to confirm the WECHSEL paper's findings that using this method you can save pretraining time and thus computing resources. To get idea of the WECHSEL method's training time savings you can check the table below illustrating the MLM evaluation accuracies during the pretraining compared to the [Finnish-NLP/roberta-large-finnish-v2](https://huggingface.co/Finnish-NLP/roberta-large-finnish-v2) which was trained from scratch:
| | 10k train steps | 100k train steps | 200k train steps | 270k train steps |
|------------------------------------------|------------------|------------------|------------------|------------------|
|Finnish-NLP/roberta-large-wechsel-finnish |37.61 eval acc |58.14 eval acc |61.60 eval acc |62.77 eval acc |
|Finnish-NLP/roberta-large-finnish-v2 |13.83 eval acc |55.87 eval acc |58.58 eval acc |59.47 eval acc |
Downstream finetuning text classification tests can be found from the end but there this model trained with WECHSEL method didn't significantly improve the downstream performances. However, based on tens of qualitative fill-mask task example tests we noticed that for fill-mask task this WECHSEL model significantly outperforms our other models trained from scratch.
## Intended uses & limitations
You can use the raw model for masked language modeling, but it's mostly intended to be fine-tuned on a downstream task.
Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)
to make decisions, such as sequence classification, token classification or question answering. For tasks such as text
generation you should look at model like GPT2.
### How to use
You can use this model directly with a pipeline for masked language modeling:
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='Finnish-NLP/roberta-large-wechsel-finnish')
>>> unmasker("Moikka olen <mask> kielimalli.")
[{'sequence': 'Moikka olen hyvä kielimalli.',
'score': 0.07757357507944107,
'token': 763,
'token_str': ' hyvä'},
{'sequence': 'Moikka olen suomen kielimalli.',
'score': 0.05297883599996567,
'token': 3641,
'token_str': ' suomen'},
{'sequence': 'Moikka olen kuin kielimalli.',
'score': 0.03747279942035675,
'token': 523,
'token_str': ' kuin'},
{'sequence': 'Moikka olen suomalainen kielimalli.',
'score': 0.031031042337417603,
'token': 4966,
'token_str': ' suomalainen'},
{'sequence': 'Moikka olen myös kielimalli.',
'score': 0.026489052921533585,
'token': 505,
'token_str': ' myös'}]
```
Here is how to use this model to get the features of a given text in PyTorch:
```python
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-wechsel-finnish')
model = RobertaModel.from_pretrained('Finnish-NLP/roberta-large-wechsel-finnish')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
and in TensorFlow:
```python
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('Finnish-NLP/roberta-large-wechsel-finnish')
model = TFRobertaModel.from_pretrained('Finnish-NLP/roberta-large-wechsel-finnish', from_pt=True)
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
```
### Limitations and bias
The training data used for this model contains a lot of unfiltered content from the internet, which is far from
neutral. Therefore, the model can have biased predictions.
## Training data
This Finnish RoBERTa model was pretrained on the combination of five datasets:
- [mc4_fi_cleaned](https://huggingface.co/datasets/Finnish-NLP/mc4_fi_cleaned), the dataset mC4 is a multilingual colossal, cleaned version of Common Crawl's web crawl corpus. We used the Finnish subset of the mC4 dataset and further cleaned it with our own text data cleaning codes (check the dataset repo).
- [wikipedia](https://huggingface.co/datasets/wikipedia) We used the Finnish subset of the wikipedia (August 2021) dataset
- [Yle Finnish News Archive](http://urn.fi/urn:nbn:fi:lb-2017070501)
- [Finnish News Agency Archive (STT)](http://urn.fi/urn:nbn:fi:lb-2018121001)
- [The Suomi24 Sentences Corpus](http://urn.fi/urn:nbn:fi:lb-2020021803)
Raw datasets were cleaned to filter out bad quality and non-Finnish examples. Together these cleaned datasets were around 84GB of text.
## Training procedure
### Preprocessing
The texts are tokenized using a byte version of Byte-Pair Encoding (BPE) and a vocabulary size of 50265. The inputs of
the model take pieces of 512 contiguous token that may span over documents. The beginning of a new document is marked
with `<s>` and the end of one by `</s>`
The details of the masking procedure for each sentence are the following:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by `<mask>`.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
Contrary to BERT, the masking is done dynamically during pretraining (e.g., it changes at each epoch and is not fixed).
### Pretraining
The model was trained on TPUv3-8 VM, sponsored by the [Google TPU Research Cloud](https://sites.research.google/trc/about/), for 270k steps (a bit over 1 epoch, 512 batch size) with a sequence length of 128 and continuing for 180k steps (batch size 64) with a sequence length of 512. The optimizer used was Adafactor (to save memory). Learning rate was 2e-4, \\(\beta_{1} = 0.9\\), \\(\beta_{2} = 0.98\\) and \\(\epsilon = 1e-6\\), learning rate warmup for 2500 steps and linear decay of the learning rate after.
## Evaluation results
Evaluation was done by fine-tuning the model on downstream text classification task with two different labeled datasets: [Yle News](https://github.com/spyysalo/yle-corpus) and [Eduskunta](https://github.com/aajanki/eduskunta-vkk). Yle News classification fine-tuning was done with two different sequence lengths: 128 and 512 but Eduskunta only with 128 sequence length.
When fine-tuned on those datasets, this model (the first row of the table) achieves the following accuracy results compared to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model and to our previous [Finnish-NLP/roberta-large-finnish-v2](https://huggingface.co/Finnish-NLP/roberta-large-finnish-v2) and [Finnish-NLP/roberta-large-finnish](https://huggingface.co/Finnish-NLP/roberta-large-finnish) models:
| | Average | Yle News 128 length | Yle News 512 length | Eduskunta 128 length |
|------------------------------------------|----------|---------------------|---------------------|----------------------|
|Finnish-NLP/roberta-large-wechsel-finnish |88.19 |**94.91** |95.18 |74.47 |
|Finnish-NLP/roberta-large-finnish-v2 |88.17 |94.46 |95.22 |74.83 |
|Finnish-NLP/roberta-large-finnish |88.02 |94.53 |95.23 |74.30 |
|TurkuNLP/bert-base-finnish-cased-v1 |**88.82** |94.90 |**95.49** |**76.07** |
To conclude, this model didn't significantly improve compared to our previous models which were trained from scratch instead of using the WECHSEL method as in this model. This model is also slightly (~ 1%) losing to the [FinBERT (Finnish BERT)](https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1) model.
## Acknowledgements
This project would not have been possible without compute generously provided by Google through the
[TPU Research Cloud](https://sites.research.google/trc/).
## Team Members
- Aapo Tanskanen, [Hugging Face profile](https://huggingface.co/aapot), [LinkedIn profile](https://www.linkedin.com/in/aapotanskanen/)
- Rasmus Toivanen [Hugging Face profile](https://huggingface.co/RASMUS), [LinkedIn profile](https://www.linkedin.com/in/rasmustoivanen/)
Feel free to contact us for more details 🤗
|
Firat/albert-base-v2-finetuned-squad
|
Firat
|
albert
| 9 | 6 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,252 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# albert-base-v2-finetuned-squad
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9901
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8584 | 1.0 | 5540 | 0.9056 |
| 0.6473 | 2.0 | 11080 | 0.8975 |
| 0.4801 | 3.0 | 16620 | 0.9901 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
Firat/distilbert-base-uncased-finetuned-squad
|
Firat
|
distilbert
| 12 | 3 |
transformers
| 0 |
question-answering
| true | false | false |
apache-2.0
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,274 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-squad
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1460
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.2856 | 1.0 | 2767 | 1.1919 |
| 1.012 | 2.0 | 5534 | 1.1332 |
| 0.8512 | 3.0 | 8301 | 1.1460 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.18.0
- Tokenizers 0.10.3
|
Firat/roberta-base-finetuned-squad
|
Firat
|
roberta
| 11 | 3 |
transformers
| 0 |
question-answering
| true | false | false |
mit
| null |
['squad']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,246 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-finetuned-squad
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8953
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.8926 | 1.0 | 5536 | 0.8694 |
| 0.6821 | 2.0 | 11072 | 0.8428 |
| 0.5335 | 3.0 | 16608 | 0.8953 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3
|
FitoDS/wav2vec2-large-xls-r-300m-guarani-colab
|
FitoDS
|
wav2vec2
| 11 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,434 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-guarani-colab
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2392
- Wer: 1.0743
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 18.2131 | 49.94 | 400 | 3.2901 | 1.0 |
| 2.0496 | 99.94 | 800 | 3.2392 | 1.0743 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
FitoDS/xls-r-ab-test
|
FitoDS
|
wav2vec2
| 18 | 5 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false | null |
['ab']
|
['common_voice']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['automatic-speech-recognition', 'common_voice', 'generated_from_trainer']
| true | true | true | 1,153 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [hf-test/xls-r-dummy](https://huggingface.co/hf-test/xls-r-dummy) on the COMMON_VOICE - AB dataset.
It achieves the following results on the evaluation set:
- Loss: 133.5167
- Wer: 18.9286
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2.0
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|
ForutanRad/bert-fa-QA-v1
|
ForutanRad
|
bert
| 16 | 53 |
transformers
| 1 |
question-answering
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| false | true | true | 1,206 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-fa-QA-v1
Persian Question and answer Model Based on Bert Model
This model is a fine-tuned version of [ParsBERT](https://arxiv.org/abs/2005.12515) on PersianQA dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7297
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2563 | 1.0 | 1126 | 1.7222 |
| 1.3372 | 2.0 | 2252 | 1.7297 |
### Framework versions
- Transformers 4.9.0
- Pytorch 1.9.0+cu102
- Tokenizers 0.10.3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.