repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
shivakanthsujit/basic-mbrl-Hopper-v2_colab_model
shivakanthsujit
null
6
1
mbrl-lib
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['mbrl-Hopper-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'mbrl-lib']
true
true
true
330
# **OneDTransitionRewardModel w/ SACAgent** Agent playing **mbrl-Hopper-v2** This is a trained model of a **OneDTransitionRewardModel w/ SACAgent** agent playing **mbrl-Hopper-v2** using [MBRL-Lib](https://github.com/facebookresearch/mbrl-lib). ## Usage (with MBRL-Lib) TODO: Add your code ```python from mbrl import ... ... ```
itsGanni/Cardinal__Catholicism_-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,860
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Cardinal__Catholicism_-clustered This model is a fine-tuned version of [nandysoham/11-clustered](https://huggingface.co/nandysoham/11-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4076 - Train End Logits Accuracy: 0.8889 - Train Start Logits Accuracy: 0.9132 - Validation Loss: 0.6765 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4076 | 0.8889 | 0.9132 | 0.6765 | 0.75 | 0.75 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Sushant45/Web_browser-clustered
Sushant45
distilbert
8
24
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,863
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sushant45/Web_browser-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1326 - Train End Logits Accuracy: 0.9792 - Train Start Logits Accuracy: 0.9444 - Validation Loss: 0.3331 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1326 | 0.9792 | 0.9444 | 0.3331 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Human_Development_Index-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,857
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Human_Development_Index-clustered This model is a fine-tuned version of [nandysoham/4-clustered](https://huggingface.co/nandysoham/4-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3853 - Train End Logits Accuracy: 0.8924 - Train Start Logits Accuracy: 0.9167 - Validation Loss: 0.0903 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3853 | 0.8924 | 0.9167 | 0.0903 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Sushant45/Catalan_language-clustered
Sushant45
distilbert
8
24
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,871
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sushant45/Catalan_language-clustered This model is a fine-tuned version of [nandysoham16/13-clustered_aug](https://huggingface.co/nandysoham16/13-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5260 - Train End Logits Accuracy: 0.8611 - Train Start Logits Accuracy: 0.8576 - Validation Loss: 0.8536 - Validation End Logits Accuracy: 0.7273 - Validation Start Logits Accuracy: 0.9091 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.5260 | 0.8611 | 0.8576 | 0.8536 | 0.7273 | 0.9091 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Sushant45/Paper-clustered
Sushant45
distilbert
8
26
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,856
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sushant45/Paper-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2701 - Train End Logits Accuracy: 0.9236 - Train Start Logits Accuracy: 0.9306 - Validation Loss: 1.0319 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2701 | 0.9236 | 0.9306 | 1.0319 | 0.75 | 0.75 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Heresy-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,848
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Heresy-clustered This model is a fine-tuned version of [nandysoham/11-clustered](https://huggingface.co/nandysoham/11-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2615 - Train End Logits Accuracy: 0.9410 - Train Start Logits Accuracy: 0.9167 - Validation Loss: 1.8742 - Validation End Logits Accuracy: 0.3333 - Validation Start Logits Accuracy: 0.3333 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2615 | 0.9410 | 0.9167 | 1.8742 | 0.3333 | 0.3333 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Sushant45/Adult_contemporary_music-clustered
Sushant45
distilbert
8
28
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,879
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Sushant45/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2951 - Train End Logits Accuracy: 0.9375 - Train Start Logits Accuracy: 0.9028 - Validation Loss: 0.5855 - Validation End Logits Accuracy: 0.7143 - Validation Start Logits Accuracy: 0.8571 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2951 | 0.9375 | 0.9028 | 0.5855 | 0.7143 | 0.8571 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Warsaw_Pact-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,847
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Warsaw_Pact-clustered This model is a fine-tuned version of [nandysoham/12-clustered](https://huggingface.co/nandysoham/12-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1248 - Train End Logits Accuracy: 0.9688 - Train Start Logits Accuracy: 0.9514 - Validation Loss: 0.0163 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1248 | 0.9688 | 0.9514 | 0.0163 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Canadian_Armed_Forces-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,874
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Canadian_Armed_Forces-clustered This model is a fine-tuned version of [nandysoham16/0-clustered_aug](https://huggingface.co/nandysoham16/0-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5493 - Train End Logits Accuracy: 0.8611 - Train Start Logits Accuracy: 0.7812 - Validation Loss: 0.3839 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 0.8000 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.5493 | 0.8611 | 0.7812 | 0.3839 | 1.0 | 0.8000 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Wayback_Machine-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,861
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Wayback_Machine-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3449 - Train End Logits Accuracy: 0.9375 - Train Start Logits Accuracy: 0.8681 - Validation Loss: 0.0082 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3449 | 0.9375 | 0.8681 | 0.0082 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
thesunshine36/FineTune_Vit5_LR0_00001_time3
thesunshine36
t5
5
10
transformers
0
text2text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,556
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FineTune_Vit5_LR0_00001_time3 This model is a fine-tuned version of [thesunshine36/FineTune_Vit5_LR0_00001_time2](https://huggingface.co/thesunshine36/FineTune_Vit5_LR0_00001_time2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6297 - Validation Loss: 0.5655 - Train Rouge1: 52.5683 - Train Rouge2: 31.3753 - Train Rougel: 44.4344 - Train Rougelsum: 44.4737 - Train Gen Len: 13.6985 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.6297 | 0.5655 | 52.5683 | 31.3753 | 44.4344 | 44.4737 | 13.6985 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Materialism-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,845
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Materialism-clustered This model is a fine-tuned version of [nandysoham/7-clustered](https://huggingface.co/nandysoham/7-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1445 - Train End Logits Accuracy: 0.9792 - Train Start Logits Accuracy: 0.9618 - Validation Loss: 0.2256 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1445 | 0.9792 | 0.9618 | 0.2256 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Canadian_Armed_Forces-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,873
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Canadian_Armed_Forces-clustered This model is a fine-tuned version of [nandysoham16/0-clustered_aug](https://huggingface.co/nandysoham16/0-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6166 - Train End Logits Accuracy: 0.8333 - Train Start Logits Accuracy: 0.7361 - Validation Loss: 0.2280 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 0.8000 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.6166 | 0.8333 | 0.7361 | 0.2280 | 1.0 | 0.8000 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Pub-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,842
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Pub-clustered This model is a fine-tuned version of [nandysoham/16-clustered](https://huggingface.co/nandysoham/16-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4233 - Train End Logits Accuracy: 0.8819 - Train Start Logits Accuracy: 0.8507 - Validation Loss: 0.2006 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 0.9231 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4233 | 0.8819 | 0.8507 | 0.2006 | 1.0 | 0.9231 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Web_browser-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,850
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Web_browser-clustered This model is a fine-tuned version of [nandysoham/20-clustered](https://huggingface.co/nandysoham/20-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2294 - Train End Logits Accuracy: 0.9618 - Train Start Logits Accuracy: 0.9062 - Validation Loss: 0.2672 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2294 | 0.9618 | 0.9062 | 0.2672 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Catalan_language-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,858
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Catalan_language-clustered This model is a fine-tuned version of [nandysoham/13-clustered](https://huggingface.co/nandysoham/13-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.7867 - Train End Logits Accuracy: 0.8125 - Train Start Logits Accuracy: 0.7639 - Validation Loss: 0.4452 - Validation End Logits Accuracy: 0.8182 - Validation Start Logits Accuracy: 0.8182 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.7867 | 0.8125 | 0.7639 | 0.4452 | 0.8182 | 0.8182 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Paper-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,840
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Paper-clustered This model is a fine-tuned version of [nandysoham/16-clustered](https://huggingface.co/nandysoham/16-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4880 - Train End Logits Accuracy: 0.8715 - Train Start Logits Accuracy: 0.875 - Validation Loss: 0.4717 - Validation End Logits Accuracy: 0.5 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4880 | 0.8715 | 0.875 | 0.4717 | 0.5 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
itsGanni/Adult_contemporary_music-clustered
itsGanni
distilbert
8
0
transformers
0
question-answering
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,866
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # itsGanni/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham/15-clustered](https://huggingface.co/nandysoham/15-clustered) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4347 - Train End Logits Accuracy: 0.9062 - Train Start Logits Accuracy: 0.8715 - Validation Loss: 0.5431 - Validation End Logits Accuracy: 0.7143 - Validation Start Logits Accuracy: 0.7143 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4347 | 0.9062 | 0.8715 | 0.5431 | 0.7143 | 0.7143 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
eshanck/my_awesome_wnut_model
eshanck
distilbert
10
0
transformers
0
token-classification
true
false
false
apache-2.0
null
['wnut_17']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,445
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_wnut_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wnut_17 dataset. It achieves the following results on the evaluation set: - Loss: 0.3349 - Precision: 0.2540 - Recall: 0.0297 - F1: 0.0531 - Accuracy: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 54 | 0.3619 | 0.0 | 0.0 | 0.0 | 0.9256 | | No log | 2.0 | 108 | 0.3349 | 0.2540 | 0.0297 | 0.0531 | 0.9283 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu117 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Cardinal__Catholicism_-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,875
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Cardinal__Catholicism_-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3017 - Train End Logits Accuracy: 0.9167 - Train Start Logits Accuracy: 0.9306 - Validation Loss: 0.2812 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3017 | 0.9167 | 0.9306 | 0.2812 | 0.75 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Cardinal__Catholicism_-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,873
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Cardinal__Catholicism_-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3039 - Train End Logits Accuracy: 0.9167 - Train Start Logits Accuracy: 0.9444 - Validation Loss: 0.2086 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3039 | 0.9167 | 0.9444 | 0.2086 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Canadian_Armed_Forces-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,871
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Canadian_Armed_Forces-clustered This model is a fine-tuned version of [nandysoham16/0-clustered_aug](https://huggingface.co/nandysoham16/0-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4369 - Train End Logits Accuracy: 0.8785 - Train Start Logits Accuracy: 0.8507 - Validation Loss: 1.3005 - Validation End Logits Accuracy: 0.6000 - Validation Start Logits Accuracy: 0.4000 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4369 | 0.8785 | 0.8507 | 1.3005 | 0.6000 | 0.4000 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
grullborg/g_yuusukeStyle
grullborg
null
3
0
null
2
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image', 'lora']
false
true
true
1,784
# G Yuusuke Style LoRA ## Usage To use this LoRA you have to download the file, as well as drop it into the "\stable-diffusion-webui\models\Lora" folder To use it in a prompt, please refer to the extra networks panel in your Automatic1111 webui. I highly recommend using it at around 0.8 strength for the best results. It seems to struggle a lot with hands, but I haven't run many tests on it, so maybe my data is biased. If you'd like to support the amazing artist on whose work this LoRA was trained, I'd highly recommend you check out [Gユウスケ](https://gyuusuke.exblog.jp/). Have fun :) ## Example Pictures <table> <tr> <td><img src=https://i.imgur.com/eKYZIhY.png width=50% height=100%/></td> </tr> <tr> <td><img src=https://i.imgur.com/Q1T08xG.png width=50% height=100%/></td> </tr> <tr> <td><img src=https://i.imgur.com/TFscR9S.png width=50% height=100%/></td> </tr> </table> ## License This embedding is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the embedding to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the embedding commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
nandysoham16/Human_Development_Index-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,873
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Human_Development_Index-clustered This model is a fine-tuned version of [nandysoham16/4-clustered_aug](https://huggingface.co/nandysoham16/4-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1912 - Train End Logits Accuracy: 0.9722 - Train Start Logits Accuracy: 0.9653 - Validation Loss: 0.0747 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1912 | 0.9722 | 0.9653 | 0.0747 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Human_Development_Index-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,875
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Human_Development_Index-clustered This model is a fine-tuned version of [nandysoham16/4-clustered_aug](https://huggingface.co/nandysoham16/4-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1775 - Train End Logits Accuracy: 0.9722 - Train Start Logits Accuracy: 0.9340 - Validation Loss: 0.7431 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1775 | 0.9722 | 0.9340 | 0.7431 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Zekunli/flan-t5-large-extraction-cnndm_2000-all
Zekunli
t5
10
29
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,142
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-cnndm_2000-all This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7621 - Rouge1: 34.9258 - Rouge2: 15.2218 - Rougel: 29.9813 - Rougelsum: 29.9443 - Gen Len: 18.986 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1649 | 0.8 | 200 | 1.8161 | 34.9143 | 14.9085 | 29.8629 | 29.811 | 19.0 | | 1.9114 | 1.6 | 400 | 1.7713 | 34.8733 | 14.6521 | 29.8186 | 29.7829 | 18.986 | | 1.7997 | 2.4 | 600 | 1.7917 | 34.1481 | 14.7443 | 29.7078 | 29.6144 | 18.99 | | 1.7477 | 3.2 | 800 | 1.7771 | 35.0882 | 15.3186 | 29.9749 | 29.9643 | 18.99 | | 1.6821 | 4.0 | 1000 | 1.7621 | 34.9258 | 15.2218 | 29.9813 | 29.9443 | 18.986 | | 1.6301 | 4.8 | 1200 | 1.7796 | 34.3705 | 14.8013 | 29.6128 | 29.5457 | 18.99 | | 1.597 | 5.6 | 1400 | 1.7669 | 35.4342 | 15.7045 | 30.4953 | 30.4293 | 18.99 | | 1.5543 | 6.4 | 1600 | 1.7857 | 34.5322 | 15.0244 | 29.8476 | 29.7596 | 18.99 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
Zekunli/flan-t5-large-extraction-cnndm_4000-all
Zekunli
t5
10
27
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,140
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-extraction-cnndm_4000-all This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7290 - Rouge1: 35.0775 - Rouge2: 15.2209 - Rougel: 30.1796 - Rougelsum: 30.1599 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.1464 | 0.4 | 200 | 1.8323 | 35.2242 | 15.3495 | 30.142 | 30.1331 | 19.0 | | 1.9817 | 0.8 | 400 | 1.7729 | 34.3798 | 14.7287 | 29.5447 | 29.6052 | 18.986 | | 1.8842 | 1.2 | 600 | 1.7602 | 34.5807 | 15.1707 | 29.7768 | 29.8081 | 18.986 | | 1.8129 | 1.6 | 800 | 1.7629 | 34.5103 | 15.231 | 29.9182 | 29.9333 | 19.0 | | 1.8238 | 2.0 | 1000 | 1.7290 | 35.0775 | 15.2209 | 30.1796 | 30.1599 | 19.0 | | 1.7199 | 2.4 | 1200 | 1.7354 | 34.6552 | 15.7256 | 30.1894 | 30.2207 | 18.998 | | 1.7128 | 2.8 | 1400 | 1.7407 | 34.7198 | 15.5771 | 30.0585 | 30.0442 | 19.0 | | 1.6816 | 3.2 | 1600 | 1.7508 | 34.9611 | 15.5792 | 30.3518 | 30.3638 | 19.0 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
Zekunli/flan-t5-large-da-multiwoz_500
Zekunli
t5
10
61
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,007
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz_500 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3826 - Accuracy: 37.4297 - Num: 3689 - Gen Len: 16.4142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.3527 | 0.47 | 200 | 0.5645 | 25.0872 | 3689 | 12.6606 | | 0.6276 | 0.93 | 400 | 0.4722 | 31.0261 | 3689 | 15.3814 | | 0.539 | 1.4 | 600 | 0.4367 | 34.1584 | 3689 | 15.8056 | | 0.5087 | 1.86 | 800 | 0.4164 | 35.1677 | 3689 | 15.6544 | | 0.4633 | 2.33 | 1000 | 0.4112 | 34.1615 | 3689 | 15.7842 | | 0.463 | 2.79 | 1200 | 0.3961 | 36.5992 | 3689 | 16.4803 | | 0.4437 | 3.26 | 1400 | 0.3895 | 36.7915 | 3689 | 16.5259 | | 0.4328 | 3.72 | 1600 | 0.3874 | 36.7043 | 3689 | 16.2385 | | 0.4189 | 4.19 | 1800 | 0.3826 | 37.4297 | 3689 | 16.4142 | | 0.4239 | 4.65 | 2000 | 0.3804 | 37.2685 | 3689 | 16.2329 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
Zekunli/flan-t5-large-da-multiwoz_1000
Zekunli
t5
10
0
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,561
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-da-multiwoz_1000 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3538 - Accuracy: 41.3747 - Num: 3689 - Gen Len: 15.5115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.3315 | 0.24 | 200 | 0.5697 | 25.9543 | 3689 | 14.556 | | 0.6418 | 0.48 | 400 | 0.4645 | 30.0503 | 3689 | 14.9314 | | 0.5433 | 0.72 | 600 | 0.4307 | 31.9506 | 3689 | 16.1515 | | 0.4909 | 0.95 | 800 | 0.4177 | 34.7593 | 3689 | 15.418 | | 0.4769 | 1.19 | 1000 | 0.3996 | 35.0943 | 3689 | 14.9607 | | 0.4491 | 1.43 | 1200 | 0.3881 | 36.2741 | 3689 | 15.543 | | 0.4531 | 1.67 | 1400 | 0.3820 | 35.7704 | 3689 | 14.1583 | | 0.4322 | 1.91 | 1600 | 0.3726 | 37.4853 | 3689 | 15.961 | | 0.4188 | 2.15 | 1800 | 0.3699 | 38.4117 | 3689 | 15.0773 | | 0.4085 | 2.38 | 2000 | 0.3674 | 38.5353 | 3689 | 15.4012 | | 0.4063 | 2.62 | 2200 | 0.3606 | 40.0046 | 3689 | 15.3546 | | 0.3977 | 2.86 | 2400 | 0.3570 | 40.6543 | 3689 | 15.704 | | 0.3992 | 3.1 | 2600 | 0.3549 | 40.4284 | 3689 | 15.7446 | | 0.3828 | 3.34 | 2800 | 0.3538 | 41.3747 | 3689 | 15.5115 | | 0.3792 | 3.58 | 3000 | 0.3539 | 39.8513 | 3689 | 14.7951 | | 0.3914 | 3.81 | 3200 | 0.3498 | 41.0388 | 3689 | 15.4153 | | 0.3707 | 4.05 | 3400 | 0.3498 | 40.9596 | 3689 | 16.3136 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
Deep98/Cardinal__Catholicism_-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,869
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Cardinal__Catholicism_-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3075 - Train End Logits Accuracy: 0.8958 - Train Start Logits Accuracy: 0.9306 - Validation Loss: 1.3105 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.5 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3075 | 0.8958 | 0.9306 | 1.3105 | 0.75 | 0.5 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
zbenmo/poca-SoccerTwos
zbenmo
null
20
727
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
840
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: zbenmo/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Zekunli/flan-t5-large-intent-dailydialog_500
Zekunli
t5
10
27
transformers
1
text2text-generation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,469
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-intent-dailydialog_500 This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3390 - Accuracy: 47.6586 - Num: 1687 - Gen Len: 4.5691 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 0.2512 | 0.49 | 200 | 0.3390 | 47.6586 | 1687 | 4.5691 | | 0.2108 | 0.97 | 400 | 0.4662 | 43.2128 | 1687 | 4.5762 | | 0.1785 | 1.46 | 600 | 0.4677 | 44.5169 | 1687 | 4.5975 | | 0.1644 | 1.95 | 800 | 0.4556 | 45.2875 | 1687 | 4.5987 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
nandysoham16/Heresy-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,864
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Heresy-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1609 - Train End Logits Accuracy: 0.9583 - Train Start Logits Accuracy: 0.9549 - Validation Loss: 0.7543 - Validation End Logits Accuracy: 0.3333 - Validation Start Logits Accuracy: 0.6667 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1609 | 0.9583 | 0.9549 | 0.7543 | 0.3333 | 0.6667 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Heresy-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,860
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Heresy-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1730 - Train End Logits Accuracy: 0.9618 - Train Start Logits Accuracy: 0.9514 - Validation Loss: 0.4811 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 0.6667 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1730 | 0.9618 | 0.9514 | 0.4811 | 1.0 | 0.6667 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Tune-A-Video-library/birdgif-test
Tune-A-Video-library
null
3
0
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'text-to-video', 'tune-a-video']
false
true
true
462
# Tune-A-Video - birdgif-test ## Model description - Base model: [CompVis/stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) - Training prompt: a bird is flapping its wing ## Related papers: - [Tune-A-Video](https://arxiv.org/abs/2212.11565): One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation - [Stable-Diffusion](https://arxiv.org/abs/2112.10752): High-Resolution Image Synthesis with Latent Diffusion Models
arnonl/poca-SoccerTwos
arnonl
null
30
669
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
840
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: arnonl/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Deep98/Human_Development_Index-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,870
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Human_Development_Index-clustered This model is a fine-tuned version of [nandysoham16/4-clustered_aug](https://huggingface.co/nandysoham16/4-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1876 - Train End Logits Accuracy: 0.9757 - Train Start Logits Accuracy: 0.9271 - Validation Loss: 0.6587 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1876 | 0.9757 | 0.9271 | 0.6587 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
KoichiYasuoka/deberta-base-japanese-juman-ud-goeswith
KoichiYasuoka
deberta-v2
11
43
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
['ja']
['universal_dependencies']
null
0
0
0
0
0
0
0
['japanese', 'wikipedia', 'cc100', 'oscar', 'pos', 'dependency-parsing']
false
true
true
630
# deberta-base-japanese-juman-ud-goeswith ## Model Description This is a DeBERTa(V2) model pretrained on Japanese Wikipedia, CC-100, and OSCAR texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-v2-base-japanese](https://huggingface.co/ku-nlp/deberta-v2-base-japanese). ## How to Use ``` from transformers import pipeline nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-base-japanese-juman-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple") print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている")) ``` [fugashi](https://pypi.org/project/fugashi) is required.
ishaankul67/Warsaw_Pact-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,862
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Warsaw_Pact-clustered This model is a fine-tuned version of [nandysoham16/12-clustered_aug](https://huggingface.co/nandysoham16/12-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1010 - Train End Logits Accuracy: 0.9653 - Train Start Logits Accuracy: 0.9826 - Validation Loss: 0.0420 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1010 | 0.9653 | 0.9826 | 0.0420 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Warsaw_Pact-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,863
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Warsaw_Pact-clustered This model is a fine-tuned version of [nandysoham16/12-clustered_aug](https://huggingface.co/nandysoham16/12-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0828 - Train End Logits Accuracy: 0.9792 - Train Start Logits Accuracy: 0.9826 - Validation Loss: 2.2175 - Validation End Logits Accuracy: 0.0 - Validation Start Logits Accuracy: 0.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.0828 | 0.9792 | 0.9826 | 2.2175 | 0.0 | 0.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Zekunli/flan-t5-large-intent-dailydialog_1000
Zekunli
t5
10
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,619
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-intent-dailydialog_1000 This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3254 - Accuracy: 47.0658 - Num: 1687 - Gen Len: 4.6793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 24 - seed: 1799 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Num | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:--------:|:----:|:-------:| | 1.0256 | 0.24 | 200 | 0.4561 | 30.7054 | 1687 | 4.7184 | | 0.3036 | 0.47 | 400 | 0.3254 | 47.0658 | 1687 | 4.6793 | | 0.2725 | 0.71 | 600 | 0.3622 | 44.3391 | 1687 | 4.6414 | | 0.2595 | 0.95 | 800 | 0.3436 | 45.4653 | 1687 | 4.6959 | | 0.2303 | 1.18 | 1000 | 0.3742 | 44.1612 | 1687 | 4.4434 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.5.1 - Tokenizers 0.12.1
mr-desilva/finetuned-multidial
mr-desilva
bart
12
0
transformers
0
text2text-generation
true
false
false
mit
null
['samsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
970
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-multidial This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the samsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
NoNameFound/pocaresnet-SoccerTwos
NoNameFound
null
20
722
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
851
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: NoNameFound/pocaresnet-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Deep98/Heresy-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,855
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Heresy-clustered This model is a fine-tuned version of [nandysoham16/11-clustered_aug](https://huggingface.co/nandysoham16/11-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2244 - Train End Logits Accuracy: 0.9479 - Train Start Logits Accuracy: 0.9062 - Validation Loss: 0.4860 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2244 | 0.9479 | 0.9062 | 0.4860 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Materialism-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,860
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Materialism-clustered This model is a fine-tuned version of [nandysoham16/7-clustered_aug](https://huggingface.co/nandysoham16/7-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0534 - Train End Logits Accuracy: 0.9965 - Train Start Logits Accuracy: 0.9896 - Validation Loss: 0.3066 - Validation End Logits Accuracy: 0.5 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.0534 | 0.9965 | 0.9896 | 0.3066 | 0.5 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Materialism-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,861
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Materialism-clustered This model is a fine-tuned version of [nandysoham16/7-clustered_aug](https://huggingface.co/nandysoham16/7-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0800 - Train End Logits Accuracy: 0.9931 - Train Start Logits Accuracy: 0.9792 - Validation Loss: 0.0644 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.0800 | 0.9931 | 0.9792 | 0.0644 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Pub-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,860
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Pub-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3332 - Train End Logits Accuracy: 0.9028 - Train Start Logits Accuracy: 0.9062 - Validation Loss: 0.5714 - Validation End Logits Accuracy: 0.7692 - Validation Start Logits Accuracy: 0.7692 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3332 | 0.9028 | 0.9062 | 0.5714 | 0.7692 | 0.7692 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Warsaw_Pact-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,857
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Warsaw_Pact-clustered This model is a fine-tuned version of [nandysoham16/12-clustered_aug](https://huggingface.co/nandysoham16/12-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1156 - Train End Logits Accuracy: 0.9688 - Train Start Logits Accuracy: 0.9757 - Validation Loss: 0.1900 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1156 | 0.9688 | 0.9757 | 0.1900 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Pub-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,861
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Pub-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3450 - Train End Logits Accuracy: 0.9028 - Train Start Logits Accuracy: 0.8854 - Validation Loss: 0.2950 - Validation End Logits Accuracy: 0.8462 - Validation Start Logits Accuracy: 0.9231 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3450 | 0.9028 | 0.8854 | 0.2950 | 0.8462 | 0.9231 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
s8n29/finetuned_model_1
s8n29
deberta-v2
11
14
transformers
0
question-answering
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,109
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_model_1 This model is a fine-tuned version of [deepset/deberta-v3-base-squad2](https://huggingface.co/deepset/deberta-v3-base-squad2) on a subset of SQuAD 2.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 308 | 0.0850 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Laurie/billsum_t5_model
Laurie
t5
14
9
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['billsum']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,692
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # billsum_t5_model This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5045 - Rouge1: 0.1393 - Rouge2: 0.0511 - Rougel: 0.117 - Rougelsum: 0.1171 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.8011 | 0.1314 | 0.0398 | 0.111 | 0.1107 | 19.0 | | No log | 2.0 | 124 | 2.5850 | 0.1371 | 0.049 | 0.1157 | 0.1158 | 19.0 | | No log | 3.0 | 186 | 2.5221 | 0.1407 | 0.0531 | 0.1184 | 0.1186 | 19.0 | | No log | 4.0 | 248 | 2.5045 | 0.1393 | 0.0511 | 0.117 | 0.1171 | 19.0 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
ishaankul67/Web_browser-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,865
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Web_browser-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1934 - Train End Logits Accuracy: 0.9861 - Train Start Logits Accuracy: 0.9167 - Validation Loss: 0.2436 - Validation End Logits Accuracy: 0.6667 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1934 | 0.9861 | 0.9167 | 0.2436 | 0.6667 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Web_browser-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,863
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Web_browser-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1876 - Train End Logits Accuracy: 0.9792 - Train Start Logits Accuracy: 0.9375 - Validation Loss: 0.0125 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1876 | 0.9792 | 0.9375 | 0.0125 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
MrDivakaruni/a2c-AntBulletEnv-v0
MrDivakaruni
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Deep98/Materialism-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,855
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Materialism-clustered This model is a fine-tuned version of [nandysoham16/7-clustered_aug](https://huggingface.co/nandysoham16/7-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0705 - Train End Logits Accuracy: 0.9896 - Train Start Logits Accuracy: 0.9722 - Validation Loss: 0.2530 - Validation End Logits Accuracy: 0.5 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.0705 | 0.9896 | 0.9722 | 0.2530 | 0.5 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Catalan_language-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,873
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Catalan_language-clustered This model is a fine-tuned version of [nandysoham16/13-clustered_aug](https://huggingface.co/nandysoham16/13-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5041 - Train End Logits Accuracy: 0.8611 - Train Start Logits Accuracy: 0.8368 - Validation Loss: 1.9634 - Validation End Logits Accuracy: 0.6364 - Validation Start Logits Accuracy: 0.8182 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.5041 | 0.8611 | 0.8368 | 1.9634 | 0.6364 | 0.8182 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Catalan_language-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,871
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Catalan_language-clustered This model is a fine-tuned version of [nandysoham16/13-clustered_aug](https://huggingface.co/nandysoham16/13-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6225 - Train End Logits Accuracy: 0.8646 - Train Start Logits Accuracy: 0.8472 - Validation Loss: 0.2992 - Validation End Logits Accuracy: 0.9091 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.6225 | 0.8646 | 0.8472 | 0.2992 | 0.9091 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Pub-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,855
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Pub-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3841 - Train End Logits Accuracy: 0.8993 - Train Start Logits Accuracy: 0.8576 - Validation Loss: 0.2110 - Validation End Logits Accuracy: 0.9231 - Validation Start Logits Accuracy: 0.8462 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3841 | 0.8993 | 0.8576 | 0.2110 | 0.9231 | 0.8462 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
ishaankul67/Paper-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,858
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Paper-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2903 - Train End Logits Accuracy: 0.9167 - Train Start Logits Accuracy: 0.9271 - Validation Loss: 0.7340 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.75 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.2903 | 0.9167 | 0.9271 | 0.7340 | 0.75 | 0.75 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Paper-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,858
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Paper-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3349 - Train End Logits Accuracy: 0.8854 - Train Start Logits Accuracy: 0.9132 - Validation Loss: 0.4416 - Validation End Logits Accuracy: 0.75 - Validation Start Logits Accuracy: 0.5 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3349 | 0.8854 | 0.9132 | 0.4416 | 0.75 | 0.5 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
thesunshine36/FineTune_Vit5_LR0_00001_time4
thesunshine36
t5
5
10
transformers
0
text2text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,556
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FineTune_Vit5_LR0_00001_time4 This model is a fine-tuned version of [thesunshine36/FineTune_Vit5_LR0_00001_time2](https://huggingface.co/thesunshine36/FineTune_Vit5_LR0_00001_time2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5291 - Validation Loss: 0.5800 - Train Rouge1: 52.3493 - Train Rouge2: 30.7526 - Train Rougel: 43.8269 - Train Rougelsum: 43.8511 - Train Gen Len: 14.3808 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 0.5291 | 0.5800 | 52.3493 | 30.7526 | 43.8269 | 43.8511 | 14.3808 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Web_browser-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,857
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Web_browser-clustered This model is a fine-tuned version of [nandysoham16/20-clustered_aug](https://huggingface.co/nandysoham16/20-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.1604 - Train End Logits Accuracy: 0.9826 - Train Start Logits Accuracy: 0.9375 - Validation Loss: 0.0757 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.1604 | 0.9826 | 0.9375 | 0.0757 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
antoooooine/poca-SoccerTwos
antoooooine
null
21
722
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: antoooooine/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ishaankul67/Adult_contemporary_music-clustered
ishaankul67
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,878
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ishaankul67/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3734 - Train End Logits Accuracy: 0.9167 - Train Start Logits Accuracy: 0.8889 - Validation Loss: 0.1582 - Validation End Logits Accuracy: 0.8571 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3734 | 0.9167 | 0.8889 | 0.1582 | 0.8571 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
nandysoham16/Adult_contemporary_music-clustered
nandysoham16
distilbert
8
10
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,876
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # nandysoham16/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3351 - Train End Logits Accuracy: 0.8993 - Train Start Logits Accuracy: 0.8854 - Validation Loss: 0.1132 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3351 | 0.8993 | 0.8854 | 0.1132 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Catalan_language-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,865
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Catalan_language-clustered This model is a fine-tuned version of [nandysoham16/13-clustered_aug](https://huggingface.co/nandysoham16/13-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.6678 - Train End Logits Accuracy: 0.8229 - Train Start Logits Accuracy: 0.8333 - Validation Loss: 0.3377 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 0.9091 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.6678 | 0.8229 | 0.8333 | 0.3377 | 1.0 | 0.9091 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
Deep98/Paper-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,851
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Paper-clustered This model is a fine-tuned version of [nandysoham16/16-clustered_aug](https://huggingface.co/nandysoham16/16-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.4183 - Train End Logits Accuracy: 0.8611 - Train Start Logits Accuracy: 0.8785 - Validation Loss: 0.2040 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.4183 | 0.8611 | 0.8785 | 0.2040 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
neithangurthang/q-FrozenLake-v1-4x4-noSlippery
neithangurthang
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
404
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="neithangurthang/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
MrDivakaruni/a2c-PandaReachDense-v2
MrDivakaruni
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Deep98/Adult_contemporary_music-clustered
Deep98
distilbert
8
0
transformers
0
question-answering
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,870
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # Deep98/Adult_contemporary_music-clustered This model is a fine-tuned version of [nandysoham16/15-clustered_aug](https://huggingface.co/nandysoham16/15-clustered_aug) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3270 - Train End Logits Accuracy: 0.8993 - Train Start Logits Accuracy: 0.8958 - Validation Loss: 0.0751 - Validation End Logits Accuracy: 1.0 - Validation Start Logits Accuracy: 1.0 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| | 0.3270 | 0.8993 | 0.8958 | 0.0751 | 1.0 | 1.0 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
xuancaiqisehua/icefall_asr_tal-csasr_conv_emformer_transducer_stateless2
xuancaiqisehua
null
22
0
null
0
null
false
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
2,135
Note: This recipe is trained with the codes from this PR https://github.com/k2-fsa/icefall/pull/874. ### Pre-trained conv_emformer_transducer_stateless2 models for the TAL_CSASR dataset with icefall. The model was trained on the far data of TAL_CSASR with the scripts in icefall based on the latest version k2. You can use the trained model to export it to ncnn and run it with sherpa-ncnn. ### Training procedure - Install k2 : https://k2.readthedocs.io/en/latest/installation/index.html - Install lhotse : https://lhotse.readthedocs.io/en/latest/getting-started.html#installation - Clone icefall : https://github.com/k2-fsa/icefall ``` git clone https://github.com/k2-fsa/icefall cd icefall ``` - Preparing data. ``` cd egs/tal_csasr_conv_emformer/ASR bash ./prepare.sh ``` - Training ``` bash run.sh ``` - Evaluation results The decoding results (CER%) on TAL_CSASR(dev and test) are listed below: |decoding-method|epoch(iter) |avg| dev|test| |----|---|---|---|---| |fast_beam_search | 6 | 3 | 11.36 | 11.37| - Export model to ncnn reference : https://k2-fsa.github.io/icefall/model-export/export-ncnn.html ``` ./conv_emformer_transducer_stateless2/export-for-ncnn.py \ --exp-dir exp_conv_emformer \ --lang_dir data/lang_char \ --epoch 5 \ --iter 8000 \ --avg 3 \ --use-averaged-model 1 \ --num-encoder-layers 12 \ --chunk-length 32 \ --cnn-module-kernel 31 \ --left-context-length 32 \ --right-context-length 8 \ --memory-size 32 ``` - Export torchscript model via pnnx ``` pnnx ./encoder_jit_trace-pnnx.pt pnnx ./decoder_jit_trace-pnnx.pt pnnx ./joiner_jit_trace-pnnx.pt ``` - Modify the following two lines in your encoder_jit_trace-pnnx.ncnn.param file. ![image.png](https://s3.amazonaws.com/moonup/production/uploads/1675589236011-62ea602aa32d5132d70ca52c.png) - Then you can use the following code to test the converted models. ``` model/tokens.txt \ model/encoder_jit_trace-pnnx.ncnn.param \ model/encoder_jit_trace-pnnx.ncnn.bin \ model/decoder_jit_trace-pnnx.ncnn.param \ model/decoder_jit_trace-pnnx.ncnn.bin \ model/joiner_jit_trace-pnnx.ncnn.param \ model/joiner_jit_trace-pnnx.ncnn.bin \ test_wavs/0.wav ```
evanarlian/wav2vec2-xls-r-164m-id
evanarlian
wav2vec2
11
5
transformers
0
automatic-speech-recognition
true
false
false
null
null
['evanarlian/common_voice_11_0_id_filtered']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,335
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-164m-id This model is a fine-tuned version of [evanarlian/distil-wav2vec2-xls-r-164m-id](https://huggingface.co/evanarlian/distil-wav2vec2-xls-r-164m-id) on the evanarlian/common_voice_11_0_id_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.2865 - Wer: 0.2923 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 80.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.4047 | 4.59 | 5000 | 1.0167 | 0.9138 | | 0.587 | 9.18 | 10000 | 0.4639 | 0.5615 | | 0.3782 | 13.77 | 15000 | 0.3375 | 0.4496 | | 0.2867 | 18.37 | 20000 | 0.2881 | 0.4022 | | 0.2519 | 22.96 | 25000 | 0.2775 | 0.3700 | | 0.1941 | 27.55 | 30000 | 0.2701 | 0.3516 | | 0.1727 | 32.14 | 35000 | 0.2795 | 0.3486 | | 0.1448 | 36.73 | 40000 | 0.2878 | 0.3364 | | 0.1251 | 41.32 | 45000 | 0.2649 | 0.3275 | | 0.113 | 45.91 | 50000 | 0.2862 | 0.3168 | | 0.0994 | 50.51 | 55000 | 0.2798 | 0.3091 | | 0.0938 | 55.1 | 60000 | 0.2864 | 0.3070 | | 0.0853 | 59.69 | 65000 | 0.2860 | 0.3069 | | 0.0724 | 64.28 | 70000 | 0.2994 | 0.3003 | | 0.0723 | 68.87 | 75000 | 0.2951 | 0.2983 | | 0.0666 | 73.46 | 80000 | 0.2886 | 0.2941 | | 0.0659 | 78.05 | 85000 | 0.2865 | 0.2923 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2
Kaludi/Quick-Summarization
Kaludi
pegasus
8
7
transformers
0
summarization
true
false
false
null
['en']
['Kaludi/data-quick-summarization']
{'emissions': 460.6785690944488}
0
0
0
0
0
0
0
['summarization']
false
true
true
1,143
# Quick Summarization This is a Text Summarization Model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to Transform long and complex texts into concise and meaningful summaries. Get a quick and accurate overview of any document in seconds, saving you time and effort. ### Gradio Tis model supports a [Gradio](https://github.com/gradio-app/gradio) Web UI to run the data-food-classification model: [![Open In HF Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Kaludi/Quick-Summarizer_App) ## Validation Metrics - Loss: 1.629 - Rouge1: 41.066 - Rouge2: 19.231 - RougeL: 28.295 - RougeLsum: 37.746 - Gen Len: 98.873 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/Kaludi/autotrain-quik-sum-3280991391 ```
apatidar0/anil_bert-finetuned-ner
apatidar0
bert
12
12
transformers
0
token-classification
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,523
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # anil_bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0610 - Precision: 0.9352 - Recall: 0.9517 - F1: 0.9434 - Accuracy: 0.9862 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0897 | 1.0 | 1756 | 0.0690 | 0.9246 | 0.9325 | 0.9285 | 0.9820 | | 0.0329 | 2.0 | 3512 | 0.0629 | 0.9301 | 0.9492 | 0.9395 | 0.9862 | | 0.0172 | 3.0 | 5268 | 0.0610 | 0.9352 | 0.9517 | 0.9434 | 0.9862 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BachNgoH/Reinforce-CartPol-v1
BachNgoH
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
MikkelGodsk/Reinforce-Cartpole-v1
MikkelGodsk
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Abdou/vit-swin-base-224-gpt2-image-captioning
Abdou
vision-encoder-decoder
16
27
transformers
0
image-to-text
true
false
false
mit
['en']
['coco']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
3,880
# vit-swin-base-224-gpt2-image-captioning This model is a fine-tuned [VisionEncoderDecoder](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder) model on 60% of the [COCO2014](https://huggingface.co/datasets/HuggingFaceM4/COCO) dataset. It achieves the following results on the testing set: - Loss: 0.7989 - Rouge1: 53.1153 - Rouge2: 24.2307 - Rougel: 51.5002 - Rougelsum: 51.4983 - Bleu: 17.7765 ## Model description The model was initialized on [microsoft/swin-base-patch4-window7-224-in22k](https://huggingface.co/microsoft/swin-base-patch4-window7-224-in22k) as the vision encoder, the [gpt2](https://huggingface.co/gpt2) as the decoder. ## Intended uses & limitations You can use this model for image captioning only. ## How to use You can either use the simple pipeline API: ```python from transformers import pipeline image_captioner = pipeline("image-to-text", model="Abdou/vit-swin-base-224-gpt2-image-captioning") # infer the caption caption = image_captioner("http://images.cocodataset.org/test-stuff2017/000000000019.jpg")[0]['generated_text'] print(f"caption: {caption}") ``` Or initialize everything for more flexibility: ```python from transformers import VisionEncoderDecoderModel, GPT2TokenizerFast, ViTImageProcessor import torch # a function to perform inference def get_caption(model, image_processor, tokenizer, image_path): image = load_image(image_path) # preprocess the image img = image_processor(image, return_tensors="pt").to(device) # generate the caption (using greedy decoding by default) output = model.generate(**img) # decode the output caption = tokenizer.batch_decode(output, skip_special_tokens=True)[0] return caption device = "cuda" if torch.cuda.is_available() else "cpu" # load the fine-tuned image captioning model and corresponding tokenizer and image processor model = VisionEncoderDecoderModel.from_pretrained("Abdou/vit-swin-base-224-gpt2-image-captioning").to(device) tokenizer = GPT2TokenizerFast.from_pretrained("Abdou/vit-swin-base-224-gpt2-image-captioning") image_processor = ViTImageProcessor.from_pretrained("Abdou/vit-swin-base-224-gpt2-image-captioning") # target image url = "http://images.cocodataset.org/test-stuff2017/000000000019.jpg" # get the caption caption = get_caption(model, image_processor, tokenizer, url) print(f"caption: {caption}") ``` Output: ``` Two cows laying in a field with a sky background. ``` ## Training procedure You can check [this guide](https://www.thepythoncode.com/article/image-captioning-with-pytorch-and-transformers-in-python) to learn how this model was fine-tuned. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:| | 1.0018 | 0.38 | 2000 | 0.8860 | 38.6537 | 13.8145 | 35.3932 | 35.3935 | 8.2448 | 11.2946 | | 0.8827 | 0.75 | 4000 | 0.8395 | 40.0458 | 14.8829 | 36.5321 | 36.5366 | 9.1169 | 11.2946 | | 0.8378 | 1.13 | 6000 | 0.8140 | 41.2736 | 15.9576 | 37.5504 | 37.5512 | 9.871 | 11.2946 | | 0.7913 | 1.51 | 8000 | 0.8012 | 41.6642 | 16.1987 | 37.8786 | 37.8891 | 10.0786 | 11.2946 | | 0.7794 | 1.89 | 10000 | 0.7933 | 41.9119 | 16.3738 | 38.1062 | 38.1292 | 10.288 | 11.2946 | Total training time: ~5 hours on NVIDIA A100 GPU. ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
shahidul034/chatGPT_classifier
shahidul034
distilbert
8
2
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
2,247
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # chatGPT_classifier This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0721 - Train Accuracy: 0.9805 - Validation Loss: 0.2447 - Validation Accuracy: 0.9114 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1929, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.4382 | 0.7957 | 0.3053 | 0.8745 | 0 | | 0.2381 | 0.9120 | 0.2671 | 0.8967 | 1 | | 0.1154 | 0.9617 | 0.2447 | 0.9114 | 2 | | 0.0701 | 0.9817 | 0.2447 | 0.9114 | 3 | | 0.0723 | 0.9796 | 0.2447 | 0.9114 | 4 | | 0.0730 | 0.9802 | 0.2447 | 0.9114 | 5 | | 0.0706 | 0.9813 | 0.2447 | 0.9114 | 6 | | 0.0711 | 0.9811 | 0.2447 | 0.9114 | 7 | | 0.0697 | 0.9817 | 0.2447 | 0.9114 | 8 | | 0.0721 | 0.9805 | 0.2447 | 0.9114 | 9 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
bhpardo/clasificador-amazonproducts
bhpardo
bert
10
9
transformers
0
text-classification
true
false
false
null
null
['amazon_reviews_multi']
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
1,388
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-amazonproducts This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 1.2425 - Accuracy: 0.5775 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7097 | 1.0 | 658 | 1.1479 | 0.5704 | | 0.4787 | 2.0 | 1316 | 1.2425 | 0.5775 | | 0.3708 | 3.0 | 1974 | 1.2425 | 0.5775 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
thesunshine36/FineTune_Vit5_LR0_000001_time1
thesunshine36
t5
5
10
transformers
0
text2text-generation
false
true
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,503
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # FineTune_Vit5_LR0_000001_time1 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.8667 - Validation Loss: 0.8405 - Train Rouge1: 45.0606 - Train Rouge2: 20.4988 - Train Rougel: 34.5672 - Train Rougelsum: 34.6023 - Train Gen Len: 13.7325 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 1e-06, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| | 1.8667 | 0.8405 | 45.0606 | 20.4988 | 34.5672 | 34.6023 | 13.7325 | 0 | ### Framework versions - Transformers 4.26.0 - TensorFlow 2.9.2 - Datasets 2.9.0 - Tokenizers 0.13.2
vyacharin/ppo-Huggy
vyacharin
null
32
0
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
820
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: vyacharin/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
chaewonlee/xlm-roberta-base-finetuned-panx-de
chaewonlee
xlm-roberta
16
0
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,319
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1358 - F1: 0.8638 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 | | 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 | | 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
Scrwed/poca-SoccerTwos-long
Scrwed
null
20
692
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
845
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: Scrwed/poca-SoccerTwos-long 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
lora-library/simbatheog
lora-library
null
41
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
509
# LoRA DreamBooth - simbatheog These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "simbatheog" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: disney lion cub ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)
brand25/q-FrozenLake-v1-4x4-noSlippery
brand25
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
396
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="brand25/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
LowGI/STT_Model_3
LowGI
wav2vec2
9
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
954
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_3 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
keonju/korean_disease_ner
keonju
bert
24
9
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,182
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # korean_disease_ner This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0855 - Precision: 0.9424 - Recall: 0.9475 - F1: 0.9449 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0663 | 1.0 | 15954 | 0.0599 | 0.9417 | 0.9246 | 0.9331 | 0.9763 | | 0.0471 | 2.0 | 31908 | 0.0514 | 0.9408 | 0.9442 | 0.9425 | 0.9795 | | 0.0384 | 3.0 | 47862 | 0.0511 | 0.9419 | 0.9471 | 0.9445 | 0.9802 | | 0.0292 | 4.0 | 63816 | 0.0558 | 0.9456 | 0.9449 | 0.9453 | 0.9804 | | 0.0253 | 5.0 | 79770 | 0.0572 | 0.9421 | 0.9507 | 0.9464 | 0.9807 | | 0.0225 | 6.0 | 95724 | 0.0649 | 0.9474 | 0.9435 | 0.9454 | 0.9805 | | 0.0209 | 7.0 | 111678 | 0.0695 | 0.9409 | 0.9504 | 0.9456 | 0.9805 | | 0.019 | 8.0 | 127632 | 0.0742 | 0.9431 | 0.9469 | 0.9450 | 0.9802 | | 0.0178 | 9.0 | 143586 | 0.0799 | 0.9425 | 0.9477 | 0.9451 | 0.9802 | | 0.016 | 10.0 | 159540 | 0.0855 | 0.9424 | 0.9475 | 0.9449 | 0.9801 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
KKHyun/distilbert-base-uncased-finetuned-squad
KKHyun
distilbert
12
0
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,284
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2096 | 1.0 | 5533 | 1.1505 | | 0.952 | 2.0 | 11066 | 1.1238 | | 0.7347 | 3.0 | 16599 | 1.1664 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
LowGI/STT_Model_4
LowGI
wav2vec2
9
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,182
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # STT_Model_4 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2311 - Wer: 0.1373 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4196 | 5.68 | 500 | 0.9866 | 0.6983 | | 0.3696 | 11.36 | 1000 | 0.8788 | 0.4010 | | 0.1182 | 17.05 | 1500 | 0.2187 | 0.1947 | | 0.0658 | 22.73 | 2000 | 0.2578 | 0.1757 | | 0.0421 | 28.41 | 2500 | 0.2178 | 0.1609 | | 0.0346 | 34.09 | 3000 | 0.2038 | 0.1584 | | 0.0285 | 39.77 | 3500 | 0.2187 | 0.1594 | | 0.0228 | 45.45 | 4000 | 0.2114 | 0.1445 | | 0.0262 | 51.14 | 4500 | 0.2201 | 0.1631 | | 0.0162 | 56.82 | 5000 | 0.2078 | 0.1424 | | 0.0135 | 62.5 | 5500 | 0.1989 | 0.1393 | | 0.0128 | 68.18 | 6000 | 0.2118 | 0.1410 | | 0.0104 | 73.86 | 6500 | 0.2158 | 0.1361 | | 0.0081 | 79.55 | 7000 | 0.2154 | 0.1348 | | 0.0067 | 85.23 | 7500 | 0.2107 | 0.1358 | | 0.0067 | 90.91 | 8000 | 0.2161 | 0.1373 | | 0.0056 | 96.59 | 8500 | 0.2311 | 0.1373 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
BachNgoH/Reinforce-Pixelcopter-PLE-v0
BachNgoH
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
prajdabre/CreoleM2M
prajdabre
mbart
9
48
transformers
0
text2text-generation
true
false
false
null
null
null
null
0
0
0
0
0
0
0
[]
false
false
true
2,737
This is the CreoleM2M model. If you know, you know! Usage: ``` from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM from transformers import AlbertTokenizer, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True) # Or use tokenizer = AlbertTokenizer.from_pretrained("prajdabre/CreoleM2M", do_lower_case=False, use_fast=False, keep_accents=True) model = AutoModelForSeq2SeqLM.from_pretrained("prajdabre/CreoleM2M") # Or use model = MBartForConditionalGeneration.from_pretrained("prajdabre/CreoleM2M") # Some initial mapping bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>") eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>") pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>") # To get lang_id use any of ["<s>", "</s>", "<2acf>", "<2eng>", "<2bis>", "<2bzj>", "<2cbk>", "<2crs>", "<2djk>", "<2gul>", "<2hat>", "<2hwc>", "<2icr>", "<2jam>", "<2kri>", "<2ktu>", "<2mbf>", "<2mfe>", "<2mkn>", "<2pap>", "<2pcm>", "<2pis>", "<2rop>", "<2sag>", "<2srm>", "<2srn>", "<2tcs>", "<2tdt>", "<2tpi>"] # First tokenize the input and outputs. The format below is how CreoleM2M was trained so the input should be "Sentence </s> <2xxx>" where xxx is the language code. Similarly, the output should be "<2yyy> Sentence </s>". inp = tokenizer('Wen dey wen stretch him out fo whip him real hard , Paul wen tell da captain dat stay dea , “ Dis okay in da rules fo da Rome peopo ? fo you fo whip one guy dat get da same rights jalike da Rome peopo ? even one guy dat neva do notting wrong ? ' </s> <2hwc>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids model.eval() # Set dropouts to zero model_output=model.generate(inp, use_cache=True, num_beams=4, max_length=60, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<eng>")) # Decode to get output strings decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) print(decoded_output) ``` Notes: 1. This is compatible with the latest version of transformers but was developed with version 4.3.2 so consider using 4.3.2 if possible. 2. While I have only shown how to let logits and loss and how to generate outputs, you can do pretty much everything the MBartForConditionalGeneration class can do as in https://huggingface.co/docs/transformers/model_doc/mbart#transformers.MBartForConditionalGeneration 3. Note that the tokenizer I have used is based on sentencepiece and not BPE. Therefore I use the AlbertTokenizer class and not the MBartTokenizer class.
gabriellabollici/modelo-muchocine
gabriellabollici
electra
10
2
transformers
0
text-classification
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
1,361
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # modelo-muchocine This model is a fine-tuned version of [mrm8488/electricidad-base-discriminator](https://huggingface.co/mrm8488/electricidad-base-discriminator) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3273 - Accuracy: 0.4181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 388 | 1.5467 | 0.3355 | | 1.5099 | 2.0 | 776 | 1.2819 | 0.4065 | | 1.2196 | 3.0 | 1164 | 1.3273 | 0.4181 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
MikkelGodsk/Reinforce-PixelCopter-PLE-v0
MikkelGodsk
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
RamonAnkersmit/poca-SoccerTwos-Gpu
RamonAnkersmit
null
24
689
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
852
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: RamonAnkersmit/poca-SoccerTwos-Gpu 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Phantom-Artist/phantom-diffusion
Phantom-Artist
null
69
0
null
17
null
false
false
false
creativeml-openrail-m
['en', 'ja']
['Phantom-Artist/phantom-diffusion-dataset']
null
0
0
0
0
0
0
0
['a']
false
true
true
5,188
20 models that are trained over [hakurei's Waifu Diffusion](https://huggingface.co/hakurei/waifu-diffusion). Each model was trained on a notable Japanese AI artist's works using dreambooth, with 30 of their works gained mainly from twitter (except for aibanousagi, which I could find only 23). It tooks 1000 steps to train each model, at a learning rate of 5-e6. I have shared the notebook [here](https://huggingface.co/Phantom-Artist/phantom-diffusion/blob/main/DreamBooth_Stable_Diffusion_works_with_SD_2.ipynb) in case you want to try out additional training. Some are good at backgrounds, while others can generate a semi-realistic style as seen in many SD 1.5 anime/waifu models (and some might be a bit overfitted). The dataset is published [here](https://huggingface.co/datasets/Phantom-Artist/phantom-diffusion-dataset). # For those who are against generative AIs You can see that now they are the target. Take our tool. Now is the time for pay back. Generate the images in their styles, and bring back the power you had to yourself. # For those who support the development of generative AIs Some of the AI artists, even though they take advantage of the open strategy of Stable Diffusion, now tend to hide their prompts, trying to monopolize their style (I'm not saying the AI artists I trained are as such, to be sure). To continue protecting our values and beliefs on the open community and fight against them trying to create another pre-modern style guilds, I will show you a new way. You no longer need their prompts; just train their images by yourself to protect the open community. It's not only legal but also ethical, as they have been taking advantages of others' trained dataset. # trained artist list - 852wa - aibanousagi - aioeoekakino - airhara - alfredplpl - callimiya - citrus - elessenar - kiri - korocon - lakeside - maccha - natsuku - nikaido - plat - roiyaruRIZ - swingwings - tuinositone - yunyalula - yuyuyu # samples The basic prompt is as follows, but some of them may have additional postive tags (such as "in the style of") to get the result below (yes, use ``aitop (ARTIST)_style`` to gain the finetuned result). ``` POS: masterpiece, best quality, 1girl, aitop (ARTIST)_style NEG: nsfw, worst quality, low quality, medium quality, deleted, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digits, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry, simple background ``` ## 852wa ![852wa_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/852wa_style.png) ## aibanousagi ![aibanousagi_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/aibanousagi_style.png) ## aioeoekakino ![aioeoekakino_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/aioeoekakino_style.png) ## airhara ![airhara_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/airhara_style.png) ## alfredplpl ![alfredplpl_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/alfredplpl_style.png) ## callimiya ![callimiya_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/callimiya_style.png) ## citrus ![citrus_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/citrus_style.png) ## elessenar ![elessenar_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/elessenar_style.png) ## kiri ![kiri_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/kiri_style.png) ## korocon ![korocon_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/korocon_style.png) ## lakeside ![lakeside_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/lakeside_style.png) ## maccha ![maccha_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/maccha_style.png) ## natsuku ![natsuku_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/natsuku_style.png) ![natsuku_sample2](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/natsuku_style2.png) ![natsuku_sample3](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/natsuku_style3.png) ## nikaido ![nikaido_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/nikaido_style.png) ## plat ![plat_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/plat_style.png) ## roiyaruRIZ ![roiyaruRIZ_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/roiyaruRIZ_style.png) ## swingwings ![swingwings_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/swingwings_style.png) ## tuinositone ![tuinositone_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/tuinositone_style.png) ## yunyalula ![yunyalula_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/yunyalula_style.png) ![yunyalula_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/yunyalula_style2.png) ## yuyuyu ![yuyuyu_sample](https://huggingface.co/Phantom-Artist/phantom-diffusion/resolve/main/yuyuyu_style.png)
brand25/q-Taxi-v3
brand25
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
363
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="brand25/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
erniechiew/Reinforce-Pixelcopter-PLE-v0
erniechiew
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
Beegbrain/Reinforce-model-cartpole1
Beegbrain
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
lora-library/a-photo-of-simbatheog
lora-library
null
29
0
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'diffusers', 'lora']
false
true
true
538
# LoRA DreamBooth - a-photo-of-simbatheog These are LoRA adaption weights for [stabilityai/stable-diffusion-2-1-base](https://huggingface.co/stabilityai/stable-diffusion-2-1-base). The weights were trained on the instance prompt "simbatheog" using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. Test prompt: A photo of simbatheog in a bucket ![image_0](test_images/image_0.png) ![image_1](test_images/image_1.png) ![image_2](test_images/image_2.png) ![image_3](test_images/image_3.png)