repo_id
stringlengths
4
122
author
stringlengths
2
38
model_type
stringlengths
2
33
files_per_repo
int64
2
39k
downloads_30d
int64
0
33.7M
library
stringlengths
2
37
likes
int64
0
4.87k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
33
languages
stringlengths
2
1.63k
datasets
stringlengths
2
2.58k
co2
stringlengths
6
258
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
46
prs_closed
int64
0
34
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
2 classes
has_text
bool
1 class
text_length
int64
201
598k
readme
stringlengths
0
598k
cleanrl/Assault-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Assault-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Assault-v5** This is a trained model of a PPO agent playing Assault-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Assault-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Assault-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Assault-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Krull-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Krull-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,144
# (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Defender-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Defender-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **Defender-v5** This is a trained model of a PPO agent playing Defender-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Defender-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Defender-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Pitfall-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pitfall-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Pitfall-v5** This is a trained model of a PPO agent playing Pitfall-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Pitfall-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Pitfall-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CrazyClimber-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,200
# (CleanRL) **PPO** Agent Playing **CrazyClimber-v5** This is a trained model of a PPO agent playing CrazyClimber-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id CrazyClimber-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'CrazyClimber-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Freeway-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Freeway-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Qbert-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,144
# (CleanRL) **PPO** Agent Playing **Qbert-v5** This is a trained model of a PPO agent playing Qbert-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Qbert-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Qbert-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['MontezumaRevenge-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,232
# (CleanRL) **PPO** Agent Playing **MontezumaRevenge-v5** This is a trained model of a PPO agent playing MontezumaRevenge-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id MontezumaRevenge-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id MontezumaRevenge-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'MontezumaRevenge-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Amidar-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Amidar-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,152
# (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/NameThisGame-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['NameThisGame-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,200
# (CleanRL) **PPO** Agent Playing **NameThisGame-v5** This is a trained model of a PPO agent playing NameThisGame-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id NameThisGame-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'NameThisGame-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/RoadRunner-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['RoadRunner-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,184
# (CleanRL) **PPO** Agent Playing **RoadRunner-v5** This is a trained model of a PPO agent playing RoadRunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id RoadRunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id RoadRunner-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'RoadRunner-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Zaxxon-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,152
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5** This is a trained model of a PPO agent playing Zaxxon-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Zaxxon-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Zaxxon-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Berzerk-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Berzerk-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Berzerk-v5** This is a trained model of a PPO agent playing Berzerk-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Berzerk-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Berzerk-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/MsPacman-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['MsPacman-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **MsPacman-v5** This is a trained model of a PPO agent playing MsPacman-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id MsPacman-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'MsPacman-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Bowling-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Bowling-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/KungFuMaster-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['KungFuMaster-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,200
# (CleanRL) **PPO** Agent Playing **KungFuMaster-v5** This is a trained model of a PPO agent playing KungFuMaster-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id KungFuMaster-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id KungFuMaster-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'KungFuMaster-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['BeamRider-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,176
# (CleanRL) **PPO** Agent Playing **BeamRider-v5** This is a trained model of a PPO agent playing BeamRider-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id BeamRider-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id BeamRider-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'BeamRider-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Breakout-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **Breakout-v5** This is a trained model of a PPO agent playing Breakout-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Breakout-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Breakout-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Venture-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Venture-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Venture-v5** This is a trained model of a PPO agent playing Venture-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Venture-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Venture-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Skiing-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,152
# (CleanRL) **PPO** Agent Playing **Skiing-v5** This is a trained model of a PPO agent playing Skiing-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Skiing-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Skiing-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/StarGunner-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['StarGunner-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,184
# (CleanRL) **PPO** Agent Playing **StarGunner-v5** This is a trained model of a PPO agent playing StarGunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id StarGunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'StarGunner-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/TimePilot-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['TimePilot-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,176
# (CleanRL) **PPO** Agent Playing **TimePilot-v5** This is a trained model of a PPO agent playing TimePilot-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id TimePilot-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'TimePilot-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/IceHockey-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['IceHockey-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,176
# (CleanRL) **PPO** Agent Playing **IceHockey-v5** This is a trained model of a PPO agent playing IceHockey-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id IceHockey-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id IceHockey-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'IceHockey-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Phoenix-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Phoenix-v5** This is a trained model of a PPO agent playing Phoenix-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Phoenix-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Phoenix-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Phoenix-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
sd-concepts-library/kamon-style
sd-concepts-library
null
494
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,157
### kamon style on Stable Diffusion This is the `<kamon-style>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<kamon-style> 0](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/269.jpeg) ![<kamon-style> 1](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/346.jpeg) ![<kamon-style> 2](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/177.jpeg) ![<kamon-style> 3](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/68.jpeg) ![<kamon-style> 4](https://huggingface.co/sd-concepts-library/kamon-style/resolve/main/concept_images/459.jpeg)
cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Seaquest-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **Seaquest-v5** This is a trained model of a PPO agent playing Seaquest-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Seaquest-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Seaquest-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Seaquest-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Seaquest-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Robotank-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Robotank-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **Robotank-v5** This is a trained model of a PPO agent playing Robotank-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Robotank-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Robotank-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Hero-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Hero-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,136
# (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Gopher-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Gopher-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,152
# (CleanRL) **PPO** Agent Playing **Gopher-v5** This is a trained model of a PPO agent playing Gopher-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Gopher-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Gopher-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Gopher-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Surround-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Surround-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,168
# (CleanRL) **PPO** Agent Playing **Surround-v5** This is a trained model of a PPO agent playing Surround-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Surround-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Surround-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Asterix-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Asterix-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,160
# (CleanRL) **PPO** Agent Playing **Asterix-v5** This is a trained model of a PPO agent playing Asterix-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Asterix-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Asterix-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Asterix-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Asterix-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
mitra-mir/setfit-model-Ireland_4labels_unbalanced_data
mitra-mir
mpnet
13
5
sentence-transformers
0
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity']
false
true
true
2,138
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 941 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 941, "warmup_steps": 95, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvaders-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,208
# (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5** This is a trained model of a PPO agent playing SpaceInvaders-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id SpaceInvaders-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'SpaceInvaders-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
nachshonc/poca-SoccerTwos
nachshonc
null
22
630
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
843
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: nachshonc/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Tennis-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,152
# (CleanRL) **PPO** Agent Playing **Tennis-v5** This is a trained model of a PPO agent playing Tennis-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id Tennis-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id Tennis-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Tennis-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
pfunk/Pong-v4-DQPN_p2_e0.50-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,979
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p2_e0.50.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQPN_p2_e0.50]" python -m cleanrl_utils.enjoy --exp-name DQPN_p2_e0.50 --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.50-seed1/raw/main/dqpn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.50-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_e0.50-seed1/raw/main/poetry.lock poetry install --all-extras python dqpn_atari.py --exp-name DQPN_p2_e0.50 --start-policy-f 2000 --end-policy-f 1000 --evaluation-fraction 0.50 --target-tau 1.0 --policy-tau 1.00 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'end_policy_f': 1000, 'env_id': 'Pong-v4', 'evaluation_fraction': 0.5, 'exp_name': 'DQPN_p2_e0.50', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'policy_tau': 1.0, 'save_model': True, 'seed': 1, 'start_e': 1, 'start_policy_f': 2000, 'target_network_frequency': 1000, 'target_tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
habanoz/poca-SoccerTwos
habanoz
null
20
624
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
841
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: habanoz/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
HuyenNguyen/TTS0123
HuyenNguyen
whisper
16
6
transformers
0
automatic-speech-recognition
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,254
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TTS0123 This model is a fine-tuned version of [HuyenNguyen/FPT_Viettel](https://huggingface.co/HuyenNguyen/FPT_Viettel) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0923 - eval_wer: 5.0598 - eval_runtime: 2394.8178 - eval_samples_per_second: 0.835 - eval_steps_per_second: 0.052 - epoch: 2.93 - step: 1000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 24 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
pfunk/Pong-v4-DQN_baseline-seed1
pfunk
null
11
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
1,761
# (CleanRL) **DQN** Agent Playing **Pong-v4** This is a trained model of a DQN agent playing Pong-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQN_baseline.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[DQN_baseline]" python -m cleanrl_utils.enjoy --exp-name DQN_baseline --env-id Pong-v4 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/dqn_atari.py curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/pfunk/Pong-v4-DQN_baseline-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari.py --exp-name DQN_baseline --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': False, 'cuda': True, 'end_e': 0.01, 'env_id': 'Pong-v4', 'exp_name': 'DQN_baseline', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'pfunk', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'tau': 1.0, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': 'pfunk', 'wandb_project_name': 'dqpn'} ```
cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['VideoPinball-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,200
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5** This is a trained model of a PPO agent playing VideoPinball-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id VideoPinball-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'VideoPinball-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
racro/sentiment-analysis-browser-extension
racro
distilbert
45
7
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,054
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-analysis-browser-extension This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4233 - Accuracy: 0.8539 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
austinmw/ppo-LunarLander-v2
austinmw
null
12
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
eldraco/dqn-SpaceInvadersNoFrameskip-v4-v3
eldraco
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,215
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eldraco -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga eldraco -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga eldraco ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 200000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 10000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
mitra-mir/setfit-model-Ireland_3labels_balanced_data
mitra-mir
mpnet
13
7
sentence-transformers
0
sentence-similarity
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity']
false
true
true
2,135
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 53 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 53, "warmup_steps": 6, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1
cleanrl
null
9
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['DemonAttack-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,192
# (CleanRL) **PPO** Agent Playing **DemonAttack-v5** This is a trained model of a PPO agent playing DemonAttack-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool --env-id DemonAttack-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/sebulba_ppo_envpool.py curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/DemonAttack-v5-sebulba_ppo_envpool-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 --params-queue-timeout 0.02 --track --save-model --upload-model --hf-entity cleanrl --env-id DemonAttack-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 16, 'async_update': 4, 'batch_size': 8192, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'DemonAttack-v5', 'exp_name': 'sebulba_ppo_envpool', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 2048, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 64, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6103, 'params_queue_timeout': 0.02, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
esoria3/clasificador-amazonreviews-en
esoria3
distilbert
10
2
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['classification', 'generated_from_trainer']
true
true
true
1,389
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # clasificador-amazonreviews-en This model is a fine-tuned version of [distilbert-base-uncased-finetuned-sst-2-english](https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2642 - Accuracy: 0.516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2472 | 1.0 | 500 | 1.1511 | 0.463 | | 0.9416 | 2.0 | 1000 | 1.1698 | 0.502 | | 0.7039 | 3.0 | 1500 | 1.2642 | 0.516 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
sd-dreambooth-library/tame
sd-dreambooth-library
null
19
2
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
423
### tame Dreambooth model trained by valentinaw1sa4ajh with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
SRKConsulting/ppo-Huggy
SRKConsulting
null
32
3
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
824
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: SRKConsulting/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Buseak/model_from_berturk_Feb_5_TrainTestSplit
Buseak
bert
12
8
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,669
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model_from_berturk_Feb_5_TrainTestSplit This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3125 - Precision: 0.9120 - Recall: 0.9126 - F1: 0.9123 - Accuracy: 0.9376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 185 | 0.2333 | 0.9065 | 0.9066 | 0.9066 | 0.9343 | | No log | 2.0 | 370 | 0.2115 | 0.9122 | 0.9143 | 0.9133 | 0.9389 | | 0.3861 | 3.0 | 555 | 0.2049 | 0.9185 | 0.9175 | 0.9180 | 0.9423 | | 0.3861 | 4.0 | 740 | 0.2073 | 0.9183 | 0.9185 | 0.9184 | 0.9420 | | 0.3861 | 5.0 | 925 | 0.2174 | 0.9150 | 0.9155 | 0.9153 | 0.9397 | | 0.1487 | 6.0 | 1110 | 0.2227 | 0.9177 | 0.9185 | 0.9181 | 0.9415 | | 0.1487 | 7.0 | 1295 | 0.2399 | 0.9149 | 0.9160 | 0.9155 | 0.9396 | | 0.1487 | 8.0 | 1480 | 0.2504 | 0.9158 | 0.9163 | 0.9160 | 0.9400 | | 0.0942 | 9.0 | 1665 | 0.2692 | 0.9141 | 0.9152 | 0.9146 | 0.9392 | | 0.0942 | 10.0 | 1850 | 0.2782 | 0.9130 | 0.9153 | 0.9141 | 0.9388 | | 0.0589 | 11.0 | 2035 | 0.2908 | 0.9131 | 0.9144 | 0.9138 | 0.9388 | | 0.0589 | 12.0 | 2220 | 0.2940 | 0.9121 | 0.9136 | 0.9128 | 0.9377 | | 0.0589 | 13.0 | 2405 | 0.3068 | 0.9117 | 0.9130 | 0.9123 | 0.9376 | | 0.0407 | 14.0 | 2590 | 0.3107 | 0.9132 | 0.9148 | 0.9140 | 0.9387 | | 0.0407 | 15.0 | 2775 | 0.3125 | 0.9120 | 0.9126 | 0.9123 | 0.9376 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
huggingtweets/f3ralfluid
huggingtweets
gpt2
11
0
transformers
0
text-generation
true
false
false
null
['en']
null
null
0
0
0
0
0
0
0
['huggingtweets']
false
true
true
3,313
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1590925174068711428/4PWe_NrY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">gross</div> <div style="text-align: center; font-size: 14px;">@f3ralfluid</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from gross. | Data | gross | | --- | --- | | Tweets downloaded | 236 | | Retweets | 28 | | Short tweets | 66 | | Tweets kept | 142 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/kjdh98mi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @f3ralfluid's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/d3ukvm2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/d3ukvm2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/f3ralfluid') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
sd99/poca-SoccerTwos
sd99
null
22
612
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
838
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: sd99/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
ScrappyCoco666/a2c-PandaReachDense-v2-3
ScrappyCoco666
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
ScrappyCoco666/a2c-PandaReachDense-v2-4
ScrappyCoco666
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dptrsa/ec_model
dptrsa
roberta
20
53
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,235
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ec_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 497 | 1.1985 | | 1.578 | 2.0 | 994 | 1.0032 | | 1.187 | 3.0 | 1491 | 0.9479 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
adielsa/swin-tiny-patch4-window7-224-finetuned-eurosat
adielsa
swin
14
0
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,492
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1627 - Accuracy: 0.9464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2486 | 0.98 | 36 | 0.2120 | 0.9100 | | 0.1844 | 1.98 | 72 | 0.3417 | 0.8563 | | 0.1646 | 2.98 | 108 | 0.1627 | 0.9464 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
mantury/q-FrozenLake-v1-4x4-noSlippery
mantury
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
396
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="mantury/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mantury/taxi-v3
mantury
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
361
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mantury/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
mantury/q-taxi-v3
mantury
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
363
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="mantury/q-taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
z4x/Reinforce-CartPole
z4x
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
austinmw/ppo-Huggy
austinmw
null
32
1
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
false
true
true
819
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy 2. Step 1: Write your model_id: austinmw/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
moschouChry/ppo-LunarLander-v2
moschouChry
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
NickKolok/ari-20230205-2130-dlpr2-4800-steps_1
NickKolok
null
16
17
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image']
false
true
true
8,548
### Ari_20230205_2130_DLPR2_4800_steps on Stable Diffusion via Dreambooth #### model by NickKolok This your the Stable Diffusion model fine-tuned the Ari_20230205_2130_DLPR2_4800_steps concept taught to Stable Diffusion with Dreambooth. #It can be used by modifying the `instance_prompt`: **ari** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face007.png) ![image 1](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face001.png) ![image 2](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist005.png) ![image 3](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/knees005.png) ![image 4](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face011.png) ![image 5](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full012.png) ![image 6](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders002.png) ![image 7](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist002.png) ![image 8](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders007.png) ![image 9](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/knees002.png) ![image 10](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist007.png) ![image 11](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full013.png) ![image 12](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face021.png) ![image 13](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full002.png) ![image 14](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full001.png) ![image 15](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face005.png) ![image 16](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full007.png) ![image 17](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face022.png) ![image 18](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist003.png) ![image 19](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face013.png) ![image 20](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders006.png) ![image 21](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face006.png) ![image 22](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/knees004.png) ![image 23](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face002.png) ![image 24](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders001.png) ![image 25](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full011.png) ![image 26](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full014.png) ![image 27](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full006.png) ![image 28](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full010.png) ![image 29](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face018.png) ![image 30](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders009.png) ![image 31](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist001.png) ![image 32](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face020.png) ![image 33](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face003.png) ![image 34](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full007_117774334_2664767070430577_5662611452087096913_n.png) ![image 35](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/waist006.png) ![image 36](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face010.png) ![image 37](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face015.png) ![image 38](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face023_media_ERMRbdRWoAEl-N1.png) ![image 39](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face024_media_ETs8vMdVAAEiE5H.png) ![image 40](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders010.png) ![image 41](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full008.png) ![image 42](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face019.png) ![image 43](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face008.png) ![image 44](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders003.png) ![image 45](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face004.png) ![image 46](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full005.png) ![image 47](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full009.png) ![image 48](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face014.png) ![image 49](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face009.png) ![image 50](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/knees003.png) ![image 51](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders008.png) ![image 52](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face017.png) ![image 53](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face016.png) ![image 54](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/knees001.png) ![image 55](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders005.png) ![image 56](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/shoulders004.png) ![image 57](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full003.png) ![image 58](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/full004.png) ![image 59](https://huggingface.co/NickKolok/ari-20230205-2130-dlpr2-4800-steps_1/resolve/main/concept_images/face012.png)
jrauch4/a2c-AntBulletEnv-v0
jrauch4
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
adielsa/vit-base-patch16-224-finetuned-chest
adielsa
vit
24
5
transformers
0
image-classification
true
false
false
apache-2.0
null
['imagefolder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,465
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-finetuned-chest This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0318 - Accuracy: 0.9900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0947 | 0.98 | 36 | 0.0785 | 0.9732 | | 0.048 | 1.98 | 72 | 0.0678 | 0.9732 | | 0.0352 | 2.98 | 108 | 0.0329 | 0.9887 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
jmallioras/ppo-LunarLander-v2
jmallioras
null
12
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
z4x/Reinforce-Pixelcopter
z4x
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
300
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
SRobbins/dqn-SpaceInvadersNoFrameskip-v4
SRobbins
null
15
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['SpaceInvadersNoFrameskip-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
2,215
# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib Install the RL Zoo (with SB3 and SB3-Contrib): ```bash pip install rl_zoo3 ``` ``` # Download model and save it into the logs/ folder python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SRobbins -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: ``` python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga SRobbins -f logs/ python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga SRobbins ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
marmolpen3/bert-finetuned-sla
marmolpen3
bert
27
10
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,823
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-sla This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3274 - F1: 0.6555 - Roc Auc: 0.7660 - Accuracy: 0.5294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | No log | 1.0 | 30 | 0.4994 | 0.0 | 0.5 | 0.0 | | No log | 2.0 | 60 | 0.4408 | 0.0 | 0.5 | 0.0 | | No log | 3.0 | 90 | 0.3761 | 0.4444 | 0.6462 | 0.1961 | | No log | 4.0 | 120 | 0.3438 | 0.6496 | 0.7604 | 0.4706 | | No log | 5.0 | 150 | 0.3274 | 0.6555 | 0.7660 | 0.5294 | | No log | 6.0 | 180 | 0.3093 | 0.6557 | 0.7699 | 0.4706 | | No log | 7.0 | 210 | 0.3083 | 0.6560 | 0.7738 | 0.5098 | | No log | 8.0 | 240 | 0.3030 | 0.6457 | 0.7703 | 0.4706 | | No log | 9.0 | 270 | 0.3096 | 0.6667 | 0.7811 | 0.4902 | | No log | 10.0 | 300 | 0.2976 | 0.6718 | 0.7907 | 0.5098 | | No log | 11.0 | 330 | 0.2986 | 0.6769 | 0.7924 | 0.5294 | | No log | 12.0 | 360 | 0.3046 | 0.6562 | 0.7777 | 0.5098 | | No log | 13.0 | 390 | 0.2988 | 0.6870 | 0.7997 | 0.4902 | | No log | 14.0 | 420 | 0.3026 | 0.6769 | 0.7924 | 0.5098 | | No log | 15.0 | 450 | 0.3005 | 0.6870 | 0.7997 | 0.5098 | | No log | 16.0 | 480 | 0.3012 | 0.6822 | 0.7941 | 0.5098 | | 0.2216 | 17.0 | 510 | 0.3013 | 0.6977 | 0.8032 | 0.5294 | | 0.2216 | 18.0 | 540 | 0.3033 | 0.6977 | 0.8032 | 0.5294 | | 0.2216 | 19.0 | 570 | 0.3024 | 0.6977 | 0.8032 | 0.5294 | | 0.2216 | 20.0 | 600 | 0.3027 | 0.6923 | 0.8015 | 0.5098 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
kmposkid1/ppo-LunarLander-v2
kmposkid1
null
12
1
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Pearson/q-FrozenLake-v1-4x4-noSlippery
Pearson
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
396
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="Pearson/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
coreml/coreml-vintedois-diffusion
coreml
null
4
0
null
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
4,871
# Core ML Converted Model: - This model was converted to [Core ML for use on Apple Silicon devices](https://github.com/apple/ml-stable-diffusion). Conversion instructions can be found [here](https://github.com/godly-devotion/MochiDiffusion/wiki/How-to-convert-ckpt-or-safetensors-files-to-Core-ML).<br> - Provide the model to an app such as Mochi Diffusion [Github](https://github.com/godly-devotion/MochiDiffusion) - [Discord](https://discord.gg/x2kartzxGv) to generate images.<br> - `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> - `original` version is only compatible with CPU & GPU option.<br> # Note: Some models do not have the [unet split into chunks](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml). # Vintedois (22h) Diffusion: Source(s): [Hugging Face](https://huggingface.co/22h/vintedois-diffusion-v0-1) - [CivitAI](https://civitai.com/models/2781/vintedois-diffusion-v0-1) ### Vintedois (22h) Diffusion model trained by [Predogl](https://twitter.com/Predogl) and [piEsposito](https://twitter.com/piesposi_to) with open weights, configs and prompts (as it should be) This model was trained on a large amount of high quality images with simple prompts to generate beautiful images without a lot of prompt engineering. You can enforce style by prepending your prompt with `estilovintedois` if it is not good enough. It should also be very dreamboothable, being able to generate high fidelity faces with a little amount of steps. **You can use this model commercially or whatever, but we are not liable if you do messed up stuff with it.** ### Gradio We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run vintedois-diffusion-v0-1 : [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/22h/vintedois-diffusion-v0-1) ### Model card Everything from [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5), plus the fact that this is being built by two indie devs, so it was not extensively tested for new biases. You can run this concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) ### Sample results <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/joined.png" width=1024/> ### Example prompts - Prompt: photo of an old man in a jungle, looking at the camera - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 30 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-photo%20of%20an%20old%20man%20in%20a%20jungle%2C%20looking%20at%C2%A0the%C2%A0camera.png" width=512/> - Prompt: kneeling cat knight, portrait, finely detailed armor, intricate design, silver, silk, cinematic lighting, 4k - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 50 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-kneeling%20cat%20knight%2C%20portrait%2C%20finely%20detailed%20armor%2C%20intricate%20design%2C%20silver%2C%20silk%2C%20cinematic%20lighting%2C%204k.png" width=512/> - Prompt: a beautiful girl In front of the cabin, the country, by Artgerm Lau and Krenz Cushart,hyperdetailed, trending on artstation, trending on deviantart - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 50 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-a%20beautiful%20girl%20In%20front%20of%20the%20cabin%2C%20the%20country%2C%20by%20Artgerm%20Lau%20and%20Krenz%20Cushart%EF%BC%8Chyperdetailed%2C%20trending%20on%20artstation%2C%20tre.png" width=512/> - Prompt: destroyed city - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 50 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-destroyed%20city.png" width=512/> - Prompt: victorian city landscape - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 50 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-victorian%20city%20landscape.png" width=512/> - Prompt: prehistoric native living room - CFG Scale: 7.5 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 50 - Seed: 44 <img src="https://huggingface.co/22h/vintedois-diffusion-v0-1/resolve/main/44-euler-a-prehistoric%20native%20living%20room.png" width=512/> Thanks for the Google Developer Expert program for providing us with a GCP credits grant.
FBM/poca-SoccerTwos
FBM
null
20
601
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
false
true
true
837
# **poca** Agent playing **SoccerTwos** This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos 2. Step 1: Write your model_id: FBM/poca-SoccerTwos 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
hungtrv/distilbert-base-uncased-finetuned-emotion
hungtrv
distilbert
14
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,343
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1658 - Accuracy: 0.9365 - F1: 0.9368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.1757 | 1.0 | 250 | 0.1762 | 0.928 | 0.9282 | | 0.1096 | 2.0 | 500 | 0.1658 | 0.9365 | 0.9368 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu116 - Datasets 2.3.2 - Tokenizers 0.12.1
Ftassara/ppo-LunarLander-v2
Ftassara
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
350
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
anishchada12/distilgpt2-finetuned-PanoAI2
anishchada12
gpt2
12
3
transformers
0
text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,235
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-PanoAI2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.1537 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 2 | 4.2481 | | No log | 2.0 | 4 | 4.1813 | | No log | 3.0 | 6 | 4.1537 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
hatemestinbejaia/MARBERT-adept
hatemestinbejaia
bert
13
7
transformers
0
fill-mask
true
false
false
null
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,057
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MARBERT-adept This model is a fine-tuned version of [UBC-NLP/MARBERT](https://huggingface.co/UBC-NLP/MARBERT) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 5.6149 - eval_runtime: 323.5555 - eval_samples_per_second: 34.615 - eval_steps_per_second: 4.327 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20.0 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
UtopiansRareTruth/ppo-SnowballTarget
UtopiansRareTruth
null
20
2
ml-agents
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
false
true
true
864
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://github.com/huggingface/ml-agents#get-started We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: ### Resume the training ``` mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser:**. 1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget 2. Step 1: Write your model_id: UtopiansRareTruth/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
jrauch4/a2c-PandaReachDense-v2
jrauch4
null
12
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
358
# **A2C** Agent playing **PandaReachDense-v2** This is a trained model of a **A2C** agent playing **PandaReachDense-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
muhtasham/santacoder-finetuned-the-stack-assembly
muhtasham
gpt2
17
0
transformers
1
text-generation
true
false
false
openrail
['code']
['bigcode/the-stack-dedup']
null
0
0
0
0
0
0
0
['generated_from_trainer', 'code', 'codegen', 'assembly']
true
true
true
2,726
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # santacoder-finetuned-the-stack-assembly This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an on The Stack [assembly](https://huggingface.co/datasets/bigcode/the-stack-dedup) dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7423 - eval_runtime: 14042.2321 - eval_samples_per_second: 6.116 - eval_steps_per_second: 3.058 - epoch: 0.3 - step: 1500 ## Model description The [SantaCoder](https://huggingface.co/bigcode/santacoder) models are a series of 1.1B parameter models trained on the Python, Java, and JavaScript subset of [The Stack (v1.1)](https://huggingface.co/datasets/bigcode/the-stack) (which excluded opt-out requests). The main model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), was trained using near-deduplication and comment-to-code ratio as filtering criteria and using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255). In addition, there are several models that were trained on datasets with different filter parameters and with architecture and objective variations. ## Intended uses & limitations The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. ## Training and evaluation data The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. **This is the near-deduplicated version with 3TB data.** ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 5000 ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
huggingtweets/aygo__
huggingtweets
gpt2
11
1
transformers
0
text-generation
true
false
false
null
['en']
null
null
0
0
0
0
0
0
0
['huggingtweets']
false
true
true
3,300
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1621655536767827976/vu1Kjv3P_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Igor</div> <div style="text-align: center; font-size: 14px;">@aygo__</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Igor. | Data | Igor | | --- | --- | | Tweets downloaded | 599 | | Retweets | 309 | | Short tweets | 107 | | Tweets kept | 183 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/lgj439wu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @aygo__'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9c88kjcx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9c88kjcx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/aygo__') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Galiess/Reinforce-CartPole8
Galiess
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
huggingtweets/ahmadaldujayli
huggingtweets
gpt2
11
0
transformers
0
text-generation
true
false
false
null
['en']
null
null
0
0
0
0
0
0
0
['huggingtweets']
false
true
true
3,337
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468356727447986179/dBXjtgNb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ahmad H.</div> <div style="text-align: center; font-size: 14px;">@ahmadaldujayli</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ahmad H.. | Data | Ahmad H. | | --- | --- | | Tweets downloaded | 1223 | | Retweets | 403 | | Short tweets | 126 | | Tweets kept | 694 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/9pn1p7zo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ahmadaldujayli's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1atccf47) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1atccf47/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ahmadaldujayli') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
njrosati/q-FrozenLake-v1-4x4-noSlippery
njrosati
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
397
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="njrosati/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
njrosati/q-Taxi-v3
njrosati
null
5
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
364
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="njrosati/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
SRobbins/Reinforce-CartPole-v1
SRobbins
null
6
0
null
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
true
true
true
286
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
johnhudzinatr/a2c-AntBulletEnv-v0
johnhudzinatr
null
13
0
stable-baselines3
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['AntBulletEnv-v0', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
true
true
true
352
# **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Alien-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,263
# (CleanRL) **PPO** Agent Playing **Alien-v5** This is a trained model of a PPO agent playing Alien-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Alien-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Alien-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Alien-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Alien-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Amidar-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,271
# (CleanRL) **PPO** Agent Playing **Amidar-v5** This is a trained model of a PPO agent playing Amidar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Amidar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Amidar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Amidar-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Amidar-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Bowling-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **Bowling-v5** This is a trained model of a PPO agent playing Bowling-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Bowling-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Bowling-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Bowling-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Bowling-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Freeway-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **Freeway-v5** This is a trained model of a PPO agent playing Freeway-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Freeway-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Freeway-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Freeway-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Freeway-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Riverraid-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Riverraid-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,295
# (CleanRL) **PPO** Agent Playing **Riverraid-v5** This is a trained model of a PPO agent playing Riverraid-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Riverraid-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Riverraid-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Riverraid-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Riverraid-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Hero-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Hero-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,255
# (CleanRL) **PPO** Agent Playing **Hero-v5** This is a trained model of a PPO agent playing Hero-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Hero-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Hero-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Hero-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Hero-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/FishingDerby-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['FishingDerby-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,319
# (CleanRL) **PPO** Agent Playing **FishingDerby-v5** This is a trained model of a PPO agent playing FishingDerby-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id FishingDerby-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/FishingDerby-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id FishingDerby-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'FishingDerby-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/RoadRunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['RoadRunner-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,303
# (CleanRL) **PPO** Agent Playing **RoadRunner-v5** This is a trained model of a PPO agent playing RoadRunner-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id RoadRunner-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/RoadRunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id RoadRunner-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'RoadRunner-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Robotank-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Robotank-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,287
# (CleanRL) **PPO** Agent Playing **Robotank-v5** This is a trained model of a PPO agent playing Robotank-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Robotank-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Robotank-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Robotank-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Robotank-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Assault-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,279
# (CleanRL) **PPO** Agent Playing **Assault-v5** This is a trained model of a PPO agent playing Assault-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Assault-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Assault-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Assault-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Assault-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['ChopperCommand-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,335
# (CleanRL) **PPO** Agent Playing **ChopperCommand-v5** This is a trained model of a PPO agent playing ChopperCommand-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id ChopperCommand-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/ChopperCommand-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id ChopperCommand-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'ChopperCommand-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Gravitar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Gravitar-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,287
# (CleanRL) **PPO** Agent Playing **Gravitar-v5** This is a trained model of a PPO agent playing Gravitar-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Gravitar-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Gravitar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Gravitar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Gravitar-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Gravitar-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Gravitar-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Krull-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,263
# (CleanRL) **PPO** Agent Playing **Krull-v5** This is a trained model of a PPO agent playing Krull-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Krull-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Krull-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Krull-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Krull-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```
cleanrl/Pong-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
cleanrl
null
10
0
cleanrl
0
reinforcement-learning
false
false
false
null
null
null
null
0
0
0
0
0
0
0
['Pong-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
true
true
true
2,255
# (CleanRL) **PPO** Agent Playing **Pong-v5** This is a trained model of a PPO agent playing Pong-v5. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py). ## Get Started To use this model, please install the `cleanrl` package with the following command: ``` pip install "cleanrl[jax,envpool,atari]" python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Pong-v5 ``` Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail. ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/Pong-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock poetry install --all-extras python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Pong-v5 --seed 1 ``` # Hyperparameters ```python {'actor_device_ids': [0], 'anneal_lr': True, 'async_batch_size': 20, 'async_update': 3, 'batch_size': 7680, 'capture_video': False, 'clip_coef': 0.1, 'cuda': True, 'ent_coef': 0.01, 'env_id': 'Pong-v5', 'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper', 'gae_lambda': 0.95, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learner_device_ids': [1, 2, 3, 4, 5, 6], 'learning_rate': 0.00025, 'max_grad_norm': 0.5, 'minibatch_size': 1920, 'norm_adv': True, 'num_actor_threads': 1, 'num_envs': 60, 'num_minibatches': 4, 'num_steps': 128, 'num_updates': 6510, 'profile': False, 'save_model': True, 'seed': 1, 'target_kl': None, 'test_actor_learner_throughput': False, 'torch_deterministic': True, 'total_timesteps': 50000000, 'track': True, 'update_epochs': 4, 'upload_model': True, 'vf_coef': 0.5, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```