repo_id
stringlengths 4
122
| author
stringlengths 2
38
β | model_type
stringlengths 2
33
β | files_per_repo
int64 2
39k
| downloads_30d
int64 0
33.7M
| library
stringlengths 2
37
β | likes
int64 0
4.87k
| pipeline
stringlengths 5
30
β | pytorch
bool 2
classes | tensorflow
bool 2
classes | jax
bool 2
classes | license
stringlengths 2
33
β | languages
stringlengths 2
1.63k
β | datasets
stringlengths 2
2.58k
β | co2
stringlengths 6
258
β | prs_count
int64 0
125
| prs_open
int64 0
120
| prs_merged
int64 0
46
| prs_closed
int64 0
34
| discussions_count
int64 0
218
| discussions_open
int64 0
148
| discussions_closed
int64 0
70
| tags
stringlengths 2
513
| has_model_index
bool 2
classes | has_metadata
bool 2
classes | has_text
bool 1
class | text_length
int64 201
598k
| readme
stringlengths 0
598k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['MontezumaRevenge-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,351 |
# (CleanRL) **PPO** Agent Playing **MontezumaRevenge-v5**
This is a trained model of a PPO agent playing MontezumaRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id MontezumaRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/MontezumaRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id MontezumaRevenge-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'MontezumaRevenge-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['WizardOfWor-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,311 |
# (CleanRL) **PPO** Agent Playing **WizardOfWor-v5**
This is a trained model of a PPO agent playing WizardOfWor-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id WizardOfWor-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/WizardOfWor-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id WizardOfWor-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'WizardOfWor-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Boxing-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Boxing-v5**
This is a trained model of a PPO agent playing Boxing-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Boxing-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Boxing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Boxing-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Boxing-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/PrivateEye-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['PrivateEye-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,303 |
# (CleanRL) **PPO** Agent Playing **PrivateEye-v5**
This is a trained model of a PPO agent playing PrivateEye-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id PrivateEye-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/PrivateEye-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id PrivateEye-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'PrivateEye-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/NameThisGame-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['NameThisGame-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,319 |
# (CleanRL) **PPO** Agent Playing **NameThisGame-v5**
This is a trained model of a PPO agent playing NameThisGame-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id NameThisGame-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/NameThisGame-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id NameThisGame-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'NameThisGame-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Frostbite-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Frostbite-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **Frostbite-v5**
This is a trained model of a PPO agent playing Frostbite-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Frostbite-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Frostbite-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Frostbite-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Frostbite-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/KungFuMaster-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['KungFuMaster-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,319 |
# (CleanRL) **PPO** Agent Playing **KungFuMaster-v5**
This is a trained model of a PPO agent playing KungFuMaster-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id KungFuMaster-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/KungFuMaster-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id KungFuMaster-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'KungFuMaster-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['BankHeist-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **BankHeist-v5**
This is a trained model of a PPO agent playing BankHeist-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id BankHeist-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BankHeist-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id BankHeist-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'BankHeist-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Venture-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,279 |
# (CleanRL) **PPO** Agent Playing **Venture-v5**
This is a trained model of a PPO agent playing Venture-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Venture-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Venture-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Venture-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Venture-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Berzerk-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,279 |
# (CleanRL) **PPO** Agent Playing **Berzerk-v5**
This is a trained model of a PPO agent playing Berzerk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Berzerk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Berzerk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Berzerk-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Berzerk-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Skiing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Skiing-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Skiing-v5**
This is a trained model of a PPO agent playing Skiing-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Skiing-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Skiing-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Skiing-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Skiing-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/MsPacman-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['MsPacman-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **MsPacman-v5**
This is a trained model of a PPO agent playing MsPacman-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id MsPacman-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/MsPacman-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id MsPacman-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'MsPacman-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/CrazyClimber-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CrazyClimber-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,319 |
# (CleanRL) **PPO** Agent Playing **CrazyClimber-v5**
This is a trained model of a PPO agent playing CrazyClimber-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id CrazyClimber-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/CrazyClimber-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id CrazyClimber-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'CrazyClimber-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Enduro-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Enduro-v5**
This is a trained model of a PPO agent playing Enduro-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Enduro-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Enduro-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Enduro-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Enduro-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Tutankham-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **Tutankham-v5**
This is a trained model of a PPO agent playing Tutankham-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Tutankham-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Tutankham-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Tutankham-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Tutankham-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Centipede-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **Centipede-v5**
This is a trained model of a PPO agent playing Centipede-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Centipede-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Centipede-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Centipede-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Centipede-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Kangaroo-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Kangaroo-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **Kangaroo-v5**
This is a trained model of a PPO agent playing Kangaroo-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Kangaroo-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Kangaroo-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Kangaroo-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Kangaroo-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Solaris-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Solaris-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,279 |
# (CleanRL) **PPO** Agent Playing **Solaris-v5**
This is a trained model of a PPO agent playing Solaris-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Solaris-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Solaris-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Solaris-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Solaris-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Breakout-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **Breakout-v5**
This is a trained model of a PPO agent playing Breakout-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Breakout-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Breakout-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Breakout-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Breakout-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/IceHockey-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['IceHockey-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **IceHockey-v5**
This is a trained model of a PPO agent playing IceHockey-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id IceHockey-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/IceHockey-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id IceHockey-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'IceHockey-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['YarsRevenge-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,311 |
# (CleanRL) **PPO** Agent Playing **YarsRevenge-v5**
This is a trained model of a PPO agent playing YarsRevenge-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id YarsRevenge-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/YarsRevenge-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id YarsRevenge-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'YarsRevenge-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Qbert-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,263 |
# (CleanRL) **PPO** Agent Playing **Qbert-v5**
This is a trained model of a PPO agent playing Qbert-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Qbert-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Qbert-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Qbert-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Qbert-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Surround-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Surround-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **Surround-v5**
This is a trained model of a PPO agent playing Surround-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Surround-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Surround-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Surround-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Surround-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Zaxxon-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Zaxxon-v5**
This is a trained model of a PPO agent playing Zaxxon-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Zaxxon-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Zaxxon-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Zaxxon-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Zaxxon-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Gopher-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Gopher-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Gopher-v5**
This is a trained model of a PPO agent playing Gopher-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Gopher-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Gopher-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Gopher-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Gopher-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['BeamRider-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **BeamRider-v5**
This is a trained model of a PPO agent playing BeamRider-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id BeamRider-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/BeamRider-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id BeamRider-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'BeamRider-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['TimePilot-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **TimePilot-v5**
This is a trained model of a PPO agent playing TimePilot-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id TimePilot-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/TimePilot-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id TimePilot-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'TimePilot-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Defender-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Defender-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **Defender-v5**
This is a trained model of a PPO agent playing Defender-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Defender-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Defender-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Defender-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Defender-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Jamesbond-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Jamesbond-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **Jamesbond-v5**
This is a trained model of a PPO agent playing Jamesbond-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Jamesbond-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Jamesbond-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Jamesbond-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Jamesbond-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/StarGunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['StarGunner-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,303 |
# (CleanRL) **PPO** Agent Playing **StarGunner-v5**
This is a trained model of a PPO agent playing StarGunner-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id StarGunner-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/StarGunner-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id StarGunner-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'StarGunner-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Tennis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Tennis-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,271 |
# (CleanRL) **PPO** Agent Playing **Tennis-v5**
This is a trained model of a PPO agent playing Tennis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Tennis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Tennis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Tennis-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Tennis-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Phoenix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Phoenix-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,279 |
# (CleanRL) **PPO** Agent Playing **Phoenix-v5**
This is a trained model of a PPO agent playing Phoenix-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Phoenix-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Phoenix-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Phoenix-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Phoenix-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Asteroids-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,295 |
# (CleanRL) **PPO** Agent Playing **Asteroids-v5**
This is a trained model of a PPO agent playing Asteroids-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Asteroids-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Asteroids-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Asteroids-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Asteroids-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['SpaceInvaders-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,327 |
# (CleanRL) **PPO** Agent Playing **SpaceInvaders-v5**
This is a trained model of a PPO agent playing SpaceInvaders-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id SpaceInvaders-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/SpaceInvaders-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id SpaceInvaders-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'SpaceInvaders-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Atlantis-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,287 |
# (CleanRL) **PPO** Agent Playing **Atlantis-v5**
This is a trained model of a PPO agent playing Atlantis-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Atlantis-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Atlantis-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Atlantis-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Atlantis-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['DoubleDunk-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,303 |
# (CleanRL) **PPO** Agent Playing **DoubleDunk-v5**
This is a trained model of a PPO agent playing DoubleDunk-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id DoubleDunk-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/DoubleDunk-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id DoubleDunk-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'DoubleDunk-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
MultiversexPeeps/ThePitchMeeting
|
MultiversexPeeps
| null | 21 | 3 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image']
| false | true | true | 1,232 |
[](https://huggingface.co/spaces/MultiversexPeeps/ThePitchMeeting)
### The Pitch Meeting Dreambooth model trained by Duskfallcrew with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
If you want to donate towards costs and don't want to subscribe:
https://ko-fi.com/DUSKFALLcrew
If you want to monthly support the EARTH & DUSK media projects and not just AI:
https://www.patreon.com/earthndusk
PitchMeetGeorge (use that on your prompt)
|
agercas/poca-SoccerTwos
|
agercas
| null | 20 | 647 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SoccerTwos']
| false | true | true | 841 |
# **poca** Agent playing **SoccerTwos**
This is a trained model of a **poca** agent playing **SoccerTwos** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SoccerTwos
2. Step 1: Write your model_id: agercas/poca-SoccerTwos
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
cleanrl/Pitfall-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pitfall-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,279 |
# (CleanRL) **PPO** Agent Playing **Pitfall-v5**
This is a trained model of a PPO agent playing Pitfall-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id Pitfall-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/Pitfall-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id Pitfall-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'Pitfall-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
pfunk/Pong-v4-DQPN_p1_pt0.1-seed1
|
pfunk
| null | 11 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 1,978 |
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p1_pt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p1_pt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p1_pt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p1_pt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p1_pt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p1_pt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p1_pt0.1 --start-policy-f 1000 --end-policy-f 1000 --evaluation-fraction 1.00 --target-tau 1.0 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 1000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p1_pt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 1000,
'target_network_frequency': 1000,
'target_tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
hectorjelly/Reinforce-push1
|
hectorjelly
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1
|
pfunk
| null | 11 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pong-v4', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,026 |
# (CleanRL) **DQN** Agent Playing **Pong-v4**
This is a trained model of a DQN agent playing Pong-v4.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/DQPN_p2_pt0.1_tt0.1.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[DQPN_p2_pt0.1_tt0.1]"
python -m cleanrl_utils.enjoy --exp-name DQPN_p2_pt0.1_tt0.1 --env-id Pong-v4
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/dqpn_atari.py
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/pfunk/Pong-v4-DQPN_p2_pt0.1_tt0.1-seed1/raw/main/poetry.lock
poetry install --all-extras
python dqpn_atari.py --exp-name DQPN_p2_pt0.1_tt0.1 --start-policy-f 2000 --end-policy-f 2000 --evaluation-fraction 1.00 --target-tau 0.1 --policy-tau 0.1 --track --wandb-entity pfunk --wandb-project-name dqpn --save-model true --upload-model true --hf-entity pfunk --env-id Pong-v4 --seed 1 --total-timesteps 10000000
```
# Hyperparameters
```python
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'end_policy_f': 2000,
'env_id': 'Pong-v4',
'evaluation_fraction': 1.0,
'exp_name': 'DQPN_p2_pt0.1_tt0.1',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'pfunk',
'learning_rate': 0.0001,
'learning_starts': 80000,
'policy_tau': 0.1,
'save_model': True,
'seed': 1,
'start_e': 1,
'start_policy_f': 2000,
'target_network_frequency': 1000,
'target_tau': 0.1,
'torch_deterministic': True,
'total_timesteps': 10000000,
'track': True,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': 'pfunk',
'wandb_project_name': 'dqpn'}
```
|
brutusxu/distilbert-base-cross-encoder-first-p
|
brutusxu
|
distilbert
| 9 | 3 |
transformers
| 0 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 727 |
distilbert-base-uncased trained on MSMARCO Document Reranking task,
#### usage
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained('brutusxu/distilbert-base-cross-encoder-first-p')
model = AutoModelForSequenceClassification.from_pretrained('brutusxu/distilbert-base-cross-encoder-first-p')
query = 'I love New York'
document = 'I like New York'
input = '<P>' + query + tokenizer.sep_token + '<Q>' + document
tokenized_input = tokenizer(input, return_tensors='pt')
ranking_score = model(**tokenized_input)
```
#### performance
on MSMARCO Document Reranking w. top-100 documents from BM25
```
MRR@10: 0.373
MRR@100: 0.381
nDCG@10: 0.442
nDCG@10: 0.475
```
|
cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1
|
cleanrl
| null | 10 | 0 |
cleanrl
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['VideoPinball-v5', 'deep-reinforcement-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 2,319 |
# (CleanRL) **PPO** Agent Playing **VideoPinball-v5**
This is a trained model of a PPO agent playing VideoPinball-v5.
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sebulba_ppo_envpool_impala_atari_wrapper.py).
## Get Started
To use this model, please install the `cleanrl` package with the following command:
```
pip install "cleanrl[jax,envpool,atari]"
python -m cleanrl_utils.enjoy --exp-name sebulba_ppo_envpool_impala_atari_wrapper --env-id VideoPinball-v5
```
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
## Command to reproduce the training
```bash
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/sebulba_ppo_envpool_impala_atari_wrapper.py
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/pyproject.toml
curl -OL https://huggingface.co/cleanrl/VideoPinball-v5-sebulba_ppo_envpool_impala_atari_wrapper-seed1/raw/main/poetry.lock
poetry install --all-extras
python sebulba_ppo_envpool_impala_atari_wrapper.py --actor-device-ids 0 --learner-device-ids 1 2 3 4 5 6 --track --save-model --upload-model --hf-entity cleanrl --env-id VideoPinball-v5 --seed 1
```
# Hyperparameters
```python
{'actor_device_ids': [0],
'anneal_lr': True,
'async_batch_size': 20,
'async_update': 3,
'batch_size': 7680,
'capture_video': False,
'clip_coef': 0.1,
'cuda': True,
'ent_coef': 0.01,
'env_id': 'VideoPinball-v5',
'exp_name': 'sebulba_ppo_envpool_impala_atari_wrapper',
'gae_lambda': 0.95,
'gamma': 0.99,
'hf_entity': 'cleanrl',
'learner_device_ids': [1, 2, 3, 4, 5, 6],
'learning_rate': 0.00025,
'max_grad_norm': 0.5,
'minibatch_size': 1920,
'norm_adv': True,
'num_actor_threads': 1,
'num_envs': 60,
'num_minibatches': 4,
'num_steps': 128,
'num_updates': 6510,
'profile': False,
'save_model': True,
'seed': 1,
'target_kl': None,
'test_actor_learner_throughput': False,
'torch_deterministic': True,
'total_timesteps': 50000000,
'track': True,
'update_epochs': 4,
'upload_model': True,
'vf_coef': 0.5,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}
```
|
johnhudzinatr/a2c-PandaReachDense-v2
|
johnhudzinatr
| null | 13 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['PandaReachDense-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 358 |
# **A2C** Agent playing **PandaReachDense-v2**
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
rafikmatta-hr/jd-exp-sbert
|
rafikmatta-hr
|
mpnet
| 13 | 0 |
sentence-transformers
| 0 |
sentence-similarity
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
| false | true | true | 3,563 |
# {MODEL_NAME}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 38 with parameters:
```
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 38,
"warmup_steps": 4,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
idjotherwise/xlm-roberta-base-finetuned-panx-de
|
idjotherwise
|
xlm-roberta
| 9 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,108 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 42 | 0.4092 | 0.5360 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Mithul/Reinforce-Cartpole-v1
|
Mithul
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
TheRafal/everything-v1
|
TheRafal
| null | 25 | 129 |
diffusers
| 5 |
text-to-image
| false | false | false |
creativeml-openrail-m
|
['en']
| null | null | 2 | 0 | 1 | 1 | 0 | 0 | 0 |
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image', 'image-to-image', 'diffusers', 'aiart', 'anime']
| false | true | true | 3,973 |
<center><img src="https://huggingface.co/TheRafal/everything-v1/resolve/main/img/1.png" width="768" height="768" alt="Girl on cherry blossom background" /></center>

----
# Everything V1
Everything V1 is a fine-tuned model based on Anything V3. It was trained using Dreambooth and merged using Merge Block Weighted. Like other anime-style Stable Diffusion models, it also supports danbooru tags to generate images.
e.g. **_1girl, white hair, blue eyes, cat ears, outdoors, city_**
<details>
<summary>SHOW IMAGE</summary>
<center><img src="https://huggingface.co/TheRafal/everything-v1/resolve/main/img/example.png" width="512" height="512" alt="Example prompt" /></center>
</details>
----
# How to download
## Batch download
1. Install Git
2. Create a folder of your choice and right click β "Git bash here" and open a gitbash on the folder's directory.
3. Run the following commands in order.
```
git lfs install
git clone https://huggingface.co/TheRafal/everything-v1
```
4. Complete
## Select and download
1. Go to the [Files and versions](https://huggingface.co/TheRafal/everything-v1/tree/main) tab
2. Select the model you want to download
3. Download
4. Complete
----
# Diffusers
This model can be used just like any other Stable Diffusion model.
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx) or [MPS](https://huggingface.co/docs/diffusers/optimization/mps).
```python
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained('TheRafal/everything-v1', torch_dtype=torch.float32).to('cuda')
prompt = "masterpiece, 1girl, blonde hair, blue eyes, colorful, cumulonimbus clouds, lighting, short hair, city, hoodie, night"
with autocast("cuda"):
image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5)["images"][0]
image.save(prompt.replace(" ", "_") + ".png")
```
<details>
<summary>SHOW IMAGE</summary>
**Anime Girl:**

</details>
----
# Examples
Below are some examples of images generated using this model:
<details>
<summary>SHOW IMAGES</summary>
**Anime Girl:**

```
1girl, red hair, blue eyes, short hair, jacket, winter clothes, scarf, outdoors, tokyo \(city\), snow, snowing, gloves, pants, looking at viewer, cowboy shot
Steps: 50, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 2436148258, Size: 768x768
```
**Anime Boy:**

```
1boy, black hair, green eyes, bishounen, casual, indoors, sitting, coffee shop, sitting, bokeh
Steps: 50, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 4225599226, Size: 768x768
```
</details>
----
# License
This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage.
The CreativeML OpenRAIL License specifies:
1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content
2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license
3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully)
[Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license)
|
joelito/legal-bulgarian-roberta-base
|
joelito
|
roberta
| 11 | 12 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,433 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-bulgarian-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4611
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.7922 | 18.01 | 50000 | 0.5792 |
| 0.7107 | 37.01 | 100000 | 0.5011 |
| 0.6712 | 56.01 | 150000 | 0.4763 |
| 0.6598 | 75.01 | 200000 | 0.4611 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-croatian-roberta-base
|
joelito
|
roberta
| 11 | 6 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,432 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-croatian-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4008
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8722 | 32.0 | 50000 | 0.5036 |
| 0.7612 | 64.0 | 100000 | 0.4363 |
| 0.6916 | 96.0 | 150000 | 0.4080 |
| 0.6656 | 128.0 | 200000 | 0.4008 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-czech-roberta-base
|
joelito
|
roberta
| 11 | 7 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,429 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-czech-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9425 | 0.25 | 50000 | 0.7593 |
| 0.712 | 1.11 | 100000 | 0.6754 |
| 0.6889 | 1.36 | 150000 | 0.6195 |
| 0.6506 | 2.21 | 200000 | 0.6097 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
UtopiansRareTruth/ppo-PyramidsRND
|
UtopiansRareTruth
| null | 20 | 2 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
| false | true | true | 843 |
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: UtopiansRareTruth/ppo-PyramidsRND
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
clybrg/atmant-1-0-sd-1-5
|
clybrg
| null | 31 | 44 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image']
| false | true | true | 1,577 |
### atmant_1_0_sd_1_5 Dreambooth model trained by clybrg with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
atmant (use that on your prompt)

|
Minata/codegen-finetuned_method2test_ctx1
|
Minata
|
codegen
| 18 | 7 |
transformers
| 0 |
text-generation
| true | false | false |
bsd-3-clause
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,232 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codegen-finetuned_method2test_ctx1
This model is a fine-tuned version of [Salesforce/codegen-350M-multi](https://huggingface.co/Salesforce/codegen-350M-multi) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0217 | 1.0 | 113 | 0.7849 |
| 0.5019 | 2.0 | 226 | 0.7061 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
joelito/legal-danish-roberta-base
|
joelito
|
roberta
| 11 | 4 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,430 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-danish-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2205
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8218 | 8.01 | 50000 | 0.3052 |
| 0.8718 | 16.02 | 100000 | 0.2487 |
| 0.7884 | 24.03 | 150000 | 0.2277 |
| 0.625 | 33.0 | 200000 | 0.2205 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
lilouuch/Goodreads_Books_Reviews_Roberta_51
|
lilouuch
|
roberta
| 6 | 41 |
transformers
| 0 |
text-classification
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,343 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Goodreads_Books_Reviews_Roberta_51
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8343
- F1: 0.6514
- Accuracy: 0.6601
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|
| 0.8728 | 1.0 | 12160 | 0.8448 | 0.6425 | 0.6504 |
| 0.793 | 2.0 | 24320 | 0.8343 | 0.6514 | 0.6601 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
|
Pearson/q-Taxi-v3
|
Pearson
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 363 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="Pearson/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ireneisdoomed/stop_reasons_classificator_multilabel_pt_50n_1epochs
|
ireneisdoomed
|
bert
| 19 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,259 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stop_reasons_classificator_multilabel_pt_50n_1epochs
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6312
- Accuracy Thresh: 0.7843
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy Thresh |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|
| No log | 1.0 | 6 | 0.6312 | 0.7843 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.12.1+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2
|
hectorjelly/ReinforceModel1
|
hectorjelly
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
jayxu/ddpm-celebahq-finetuned-butterflies-2epochs
|
jayxu
| null | 6 | 1 |
diffusers
| 0 |
unconditional-image-generation
| true | false | false |
mit
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
| false | true | true | 343 |
# Example Fine-Tuned Model for Unit 2 of the [Diffusion Models Class π§¨](https://github.com/huggingface/diffusion-models-class)
Describe your model here
## Usage
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('jayxu/ddpm-celebahq-finetuned-butterflies-2epochs')
image = pipeline().images[0]
image
```
|
marmolpen3/paraphrase-MiniLM-L3-v2-sla
|
marmolpen3
|
bert
| 13 | 4 |
sentence-transformers
| 0 |
text-classification
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
| false | true | true | 3,585 |
# {paraphrase-MiniLM-L3-v2-sla}
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
<!--- Describe your model here -->
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Evaluation Results
<!--- Describe how your model was evaluated -->
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
## Training
The model was trained with the parameters:
**DataLoader**:
`torch.utils.data.dataloader.DataLoader` of length 1284 with parameters:
```
{'batch_size': 12, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```
**Loss**:
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
Parameters of the fit()-Method:
```
{
"epochs": 3,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 3852,
"warmup_steps": 386,
"weight_decay": 0.01
}
```
## Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```
## Citing & Authors
<!--- Describe where people can find more information -->
|
SRKConsulting/q-FrozenLake-v1-4x4-noSlippery
|
SRKConsulting
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 402 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="SRKConsulting/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
natedog/my_awesome_billsum_model
|
natedog
|
t5
| 14 | 0 |
transformers
| 0 |
text2text-generation
| true | false | false |
apache-2.0
| null |
['billsum']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,203 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 62 | 3.5089 | 0.1247 | 0.0333 | 0.1056 | 0.1055 | 19.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1
- Datasets 2.9.0
- Tokenizers 0.13.2
|
SRKConsulting/Taxi-v3-W
|
SRKConsulting
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 369 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="SRKConsulting/Taxi-v3-W", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ben-yu/Reinforce-CartPole
|
ben-yu
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['CartPole-v1', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 286 |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
imar0/q-FrozenLake-v1-4x4-noSlippery
|
imar0
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['FrozenLake-v1-4x4-no_slippery', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 394 |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="imar0/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
imar0/Taxi-v3
|
imar0
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 359 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="imar0/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
ireneisdoomed/stop_reasons_classificator_multilabel_pt_500n_3epochs
|
ireneisdoomed
|
bert
| 13 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,398 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# stop_reasons_classificator_multilabel_pt_500n_3epochs
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2588
- Accuracy Thresh: 0.9365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy Thresh |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|
| No log | 1.0 | 16 | 0.3602 | 0.9365 |
| No log | 2.0 | 32 | 0.2747 | 0.9365 |
| No log | 3.0 | 48 | 0.2588 | 0.9365 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.12.1+cu102
- Datasets 2.9.0
- Tokenizers 0.13.2
|
burnerbaby/basil-mix
|
burnerbaby
| null | 7 | 0 | null | 0 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['TensorRT', 'Text2Image', 'Stable Diffusion', 'Image2Image', 'SDA']
| false | true | true | 747 |
# nuigurumi/basil_mix converted into TensorRT
<img src="https://i.imgur.com/fQS926g.png"></a>
Model converted from diffusers into TensorRT for accelerated inference up to 4x faster.
originally from: https://github.com/chavinlo/sda-node
This model was automatically converted by SDA-node
Compilation configuration:
```json
{
"_class_name": "StableDiffusionAccelerated_Base",
"_sda_version": "0.1.2",
"_trt_version": "8.5.3",
"_cuda_version": "none",
"_cudnn_version": "none",
"_onnx2trt_version": "8.5.3",
"unet": {
"precision": "fp16",
"path": "engine/unet.plan"
},
"clip": {
"path": "engine/clip.plan"
},
"de_vae": {
"path": "engine/de_vae.plan"
}
}
```
|
ShannonDXQ/distilbert-base-uncased-finetuned-cola
|
ShannonDXQ
|
distilbert
| 33 | 2 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
| null |
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,571 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-cola
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8107
- Matthews Correlation: 0.5422
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
| 0.522 | 1.0 | 535 | 0.5193 | 0.4152 |
| 0.3451 | 2.0 | 1070 | 0.4942 | 0.5166 |
| 0.2335 | 3.0 | 1605 | 0.5490 | 0.5291 |
| 0.179 | 4.0 | 2140 | 0.7727 | 0.5150 |
| 0.1314 | 5.0 | 2675 | 0.8107 | 0.5422 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
galverse/Galverse8888_V01
|
galverse
| null | 15 | 4 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image', 'stable-diffusion']
| false | true | true | 437 |
### Galverse-Diffusion-wf-8888 Dreambooth model trained by jarvissan with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
Sample pictures of this concept:
|
didinchy/aitext
|
didinchy
| null | 9 | 0 | null | 0 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 3,723 |
# Easy Text Generator
AI-powered text generation for mere mortals.
[](https://www.python.org/)

## What is it?
An app that runs in your web browser and uses a nice GUI interface to generate text from pre-trained machine learning models like GPT-2. It doesn't support training models at the moment.
## Advanced options
* `top_k` and `top_p` are explained well [here](https://github.com/VBPXKSMI/Open-CYOAI-Project/wiki/A-quick-explanation-on-what-is-top_k,-temp-and-top_p)
* For `model from transformers`, just copy the `foo/bar` phrase from any model in https://huggingface.co/models. Not everything will work, but anything using GPT or text generation in general (i.e. not sentiment analysis, etc) should work okay.
## How Do I Use it?
### Precautions
* Machine learning needs a LOT of RAM. I highly recommend 16gb or more, or enabling a swap partition if you're on Linux. Otherwise your machine may just lock up during install or running the program (it happened to me plenty).
* The process may take a while. The video above is highly edited. It really took about 3 minutes to generate that text on my laptop.
### Install
```bash
git clone [email protected]:alexcg1/easy_text_generator
cd easy_text_generator
pip install -r requirements.txt
```
### Run
In the same directory as above
```bash
streamlit app.py
```
It opens a tab in your web browser where you can choose the model you want and generate text.
### Thanks to:
* [Script Buddy v2](https://github.com/cdpierse/script_buddy_v2) - code adapted from here
* [Huggingface](https://huggingface.co/models) - a huge list of models for working with text
* [Manu Romero](https://twitter.com/mrm8488) for help creating recipes language model
## Can I See some Examples?
### General text (distilgpt2)
Starting text: `There once was an ugly duckling`
```
There once was an ugly duckling in the woods. It didn't hurt. The little little
yellow duckling was just so well dressed, and looked like so many of us. She
didn't really know how it looked, or why it looked. Her face was completely
lost, but now there is a lot more. I don't know what my mind was about this
thing. But she just felt sad. And when I saw her that day the eyes were staring
at her again. It was horrible. I saw it's ugly little duckling, or whatever it
is, but it always looked ugly. And I just knew that once again, this was not
something she liked to see. The little green duckling was just so well dressed.
But it looked like that too. There was nothing I could do. I was just really
```
### General text (GPT-2)
Starting text: `It is a truth universally acknowledged`
```
It is a truth universally acknowledged that any single person's life will change
when he or she becomes a parent, even if he or she becomes a parent on his or
her own. To put it bluntly, that person's life will change for the better if he
or she gets a baby and the child is adopted. When I talk to children in
orphanages or on the streets that all I hear is talk of wanting to adopt and
growing up being a "good baby" or that children are not in trouble when they
don't get adopted because "the community would always give them a chance." I
don't want to hear that when they ask, "What did you know or don't know about
adoption?"
```
### Star Trek scripts
Starting text: `One to beam up Mr Scott`
```
[Transporter room]
SCOTT: Mister Data.
DATA: We are still at three million kilometres.
SCOTT: Mister Data, you won't have much time. Beam away.
DATA: We will be gone in two minutes.
SCOTT: Mister Data, you just won't do it. You have to get back into
here, Mister Data.
DATA: Sir, I wish to
```
|
sweaterr/xlm-roberta-base-finetuned-panx-de
|
sweaterr
|
xlm-roberta
| 12 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,319 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1358
- F1: 0.8638
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2591 | 1.0 | 525 | 0.1621 | 0.8206 |
| 0.1276 | 2.0 | 1050 | 0.1379 | 0.8486 |
| 0.082 | 3.0 | 1575 | 0.1358 | 0.8638 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Minata/codegen-finetuned_method2test_ctx5
|
Minata
|
codegen
| 16 | 6 |
transformers
| 0 |
text-generation
| true | false | false |
bsd-3-clause
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,232 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codegen-finetuned_method2test_ctx5
This model is a fine-tuned version of [Salesforce/codegen-350M-multi](https://huggingface.co/Salesforce/codegen-350M-multi) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7352
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.051 | 1.0 | 113 | 0.8006 |
| 0.496 | 2.0 | 226 | 0.7352 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
joelito/legal-dutch-roberta-base
|
joelito
|
roberta
| 11 | 15 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,429 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-dutch-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2365
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9507 | 9.02 | 50000 | 0.3073 |
| 0.8777 | 19.02 | 100000 | 0.2592 |
| 0.6977 | 29.01 | 150000 | 0.2398 |
| 0.6732 | 39.01 | 200000 | 0.2365 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-finnish-roberta-base
|
joelito
|
roberta
| 11 | 8 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,431 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-finnish-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6085
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.9538 | 0.25 | 50000 | 0.7697 |
| 0.8979 | 1.13 | 100000 | 0.6754 |
| 0.8466 | 2.0 | 150000 | 0.6305 |
| 0.8041 | 2.25 | 200000 | 0.6085 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-greek-roberta-base
|
joelito
|
roberta
| 11 | 6 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,429 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-greek-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5247
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8724 | 12.0 | 50000 | 0.6730 |
| 0.7713 | 24.0 | 100000 | 0.5763 |
| 0.7186 | 36.0 | 150000 | 0.5396 |
| 0.7152 | 48.0 | 200000 | 0.5247 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-hungarian-roberta-base
|
joelito
|
roberta
| 11 | 7 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,433 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-hungarian-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2387
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.8627 | 4.0 | 50000 | 0.2960 |
| 0.761 | 8.0 | 100000 | 0.2589 |
| 0.7331 | 12.0 | 150000 | 0.2406 |
| 0.7388 | 16.0 | 200000 | 0.2387 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
joelito/legal-irish-roberta-base
|
joelito
|
roberta
| 11 | 5 |
transformers
| 0 |
fill-mask
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,429 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# legal-irish-roberta-base
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 200000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:------:|:---------------:|
| 0.5892 | 228.0 | 50000 | 0.7659 |
| 0.4497 | 456.0 | 100000 | 0.7421 |
| 0.3906 | 684.0 | 150000 | 0.7443 |
| 0.3906 | 913.0 | 200000 | 0.7328 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0+cu102
- Datasets 2.9.0
- Tokenizers 0.12.0
|
SRKConsulting/Taxi-v3-X
|
SRKConsulting
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 369 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="SRKConsulting/Taxi-v3-X", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SRKConsulting/Taxi-v3-Y
|
SRKConsulting
| null | 5 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 369 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="SRKConsulting/Taxi-v3-Y", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
SRKConsulting/Taxi-v3-Z
|
SRKConsulting
| null | 5 | 0 | null | 1 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Taxi-v3', 'q-learning', 'reinforcement-learning', 'custom-implementation']
| true | true | true | 369 |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="SRKConsulting/Taxi-v3-Z", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
dougtrajano/toxicity-target-type-identification
|
dougtrajano
|
bert
| 20 | 11 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['pt']
| null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['toxicity', 'portuguese', 'hate speech', 'offensive language', 'generated_from_trainer']
| true | true | true | 1,653 |
# toxicity-target-type-identification
Toxicity Target Type Identification is a model that classifies the type (individual, group, or other) of a given targeted text.
This BERT model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the [OLID-BR dataset](https://huggingface.co/datasets/dougtrajano/olid-br).
## Overview
**Input:** Text in Brazilian Portuguese
**Output:** Multiclass classification (individual, group, or other)
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("dougtrajano/toxicity-target-type-identification")
model = AutoModelForSequenceClassification.from_pretrained("dougtrajano/toxicity-target-type-identification")
```
## Limitations and bias
The following factors may degrade the modelβs performance.
**Text Language**: The model was trained on Brazilian Portuguese texts, so it may not work well with Portuguese dialects.
**Text Origin**: The model was trained on texts from social media and a few texts from other sources, so it may not work well on other types of texts.
## Trade-offs
Sometimes models exhibit performance issues under particular circumstances. In this section, we'll discuss situations in which you might discover that the model performs less than optimally, and should plan accordingly.
**Text Length**: The model was fine-tuned on texts with a word count between 1 and 178 words (average of 18 words). It may give poor results on texts with a word count outside this range.
## Performance
The model was evaluated on the test set of the [OLID-BR](https://dougtrajano.github.io/olid-br/) dataset.
**Accuracy:** 0.7505
**Precision:** 0.7812
**Recall:** 0.7505
**F1-Score:** 0.7603
| Class | Precision | Recall | F1-Score | Support |
| :---: | :-------: | :----: | :------: | :-----: |
| `INDIVIDUAL` | 0.8850 | 0.7964 | 0.8384 | 609 |
| `GROUP` | 0.6766 | 0.6385 | 0.6570 | 213 |
| `OTHER` | 0.4518 | 0.7177 | 0.5545 | 124 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.952388499692274e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 1993
- optimizer: Adam with betas=(0.9944095815441554,0.8750000522553327) and epsilon=1.8526084265228802e-07
- lr_scheduler_type: linear
- num_epochs: 30
### Framework versions
- Transformers 4.26.1
- Pytorch 1.10.2+cu113
- Datasets 2.9.0
- Tokenizers 0.13.2
## Provide Feedback
If you have any feedback on this model, please [open an issue](https://github.com/DougTrajano/ToChiquinho/issues/new) on GitHub.
|
mqy/mt5-small-finetuned-6feb-5
|
mqy
|
mt5
| 14 | 2 |
transformers
| 0 |
summarization
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['summarization', 'generated_from_trainer']
| true | true | true | 1,592 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-6feb-5
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5265
- Rouge1: 18.25
- Rouge2: 5.96
- Rougel: 17.96
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
| 5.1138 | 1.0 | 311 | 2.7003 | 16.27 | 5.15 | 16.11 |
| 3.358 | 2.0 | 622 | 2.5948 | 17.74 | 5.36 | 17.48 |
| 3.1594 | 3.0 | 933 | 2.5645 | 18.18 | 5.99 | 17.95 |
| 3.068 | 4.0 | 1244 | 2.5200 | 18.32 | 6.16 | 18.0 |
| 3.0086 | 5.0 | 1555 | 2.5265 | 18.25 | 5.96 | 17.96 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
Prajeevan/akshyaid
|
Prajeevan
| null | 35 | 13 |
diffusers
| 0 |
text-to-image
| false | false | false |
creativeml-openrail-m
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['text-to-image']
| false | true | true | 1,663 |
### akshyaiD Dreambooth model trained by Prajeevan with [Hugging Face Dreambooth Training Space](https://huggingface.co/spaces/multimodalart/dreambooth-training) with the v1-5 base model
You run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb). Don't forget to use the concept prompts!
Sample pictures of:
akshyaiD (use that on your prompt)

|
Marcosc/Prueba
|
Marcosc
| null | 2 | 0 | null | 0 | null | false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | false | true | 4,907 |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
# Model Details
## Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
## Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
# Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
## Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
## Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
## Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
# Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
# Training Details
## Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
## Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
### Preprocessing
[More Information Needed]
### Speeds, Sizes, Times
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
## Testing Data, Factors & Metrics
### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
## Results
[More Information Needed]
### Summary
# Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
# Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
# Technical Specifications [optional]
## Model Architecture and Objective
[More Information Needed]
## Compute Infrastructure
[More Information Needed]
### Hardware
[More Information Needed]
### Software
[More Information Needed]
# Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
# Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
# More Information [optional]
[More Information Needed]
# Model Card Authors [optional]
[More Information Needed]
# Model Card Contact
[More Information Needed]
|
ben-yu/Reinforce-Pixelcoper_v0
|
ben-yu
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
xu-li/ppo-Huggy
|
xu-li
| null | 32 | 1 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Huggy']
| false | true | true | 816 |
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Huggy
2. Step 1: Write your model_id: xu-li/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
HuyenNguyen/TTS456789
|
HuyenNguyen
|
whisper
| 16 | 10 |
transformers
| 0 |
automatic-speech-recognition
| true | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,247 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TTS456789
This model is a fine-tuned version of [HuyenNguyen/TTS0123](https://huggingface.co/HuyenNguyen/TTS0123) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0881
- eval_wer: 5.6163
- eval_runtime: 2570.1692
- eval_samples_per_second: 0.778
- eval_steps_per_second: 0.049
- epoch: 3.5
- step: 1500
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 24
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
erniechiew/ppo-SnowballTarget
|
erniechiew
| null | 20 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
| false | true | true | 857 |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: erniechiew/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
xiazeng/Reinforce-Pixelcopter-PLE-v0
|
xiazeng
| null | 6 | 0 | null | 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['Pixelcopter-PLE-v0', 'reinforce', 'reinforcement-learning', 'custom-implementation', 'deep-rl-class']
| true | true | true | 300 |
# **Reinforce** Agent playing **Pixelcopter-PLE-v0**
This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
|
nhiro3303/ppo-LunarLander-v2
|
nhiro3303
| null | 12 | 0 |
stable-baselines3
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['LunarLander-v2', 'deep-reinforcement-learning', 'reinforcement-learning', 'stable-baselines3']
| true | true | true | 350 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
|
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_rte_128
|
gokuls
|
mobilebert
| 17 | 0 |
transformers
| 0 |
text-classification
| true | false | false |
apache-2.0
|
['en']
|
['glue']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,599 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_rte_128
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5452
- Accuracy: 0.4657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.28 | 1.0 | 1136 | 0.5452 | 0.4657 |
| 0.2191 | 2.0 | 2272 | 0.5774 | 0.4765 |
| 0.2124 | 3.0 | 3408 | 0.5632 | 0.5018 |
| 0.2095 | 4.0 | 4544 | 0.5727 | 0.4982 |
| 0.2076 | 5.0 | 5680 | 0.5487 | 0.4982 |
| 0.2063 | 6.0 | 6816 | 0.5625 | 0.4982 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.9.0
- Tokenizers 0.13.2
|
erniechiew/ppo-Pyramids
|
erniechiew
| null | 18 | 0 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-Pyramids']
| false | true | true | 833 |
# **ppo** Agent playing **Pyramids**
This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-Pyramids
2. Step 1: Write your model_id: erniechiew/ppo-Pyramids
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
schreon/gpt2-lhm-large-02
|
schreon
|
gpt2
| 13 | 7 |
transformers
| 0 |
text-generation
| true | false | false |
mit
| null |
['training_corpus']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 975 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-lhm-large-02
This model is a fine-tuned version of [schreon/gpt2-lhm-large](https://huggingface.co/schreon/gpt2-lhm-large) on the training_corpus dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 192
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|
yunaaa/results
|
yunaaa
|
t5
| 39 | 2 |
transformers
| 0 |
text2text-generation
| true | false | false |
cc-by-4.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,329 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [paust/pko-t5-small](https://huggingface.co/paust/pko-t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 10.5155
- Bleu: 0.8
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|
| No log | 1.0 | 6 | 10.9861 | 0.8359 | 19.0 |
| No log | 2.0 | 12 | 10.5155 | 0.8 | 19.0 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
ben-yu/ppo-SnowballTarget
|
ben-yu
| null | 20 | 1 |
ml-agents
| 0 |
reinforcement-learning
| false | false | false | null | null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['unity-ml-agents', 'ml-agents', 'deep-reinforcement-learning', 'reinforcement-learning', 'ML-Agents-SnowballTarget']
| false | true | true | 853 |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://github.com/huggingface/ml-agents#get-started
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
### Resume the training
```
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser:**.
1. Go to https://huggingface.co/spaces/unity/ML-Agents-SnowballTarget
2. Step 1: Write your model_id: ben-yu/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play π
|
hamjang/xlm-roberta-base-finetuned-panx-de
|
hamjang
|
xlm-roberta
| 14 | 0 |
transformers
| 0 |
token-classification
| true | false | false |
mit
| null |
['xtreme']
| null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
['generated_from_trainer']
| true | true | true | 1,259 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1368
- F1: 0.8517
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2468 | 1.0 | 787 | 0.1583 | 0.8312 |
| 0.1187 | 2.0 | 1574 | 0.1368 | 0.8517 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2
|
UCSD-VA-health/RadBERT-RoBERTa-4m
|
UCSD-VA-health
|
roberta
| 9 | 11 |
transformers
| 0 |
fill-mask
| true | false | false |
apache-2.0
| null | null | null | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
[]
| false | true | true | 2,119 |
## RadBERT-RoBERTa-4m
This is one variant of our Radiology-BERT models from UC San Diego and VA healthcare system. It is initialized with RoBERTa weights and further trained with 4 million radiology reports deidentified from US VA hospital. The model achieves stronger medical language understanding performance than previous medical domain models such as BioBERT, Clinical-BERT, BLUE-BERT and BioMed-RoBERTa.
Performances are evaluated on three tasks:
(a) abnormal sentence classification: sentence classification in radiology reports as reporting abnormal or normal findings;
(b) report coding: Assign a diagnostic code to a given radiology report for five different coding systems;
(c) report summarization: given the findings section of a radiology report, extractively select key sentences that summarized the findings.
It also shows superior performance on other radiology NLP tasks which are not reported in the paper.
For details, check out the paper here:
[RadBERT: Adapting transformer-based language models to radiology](https://pubs.rsna.org/doi/abs/10.1148/ryai.210258)
### How to use
Here is an example of how to use this model to extract the features of a given text in PyTorch:
```python
from transformers import AutoConfig, AutoTokenizer, AutoModel
config = AutoConfig.from_pretrained('zzxslp/RadBERT-RoBERTa-4m')
tokenizer = AutoTokenizer.from_pretrained('zzxslp/RadBERT-RoBERTa-4m')
model = AutoModel.from_pretrained('zzxslp/RadBERT-RoBERTa-4m', config=config)
text = "Replace me by any medical text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
```
### BibTeX entry and citation info
If you use the model, please cite our paper:
```bibtex
@article{yan2022radbert,
title={RadBERT: Adapting transformer-based language models to radiology},
author={Yan, An and McAuley, Julian and Lu, Xing and Du, Jiang and Chang, Eric Y and Gentili, Amilcare and Hsu, Chun-Nan},
journal={Radiology: Artificial Intelligence},
volume={4},
number={4},
pages={e210258},
year={2022},
publisher={Radiological Society of North America}
}
```
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.