id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
31,739 | -(\sqrt{-2 \cdot m})^2 = m \cdot 2 |
49,005 | 14 = 28/2 |
44,518 | \frac{1}{\sin(\pi/6*2/2)} \sin(\frac12 (3 + 1) \frac{\pi*2}{6}) \sin(3/2*2 \pi/6 + \pi/6) = 3/2 |
16,210 | \sin\left(z\right) \cos(z) \cdot 2 = \sin\left(z \cdot 2\right) |
17,671 | x^4 - 2 \cdot x^2 + 8 \cdot \left(-1\right) = (x^2 + (-1))^2 + 9 \cdot \left(-1\right) = (x^2 + (-1) + 3 \cdot \left(-1\right)) \cdot (x^2 + (-1) + 3) = (x + 2 \cdot (-1)) \cdot (x + 2) \cdot (x^2 + 2) |
4,876 | x^{f - h} = \frac{x^f}{x^h} |
7,622 | \dfrac{1}{2 \cdot c} \cdot \left(a - b + c\right) = 1/2 + \dfrac{1}{2 \cdot c} \cdot (a - b) |
17,228 | -w_{yy} a^2 + w_t = 0 \Rightarrow w_t w = a^2 ww_{yy} |
13,039 | (2 - k)^2 = \left(-(k + 2*(-1))\right) * \left(-(k + 2*(-1))\right) = (-1) * (-1)*(k + 2*\left(-1\right))^2 = \left(k + 2*\left(-1\right)\right) * \left(k + 2*\left(-1\right)\right) |
23,218 | \left|{Z}\right|^2 = \left|{Z}\right| \left|{Z}\right| |
4,844 | {180 + 3 \cdot \left(-1\right) + 2 \choose 2} = 15931 |
12,104 | c \cdot b \cdot m = m \cdot b \cdot c |
231 | \frac{1}{\omega}*(-x * x + (x + \omega)^2) = \omega + 2*x |
-22,368 | (2(-1) + x) (5(-1) + x) = x^2 - x\cdot 7 + 10 |
3,737 | (b^2 + a^2 + ab) \left(a - b\right) = a \cdot a^2 - b^3 |
8,994 | 5 m_2 = m_1 \Rightarrow 3 m_1 = 15 m_2 |
8,338 | m\cdot x\cdot 2 = -m + m\cdot (2\cdot x + 1) |
27,526 | \sin\left(b + a\right) = \sin\left(a\right) \cdot \cos(b) + \cos(a) \cdot \sin(b) |
41,148 | 2 = (1 + i) * (1 + i) \approx (1 + i)*\left(1 - i\right) |
11,441 | \int_0^t x t\,dt = x t^2/2 |
15,783 | \sqrt{x} - \dfrac{1}{\sqrt{x}} = (x + \left(-1\right))/(\sqrt{x}) |
-2,080 | \pi/3 = \pi\cdot \frac76 - \pi\cdot \frac{5}{6} |
-3,952 | 8/4*\frac{s^2}{s * s} = \frac{s^2*8}{4*s^2} |
26,019 | \left(n + 1\right)/n\cdot z = \frac{1}{n\cdot z^n}\cdot z^{n + 1}\cdot (n + 1) |
5,503 | x^3 + 0\cdot x^2 + 0\cdot x + 0 = (x + 0) \cdot (x + 0) \cdot (x + 0) |
-4,336 | \frac{1}{t^2\cdot 2} = \tfrac{1}{2t^2} |
-1,845 | 5/3 \cdot \pi + \frac{1}{4} \cdot 7 \cdot \pi = \frac{1}{12} \cdot 41 \cdot \pi |
37,239 | (y + z)\cdot 3 = y\cdot 3 + 3\cdot z |
29,253 | z^5 + (-1) = \left(z + (-1)\right) \cdot (1 + z^4 + z^2 \cdot z + z^2 + z) |
12,544 | {n \choose i}*i = {(-1) + n \choose i + \left(-1\right)}*n |
-20,959 | -1/2 \cdot \frac{1}{2} \cdot 2 = -\dfrac{1}{4} \cdot 2 |
-30,239 | 20 + y^2 - y \cdot 12 = (y + 2 \cdot (-1)) \cdot (y + 10 \cdot (-1)) |
-1,841 | \frac14*π - π*4/3 = -13/12*π |
-12,773 | 8 = 6 (-1) + 14 |
28,491 | \frac{1}{x + (-1)} - \frac1x = \frac{1}{x\cdot ((-1) + x)} |
9,376 | \dfrac{1}{x + 4} \left(x + (-1)\right) = \frac{x + 4 + 5 (-1)}{x + 4} = 1 - \frac{5}{x + 4} |
8,248 | 2*g + 3 = 5 + 2*(g + (-1)) = (2^3 + 2)/2 + 2*(g + (-1)) |
594 | \left|{C \cdot H + x}\right| = \left|{H \cdot C + x}\right| |
-8,490 | -\frac{1}{-1} = 1 |
26,769 | A*E*A*E*A*E = \left(E*A\right) * (A*E)^2 |
7,875 | z^{j + n} = z^n*z^j |
11,417 | 5/216 = \tfrac{5\cdot 1/36}{6} |
11,970 | 1 = \dfrac{2^1 - 2^0}{0\cdot (-1) + 1} |
-27,508 | a^2 \cdot 12 = 2 \cdot 2 \cdot 3 \cdot a \cdot a |
20,189 | \mathbb{E}\left[U + X\right] = \mathbb{E}\left[U\right] + \mathbb{E}\left[X\right] |
21,325 | \left(1 + 2^{22} + 2^{11}\right)\cdot \left(2^{11} + \left(-1\right)\right) = (-1) + 2^{33} |
13,883 | -(f^6)^{30} + \left(f^6\right)^{15} + (f^6)^8 - f^6 = -f^6 - f^{180} + f^{90} + f^{48} |
7,858 | -(u^2 + x^2 + t^2) + \left(u + x + t\right)^2 = 2\times (t\times u + x\times u + x\times t) |
922 | |\frac{1}{2\times x\times i + 1}\times (-3\times x + 2\times i)| = \frac{|2\times i - 3\times x|}{|i\times x\times 2 + 1|} |
21,560 | \sqrt{2 \cdot 2 - x \cdot x} = d \Rightarrow d^2 + x^2 = 2^2 |
6,168 | 1 - e^{\frac{1}{\tfrac{1}{10}}\cdot ((-1)\cdot \frac{1}{12})} = 1 - e^{-\frac{10}{12}} \approx 0.5654 |
-4,279 | \frac{n^3}{n^2}\cdot 2/5 = \frac{2}{5n^2}n^3 |
806 | l - (l + 1)/2 = (2 \cdot l - x + 1)/2 = (2 \cdot l - x + 1)/2 + 0 \cdot \left(-1\right) |
44,274 | 0 \approx 0.0001 \cdot \pi/2 |
-7,026 | \frac16 = \frac16 |
-7,566 | \left(-30 + 6 \cdot i + 20 \cdot i + 4\right)/13 = \frac{1}{13} \cdot (-26 + 26 \cdot i) = -2 + 2 \cdot i |
16,455 | \mathbb{E}[(x_1 \cdot x_2)^2] = \mathbb{E}[x_1^2 \cdot x_2^2] = \mathbb{E}[x_1 \cdot x_1] \cdot \mathbb{E}[x_2^2] |
12,350 | x^4 + 1 = \left(x - u\right)\cdot (x - u^3)\cdot (x - u^5)\cdot (x - u^7) = (x - u)\cdot \left(x - u^3\right)\cdot \left(x + u\right)\cdot (x + u^3) |
9,372 | \dfrac12 \times (35 \times \left(-1\right) - 7) = -21 |
-4,077 | \tfrac{s^4}{s \cdot 15} \cdot 18 = s^4/s \cdot \frac{1}{15} \cdot 18 |
17,194 | 2 \cdot 2R = 4R |
19,683 | \sum_{k=1}^\infty \int f_k\,dx = \int \sum_{k=1}^\infty f_k\,dx |
-5,972 | \frac{t}{t^2 + 11\cdot t + 30} = \dfrac{t}{(t + 5)\cdot \left(t + 6\right)} |
-3,922 | \frac{66*d^2}{30*d^5} = 66/30*\frac{d^2}{d^5} |
5,664 | z^B Dz = (z^B Dz)^B = z^B D^B z |
-18,635 | -\frac{1}{14}29 = -29/14 |
23,799 | \left(\dfrac12\cdot \left(1 - \sin{x}\right) = 1\Longrightarrow \sin{x} = -1\right)\Longrightarrow x = 3\cdot \pi/2 |
5,076 | (1 - x)^{l + 3\cdot (-1)} = (-1)^{l + 3\cdot (-1)}\cdot (x + (-1))^{l + 3\cdot \left(-1\right)} = (-1)^{l + (-1)}\cdot \left(x + (-1)\right)^{l + 3\cdot (-1)} |
1,051 | 20 x^3 + 17 = 20 (3\left(-1\right) + x^3) + 77 |
24,090 | (-i)^3 = -i^3 |
-10,559 | 24/(z*75) = \tfrac{8}{z*25}*\dfrac{3}{3} |
-9,910 | -\tfrac{20}{25} = -0.8 |
42,178 | l + n + 1 + 1 = l + 1 + n + 1 |
20,017 | -\sin^2(y) + \cos^2\left(y\right) = \cos(2y) |
19,588 | (-1) + 2^{x + (-1)} + (-1) = 2*(-1) + 2^{(-1) + x} |
42,423 | 1 = \left(\frac1e\right)^0 |
36,698 | f + c = f + c |
5,339 | 28/7 = (7 + 1 + 2 + 3 + 4 + 5 + 6)/7 |
24,928 | e^C\cdot e^X = e^{X + C} |
-22,092 | 10/6 = \frac{1}{3}5 |
2,212 | \frac{4}{1 + 16 t^2} = \frac{d}{dt} \arctan(4t) |
6,748 | \frac{25}{9} = \frac59*5 |
679 | \frac{n!}{2 \times n} = \left(n + (-1)\right)!/2 \geq n |
1,877 | 4 > |y|\Longrightarrow 1 \gt |y|/4 |
9,141 | (-1) + (z + 1)^2 = z^2 + 2\times z |
-4,418 | (5 \cdot (-1) + y) \cdot \left(y + \left(-1\right)\right) = y^2 - y \cdot 6 + 5 |
30,312 | f\cdot B = B\cdot f |
-20,987 | \frac{4 + n*10}{7*(-1) - n*9}*\dfrac{7}{7} = \dfrac{28 + 70*n}{49*(-1) - 63*n} |
3,791 | \overline{a}\times \overline{b} = \overline{b}\times \overline{a} |
16,114 | (0\left(-1\right) + y)^x = y^x |
37,211 | 6 = 2 \times 2^2 + 2 \times \left(-1\right) |
12,648 | \dfrac{n!}{k!} = \binom{n}{k} \cdot (-k + n)! |
5,277 | \tfrac{1}{6} = \frac{10}{60} |
-25,362 | \dfrac{d}{dx}[\cot(x)]=-\dfrac{1}{\sin^2(x)} |
414 | \frac{1}{1 + W \cdot x} = \dfrac{1}{(x + \frac{1}{W}) \cdot W} |
17,197 | \alpha/(\bar{\alpha}) = \alpha \times \alpha/(\alpha\times \bar{\alpha}) |
26,026 | A*I*c = A*c*I |
36,124 | |-z + 1/\left((-1)\cdot z\right)| = |\frac1z + z| |
-15,945 | \frac{17}{10} = 5*\dfrac{7}{10} - 6*3/10 |
8,310 | \tfrac{5}{4 \cdot 3 \cdot 2} 8 \cdot 7 \cdot 6 = 70 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.