id
int64
-30,985
55.9k
text
stringlengths
5
437k
17,601
x^{\tfrac{1}{q} p} = (x^p)^{1/q} = \left(x^p\right)^{\dfrac1q}
33,686
60 \cdot 60 \cdot 60 = 3^2 \cdot 2 \cdot 5 \cdot 2 \cdot 5^2 \cdot 2^4 \cdot 3
-2,611
3^{\frac{1}{2}} - \left(9 \times 3\right)^{\frac{1}{2}} + (25 \times 3)^{\frac{1}{2}} = 3^{\frac{1}{2}} - 27^{\frac{1}{2}} + 75^{1 / 2}
2,805
-(u_0 + u_2 - u_1 \cdot 2) + u_3 - u_2 \cdot 2 + u_1 = u_3 - u_2 \cdot 3 + 3 \cdot u_1 - u_0
31,417
3 = (2 + 1)!/(1!*2!)
-20,987
\frac{70\cdot m + 28}{-63\cdot m + 49\cdot (-1)} = \frac{10\cdot m + 4}{-9\cdot m + 7\cdot \left(-1\right)}\cdot 7/7
27,507
\sqrt{x} = e^{\tfrac{\ln(x)}{2}}
3,850
(z^2 + z + 1) \left(z + (-1)\right) = z^3 + (-1)
31,386
2.999 \cdot \dots = 3
15,674
|y| = |y - y_l + y_l| \leq |y - y_l| + |y_l|
-20,267
\frac{2}{7}\cdot \tfrac{1}{y\cdot 10 + 2\cdot (-1)}\cdot (2\cdot \left(-1\right) + 10\cdot y) = \dfrac{20\cdot y + 4\cdot (-1)}{70\cdot y + 14\cdot (-1)}
7,181
\frac{1 + k}{2 + k} = \frac{1}{k + 2}\cdot (k + 1)
32,271
-1 \geq \cos(x^2\times p + h\times x + s) \Rightarrow \cos\left(x^2\times p + h\times x + s\right) = -1
35,157
\sin{\dfrac{\pi}{4}} \lt \sin{\pi \cdot 5/18}
24,217
1 - \tan(y) + \tan^2\left(y\right) - \tan^3(y) + \dotsm = \frac{\tan\left(2 \cdot y\right)}{1 + \tan(2 \cdot y)}
-11,545
12 i + 0 + 15 \left(-1\right) = -15 + 12 i
22,689
H\cdot a\cdot g = g\cdot H\cdot a
6,952
\frac{3 + 4 \cdot (-1)}{5 + 2 \cdot (-1)} = -\frac13
-24,830
5221 = -53 + 5274
-22,298
x^2 - 6\cdot x + 7\cdot (-1) = (x + 7\cdot (-1))\cdot (x + 1)
-5,571
\frac{2}{9 + k\cdot 3} = \frac{2}{(3 + k)\cdot 3}
6,206
-1/((-1) \frac13) = 3
31,898
(m + 1)^3 = m^3 + 3\cdot m^2 + 3\cdot m + 1 > 3\cdot m^2
-20,061
-\tfrac{3}{1} (\left(-8\right) p)/((-8) p) = p\cdot 24/\left(p\cdot (-8)\right)
551
x^l a_l + x^l b_l = (a_l + b_l) x^l
903
f^d*f^h = f^{h + d}
16,957
8^x - 1^x = 8^x + (-1)
-4,961
\frac{1}{100}\cdot 0.18 = 0.18/100
17,726
-2\cdot t + t^2 = 0 \implies t = 0\wedge 2 = t
-5,570
\frac{23}{x^2 - x*2 + 8*(-1)} = \frac{1}{x * x - 2*x + 8*(-1)}*(4*x + 8 - x*4 + 16 + (-1))
-10,344
-\frac{1}{2 \cdot a + 2} \cdot (10 + 3 \cdot a) \cdot 5/5 = -\frac{50 + 15 \cdot a}{10 + 10 \cdot a}
34,380
\sqrt{g} = \sqrt{g}\cdot \frac{1}{0\cdot (-1) + 1}\cdot (1 + 0)
29,310
-\cot(x + \frac{π}{2}) = \tan(x)
-19,647
\frac{2\times 2}{3} = 4/3
25,815
3\cdot (x^2 + y^2)^2\cdot (2\cdot x\cdot x' + 2\cdot y) = (x^2 - y^2)\cdot (x\cdot x'\cdot 2 - 2\cdot y)\cdot 2
9,580
z^2 + (-1) = (1 + z) \cdot (\left(-1\right) + z)
31,613
1/(c*f) = \frac{1}{c*f}
-6,179
\dfrac{4}{16 + x\cdot 4} = \tfrac{1}{4\cdot \left(4 + x\right)}\cdot 4
20,484
(1 - x)/x + x \cdot 0 + (1 - x) \cdot \mathbb{Var}\left(X\right) = \left(1 - x\right) \cdot (1/x + \mathbb{Var}\left(X\right))
18,428
\frac{2\cdot \pi}{2\cdot 5} = \pi - 4\cdot \pi/5
-4,204
45/60 \frac{1}{p^5} p^4 = \frac{45 p^4}{p^5*60}
-23,108
-\frac{1}{2}\cdot 7/2 = -\dfrac{7}{4}
8,187
z \cdot z + 2\cdot z + 1 = (z + 1)^2
-15,799
6\cdot \frac{1}{10}\cdot 4 - 5\cdot 6/10 = -6/10
17,976
\frac{1}{\left(1 + i\right)!}\cdot i! = \frac{1}{1 + i}
-20,729
\frac{-z*50 + 45*\left(-1\right)}{70*z + 63} = -5/7*\frac{10*z + 9}{10*z + 9}
-7,061
3/10 \cdot \frac29 = \frac{1}{15}
5,243
\cot{((-1)\cdot \pi)/4} = \cot{\frac{\pi\cdot 3}{4}}
-11
5 - 1 = 4
-11,567
-3\cdot i - 1 + 10\cdot \left(-1\right) = -i\cdot 3 - 11
21,740
\mathbb{E}\left[Q\right]^4 = \mathbb{E}\left[Q^4\right]
13,417
x \cdot y = (x + (-1)) \cdot \left(y + (-1)\right) + 1 + x + \left(-1\right) + y + (-1)
506
\frac{1}{d\cdot g} = \frac{1}{d\cdot g} \Rightarrow g\cdot d = g\cdot d
36,360
a^{n + 1} = aa^n
2,929
\cos(4\times y) = \cos(2\times \pi - 4\times y) = \cos(9\times y)
33,911
145/3 = \dfrac{1}{3} 152 - 7/3
24,403
1 - \cos(z) = z^2\times \cos(z) \Rightarrow \cos(z) = \frac{1}{1 + z^2}
17,141
x - f_1 - f_2 = -f_2 + x - f_1
12,953
160 + y = (y + 10) \cdot 11 \implies 110 + 11 \cdot y = y + 160
7,313
\frac{1}{12} \cdot 11 + 1 = 23/12
8,801
2^2\times 4\times 3 = 48
-25,219
x^{(-1) + k}\times k = \frac{\mathrm{d}}{\mathrm{d}x} x^k
12,969
(x + 1)*(x + 2) = x^2 + x*3 + 2
1,565
2^3\cdot b = b\cdot 2\cdot 2\cdot 2
26,694
48/\left(-10\right) = -24/5
15,768
n \cdot n = 1 + (n + 1)\cdot \left(n + (-1)\right)
17,588
\sin(A \cdot 2) = 2 \cdot \cos(A) \cdot \sin\left(A\right)
24,167
\frac{2}{12} \cdot \pi = \dfrac{\pi}{6} \approx 0.5236
23,211
\left(|1 + z| = 3 \Rightarrow z + 1 = 3\right) \Rightarrow 2 = z
24,021
0.5 + \cos{z \cdot 2} \cdot 0.5 = \cos^2{z}
25,551
\frac{1}{\frac{1}{b}} = b^{\left(-1\right) (-1)} = b^1 = b
5,569
\left(-c + a\right) * \left(-c + a\right) + (c + a)^2 = (c * c + a * a)*2
7,491
z^0 = \frac{z^4}{z^4} 1
-2,756
4\sqrt{7} = \sqrt{7}\cdot (3 + 1)
5,451
d^{y_1 \cdot j} \cdot d^{y_2 \cdot j} = d^{j \cdot (y_2 + y_1)}
-30,908
33 = 12*4 + 15 \left(-1\right)
4,703
y_3 - 2*y_4 = 0 rightarrow y_3 = y_4*2
18,708
\varepsilon_s f\varepsilon_z = \varepsilon_z \varepsilon_s f
9,458
\sin(z) = \frac{z}{1 + \frac{z^2}{2*3 - z^2 + \dotsm}}
-10,545
-40 = -3\cdot p + 15\cdot (-1) + 96\cdot (-1) = -3\cdot p + 111\cdot (-1)
-20,863
\dfrac{5 \cdot m + 20}{40 \cdot (-1) + m \cdot 35} = \dfrac{1}{5} \cdot 5 \cdot \frac{1}{7 \cdot m + 8 \cdot (-1)} \cdot (m + 4)
5,777
1 = \left(\sqrt{3} + 2\right) \cdot (-\sqrt{3} + 2)
25,965
b*y = y*b
21,952
{\left(-1\right) + n + p \choose p} = \tfrac{1}{p!\cdot ((-1) + n)!}\cdot \left(n + p + (-1)\right)!
9,330
(a^{1/2})^2\cdot g^{1/2} \cdot g^{1/2} = (a^{1/2}\cdot g^{1/2})^2
31,090
c_2 - c_1 + c_1 \times 2 = c_2 + c_1
16,746
(3\cdot g + 2\cdot (-1))\cdot (g\cdot 2 + 3\cdot (-1)) = 6 + 6\cdot g \cdot g - g\cdot 13
20,801
6^{\frac13} = 2^{1/3} \cdot 3^{1/3}
19,477
(-m + n)^2 = \left(-n + m\right)^2
22,078
2\cdot \sqrt{5} + \sqrt{11} = \sqrt{5}\cdot 2 + \sqrt{11}
29,912
g \cdot g^2 + 54 = g^3 + 27 + 27 \geq 27 \cdot g
39,134
t = 3\dfrac{1}{3}t
-6,555
\frac{2}{2}\cdot \frac{3}{(z + 8)\cdot \left(2\cdot (-1) + z\right)} = \frac{6}{(z + 2\cdot (-1))\cdot (8 + z)\cdot 2}
-29,028
x^2 * x*x^4 = x^{3 + 4} = x^7
17,157
i^{-1} = i^{1 + 2 \cdot (-1)} = \frac{1}{i^2} \cdot i = i/(-1) = -i
20,402
\chi^3 + \chi^2 + 2 \times \chi + 4 \times (-1) = (4 + \chi \times \chi + 2 \times \chi) \times (\chi + \left(-1\right))
18,947
0 = h \cdot a \Rightarrow a = 0\text{ or }h = 0
-4,024
10/3\cdot r = \frac{10}{3}\cdot r
33,335
0 = a\cdot 0 = 0\cdot a
14,634
\frac{d}{c*b} = \dfrac{\dfrac1b*d}{c}