id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-24,758 | \tan\left(\dfrac{17\pi}{12}\right) = \dfrac{\sqrt{3}+1}{\sqrt{3}-1} |
5,694 | 3 + \sqrt{3 + \sqrt{3 + ...}} = B \Rightarrow (B + 3 (-1))^2 = B |
31,764 | (3 + z) \cdot (z + 3 \cdot (-1)) = z^2 + 9 \cdot \left(-1\right) |
19,324 | \sqrt{2} = \left(2^{1/4}\right)^2 |
17,780 | 5^n*5^3 = 5^{n + 3} |
36,120 | 44 + 32 \cdot (-1) = 12 |
6,520 | \frac{\binom{13}{4}}{\binom{13}{4} + \binom{13}{3} \cdot 39} = 5/83 |
-29,344 | (h - b)*(h + b) = -b^2 + h^2 |
12,992 | (C_1 + C_2)^2 = C_1^2 + C_2^2 + C_2 C_1 + C_2 C_1 |
8,009 | \frac32\times 1/2\times 3 = 9/4 |
16,374 | \sin(\frac{\pi}{4}) = \sin(\frac{3*\pi}{4}) = \frac12*2^{1 / 2} |
33,656 | 5!/3! = \frac{5!}{(2\left(-1\right) + 5)!} |
2,491 | 21^2 = (a^2 + b^2)^2 = a^4 + b^4 + 2*a^2*b^2 = a^4 + b^4 + 2*2 * 2 |
33,829 | \dfrac{\frac{1}{z}}{\sin{z}}\cdot \sin{z} = \frac{1}{z} |
16,651 | \sin{\pi/4} - \sin{(\pi*(-1))/4} = \sqrt{2} |
-1,096 | \frac{5\cdot 1/9}{1/5\cdot 8} = \dfrac58\cdot 5/9 |
17,023 | 0 = (y^3 + (-1))\cdot (y^6 + y^3 + 1) = y^9 + \left(-1\right) |
29,022 | x \cdot x + 3 \cdot v \cdot v = (2 \cdot v)^2 + (x - v)^2 + v \cdot 2 \cdot \left(-v + x\right) |
16,295 | \dfrac{1}{m!*(x - m)!}*x! = \binom{x}{m} |
-20,480 | -1/4 (-10/(-10)) = \frac{10}{-40} |
2,917 | \left(\left(f_1 \lt f_2 rightarrow f_2 + f_1 < f_2 + f_2\right) rightarrow f_2 + f_1 \lt 2f_2\right) rightarrow f_2 > \frac{1}{2}(f_1 + f_2) |
39,661 | m = x^2 \implies x = m^{\dfrac{1}{2}} |
22,696 | 3^{70}*(\left(\frac23\right)^{70} + 1) = 2^{70} + 3^{70} |
22,305 | x\cdot 6 = 0 \implies 0 = x |
13,335 | 10 = 5\cdot 2 = 5\cdot \left(3 + (-1)\right) = 5\cdot (\left(3^4\right)^{1/4} + \left(-1\right)) |
39,297 | \left(10 + 6\cdot (-1)\right)^k = 4^k \geq 2^k |
6,071 | k + \left(-1\right) = 2k + 2\left(-1\right) - k + (-1) |
-29,871 | \frac{\mathrm{d}}{\mathrm{d}y} (5\cdot y^4) = 5\cdot \frac{\mathrm{d}}{\mathrm{d}y} y^4 = 5\cdot 4\cdot y^3 = 20\cdot y^3 |
454 | Q + 27 \cdot (-1) = (9 + Q^{\frac{1}{3} \cdot 2} + 3 \cdot Q^{1/3}) \cdot (3 \cdot (-1) + Q^{1/3}) |
-3,422 | \left(3 + 2\right) \sqrt{10} = \sqrt{10}*5 |
30,203 | 2 = 6*\left(-1\right) + 2 + 0 + 1 + 6 + 2*(-1) + 0*(-1) + 1 |
30,803 | 4^{x + (-1)} \cdot 4 = 4^x |
40,845 | 1.5 = \dfrac14\cdot 6 |
9,951 | (-a + x) \cdot \left(a^2 + x^2 + a \cdot x\right) = -a^3 + x^2 \cdot x |
25,992 | \frac{1}{1 - 9/10} + \left(-1\right) = 10 + \left(-1\right) = 9 |
11,192 | 7/12 \cdot \dfrac{6}{11} = \dfrac{42}{132} |
18,906 | h\cdot i = (h\cdot i)^a = h^a\cdot i^a |
6,624 | -1 = \xi^k \implies \xi^{k*2} = 1 |
11,487 | 9 \cdot \sqrt{3} + \sqrt{2} \cdot 11 = (\sqrt{2} + \sqrt{3})^3 |
-19,461 | 7/2*\frac89 = 7*1/2/(1/8*9) |
3,668 | \dfrac{4*1/5}{8}*x^2 = x^2/10 |
-6,351 | \frac{1}{5\cdot \left(10 + r\right)} = \frac{1}{r\cdot 5 + 50} |
16,282 | (z + 1)\cdot \left(z^2 - z + 1\right) = z \cdot z^2 + 1 |
5,507 | 6^3 + 2^3 + 3^3 = 1^3 + 5 5 5 + 5^3 |
3,929 | k*6 + 2 = 3*2*k + 2 |
14,291 | 2*a + (-1) = a * a - (a + \left(-1\right))^2 |
1,868 | h_2/(h_1 x) = \dfrac{h_2}{xh_1} |
25,222 | |4 + 5 (-1)| = 1 < 2 |
-6,305 | \frac{1}{(z + 6) (9\left(-1\right) + z)} = \frac{1}{z^2 - 3z + 54 (-1)} |
45,659 | (\sqrt{17} - 1)/2 = -\frac{1}{2} + \sqrt{17}/2 |
-8,091 | \dfrac{-23 - i*15}{-5 - i}*\frac{-5 + i}{i - 5} = \frac{-23 - i*15}{-5 - i} |
-20,954 | \frac{-x\cdot 5 + (-1)}{(-1) - 5\cdot x}\cdot (-\dfrac{2}{7}) = \frac{10\cdot x + 2}{7\cdot (-1) - 35\cdot x} |
-18,509 | -5 = 3\cdot \left(2\cdot x + (-1)\right) = 6\cdot x + 3\cdot (-1) = 6\cdot x + 3\cdot \left(-1\right) |
5,947 | -2 \cdot x = 6 \cdot e^{(-5 - 2 \cdot x)/2} = 6 \cdot \dfrac{1}{e^\frac{5}{2}} \cdot e^{-x} |
7,071 | 15 + g \cdot 100 \cdot 5 + 5 \cdot e \cdot 10 = 100 g + e \cdot 10 + 1 + g \cdot 100 + 10 e + 2 + \cdots + 100 g + e \cdot 10 + 5 |
-6,389 | \frac{2}{m \cdot 5 + 45} = \frac{1}{5 \cdot \left(m + 9\right)} \cdot 2 |
665 | x * x - 3*x + 2*(-1) = (x + (-1))*(x + 2*(-1)) = (2*x + 2*\left(-1\right))*(\frac{x}{2} + (-1)) |
31,914 | \sqrt{y} \times 21 \times y^2 = y^{5/2} \times 21 |
11,317 | z^{\frac12} \cdot z^3 = z^{7/2} |
6,093 | \left(a - b\right)\cdot \left(b + a\right) = a^2 - b^2 |
-1,604 | \pi\cdot \frac{1}{3}\cdot 5 = \pi\cdot 2 - \frac{\pi}{3} |
1,266 | 3^2\cdot 3^{z + 2} = 3^{z + 4} |
-17,425 | 38 \times (-1) + 44 = 6 |
1,911 | 2\cdot 84/17\cdot 1/2\cdot 17/2 = 42 |
25,456 | 1 + 2^0 + 2^1 + 2^2*...*2^n = 2^{n + 1} |
-9,299 | -77 z^2 = -zz*7*11 |
19,834 | (\alpha \cdot \alpha)^3 = \alpha^3 \cdot \alpha^3 = (\alpha + 1)^2 = \alpha^2 + 1 |
-260 | \binom{8}{6} = \frac{8!}{(8 + 6(-1))! \cdot 6!} |
35,046 | -8/3 = -\frac{1}{3} \cdot 8 |
-24,906 | 8 \times 7 \times 6 \times 5 \times 4 = \frac{1}{(8 + 5 \times \left(-1\right))!} \times 8! = 6720 |
16,988 | A*x*y = y*A*x = y^S*A*x = (A^S*y)^S*x |
-23,286 | 4/7 \cdot \frac{3}{8} = 3/14 |
4,866 | n - 2 \times j + j = n - j |
39,052 | h \cdot k = k \cdot h |
39,615 | 2 + 2 + 3 + 0 = 7 |
30,107 | 0 = x^{15}\cdot 31 - x^{10} + 32 \Rightarrow 0 = (1 + x^{15})\cdot 31 - x^{10} + (-1) |
5,398 | \frac{2}{\sqrt{H} + \sqrt{2 + H}} = -\sqrt{H} + \sqrt{2 + H} |
547 | -\frac25 = -\frac152 |
1,123 | -i\frac{1 - (-1)^{24}}{1 - i} = -i\frac{1}{1 - i}(1 + (-1)) = 0 |
21,268 | 7142 = 21000\cdot \left(-1\right) + 28142 |
35,634 | 8 \cdot (7 \cdot (-1) + a \cdot 8 + h \cdot 4) + a - h \cdot 7 = 4 \Rightarrow h = \frac15 \cdot (-13 \cdot a + 12) |
2,456 | x^l + \theta + \left(-1\right) = (\theta + (-1))\cdot (x^{l + (-1)} + \cdots + x + 1) |
16,055 | \int 1*2\pi p\,\text{d}p = 2\pi p^2/2 = \pi p^2 |
-635 | (e^{\pi i*17/12})^3 = e^{3\frac{i\pi}{12}17} |
5,283 | \frac{1}{2} = 0 + 0 + 1/2 |
21,457 | \left(j = c^{\tfrac12} \Rightarrow (c^{1/2})^2 = j^2\right) \Rightarrow c = j \times j |
3,253 | |z \cdot w|^2 = z \cdot w \cdot \overline{z \cdot w} = |z|^2 \cdot |w|^2 |
-1,773 | \frac{\pi}{3} = 2 \cdot \pi - 5/3 \cdot \pi |
-23,545 | \frac{\frac{3}{7}}{2} \cdot 1 = \dfrac{1}{14} \cdot 3 |
2,353 | \cos(\alpha - \beta) = \cos{\alpha}\cdot \cos{\beta} + \sin{\alpha}\cdot \sin{\beta} |
-18,258 | \frac{z}{(z + 6\cdot (-1))\cdot (6\cdot (-1) + z)}\cdot (6\cdot (-1) + z) = \frac{1}{36 + z \cdot z - 12\cdot z}\cdot (z^2 - 6\cdot z) |
-4,764 | \frac{1}{2 + x^2 - 3x}(7(-1) + 6x) = \tfrac{1}{x + \left(-1\right)} + \dfrac{5}{x + 2(-1)} |
15,710 | 0 = 8 z - (z + y)^3 = 8 y - (z + y)^3 |
-9,367 | x^2\cdot 8 - x\cdot 12 = -x\cdot 2\cdot 2\cdot 3 + 2\cdot 2\cdot 2\cdot x\cdot x |
-20,896 | -\frac{6}{-20} = -2/\left(-2\right) \cdot \frac{3}{10} |
22,412 | 0 = x^2\cdot a + x\cdot f_2 + f_1 \Rightarrow x = \frac{1}{a\cdot 2}\cdot (-f_2 +- \sqrt{-4\cdot f_1\cdot a + f_2^2}) |
-7,657 | (-20 - 95*i + 8*i + 38*(-1))/29 = \frac{1}{29}*(-58 - 87*i) = -2 - 3*i |
4,252 | l = g\cdot \mu/g\Longrightarrow g\cdot \mu = l\cdot g |
-27,936 | \frac{d}{dx} (2\sec(x)) = 2d/dx \sec(x) = 2\sec(x) \tan(x) |
5,208 | 1^2 + 3\cdot 4^2 = 49 = 7^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.