id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-21,202 | 1/2\cdot 2/3 = 2/6 |
881 | (1 + y)^3 + 1 + 3*(y + 1)^2 = 5 + y^3 + y * y*6 + 9*y |
35,726 | 240 = 5!\times 2 |
1,653 | -\frac{256}{9} = -\frac{256}{9} |
7,350 | (z + 1)\times (z^2 - 6\times z + 13) = z^2 \times z - z \times z\times 5 + z\times 7 + 13 |
9,557 | b_1 (2/9)^{(-1) + 1} = b_1 |
-6,559 | \tfrac{1}{4 \cdot s + 4} \cdot 4 = \frac{4}{4 \cdot \left(1 + s\right)} |
40,542 | 2^{n + (-1)} = \frac{1}{2} \cdot 2^n |
12,580 | 180 = 3 \cdot 5 \cdot 4 \cdot 3 |
37,613 | 2^{4 \cdot (-1) + N} + 2^{N + 5 \cdot (-1)} + \cdots + 1 = 2^N \cdot (1/16 + 2 \cdot \left(-5\right) + \cdots + 2^{-N}) |
1,980 | \left(-1\right)^3 \binom{-3}{3} = \binom{5}{3} |
18,109 | 0 = z^2 + 9y^2 - 4z + 18 y + 4 = (z + 2(-1)) \cdot (z + 2(-1)) + 4(-1) + 9(y + 1)^2 + 9(-1) + 4 |
-7,602 | \frac{i\cdot 16 + 11}{-i\cdot 5 + 2} = \frac{i\cdot 5 + 2}{5\cdot i + 2}\cdot \frac{1}{-i\cdot 5 + 2}\cdot \left(11 + 16\cdot i\right) |
35,346 | \frac{h\cdot x}{h + \frac{I}{n}} - x = \dfrac{1}{h + \frac{1}{n}\cdot I}\cdot (h\cdot x - (h + \frac{I}{n})\cdot x) = \dfrac{(-1)\cdot \frac1n\cdot x}{h + \frac{I}{n}} |
3,492 | x^2*y*z^2 + x^5 = (z*x + y^2)*(x*y*z - y^3) + x^5 + y^5 |
17,486 | (n + 1) \cdot n/2 = {1 + n \choose 2} |
-20,543 | \dfrac{1}{(-3) \cdot r} \cdot (\left(-3\right) \cdot r) \cdot (-5/3) = \frac{r \cdot 15}{(-9) \cdot r} |
32,668 | 18 = 27 + \left(-1\right) + 8 \cdot (-1) |
-18,358 | \frac{x \cdot x - x\cdot 6}{6(-1) + x^2 - 5x} = \dfrac{(x + 6\left(-1\right)) x}{(6\left(-1\right) + x) (1 + x)} |
30,722 | \frac{2}{2 + 2^{1 / 2}} = 2 - 2^{\frac{1}{2}} |
26,803 | \overline{(-1) + z} = (-1) + \overline{z} |
16,152 | -a/b = \dfrac{1}{b}\cdot ((-1)\cdot a) = \frac{a}{(-1)\cdot b} |
15,462 | x+2=\dfrac{(x-2)(x+2)}{(x-2)}=\dfrac{x^2-4}{x-2} |
9,848 | gd - ec = gd - c*0 + 0d - ec = gd - ec |
-6,705 | 10^{-1} + \frac{1}{100}*6 = 6/100 + 10/100 |
5,965 | \sum_{n=1}^\infty d \times n \times (2 \times (-1) - 1)^n = \sum_{n=1}^\infty d \times (-3)^n \times n |
-2,960 | \left(3 + 2\cdot (-1)\right)\cdot \sqrt{3} = \sqrt{3} |
27,568 | (x + y + A)^2 = x^2 + y^2 + A^2 + 2*(x*y + x*A + A*y) |
25,476 | 1/9 + 2/15 = 11/45 |
12,036 | \cos(\beta + x) = \cos{x}*\cos{\beta} - \sin{x}*\sin{\beta} |
20,611 | COV\left(X_1, X_2\right) = COV\left(X_2, X_1\right) |
31,303 | b \cdot g \cdot b = g = b \cdot g \cdot b |
26,298 | R_a*R_b = R_b*R_a |
-18,281 | \dfrac{1}{n^2 - n \cdot 7 + 12} \cdot (-3 \cdot n + n^2) = \frac{\left(3 \cdot (-1) + n\right) \cdot n}{(4 \cdot (-1) + n) \cdot \left(n + 3 \cdot (-1)\right)} |
2,834 | W\cdot x^2 = \left(x\cdot W + q\right)\cdot x = x\cdot (x\cdot W + q) + q\cdot x = x^2\cdot W + 2\cdot x\cdot q |
16,405 | 2\times (-1) + y^2 - y = \left(y + 1\right)\times (y + 2\times (-1)) |
10,114 | \mathbb{Var}\left(X + Y\right) = \mathbb{Var}\left(X\right) + \mathbb{Var}\left(Y\right) + 2 \mathbb{Cov}\left(X, Y\right) = \mathbb{Var}\left(X\right) + \mathbb{Var}\left(Y\right) |
-26,063 | \frac{1}{10}*(-24 - 18*i + 8*i + 6*(-1)) = \frac{1}{10}*\left(-30 - 10*i\right) = -3 - i |
-27,382 | 591 = 10 + 581 |
13,679 | \sqrt{4 \cdot p^2 + 4} = x \Rightarrow 4 + 4 \cdot p^2 = x^2\wedge p^2 = (4 \cdot (-1) + x^2)/4 |
-3,204 | \sqrt{25}\cdot \sqrt{2} + \sqrt{2}\cdot \sqrt{9} = 5\cdot \sqrt{2} + \sqrt{2}\cdot 3 |
41,046 | 8^{\dfrac13} = 2 |
12,844 | 5!/2! = \frac{1}{(5 + 3*(-1))!}*5! |
34,432 | \frac{a + x}{-a + x} = \frac{1}{-a/x + 1} \cdot (1 + a/x) |
20,104 | 7*2^4 - 7*2^3 = 7*2^3*(2 + (-1)) = 56 |
23,194 | h \cdot h + 1 - 2\cdot h = (-h + 1)^2 |
19,301 | \|(1 - w_n)^{\frac12} \cdot c \cdot (1 - w_n)^{\frac{1}{2}}\|^2 = \|c - w_n \cdot c\|^2 |
31,119 | \mathbb{E}[V] = \mathbb{E}[p_H\times V_1 + p_F\times V_2] = p_H\times \mathbb{E}[V_1] + p_F\times \mathbb{E}[V_2] |
22,570 | d = b\Longrightarrow \{d, b\} |
-4,094 | \frac79*i = 7*i/9 |
-28,796 | 1 = \pi*2/(2\pi) |
-20,527 | 56/(-48) = -\frac16 \cdot 7 \cdot (-\frac{1}{-8} \cdot 8) |
2,472 | -z^3 + x^3 = \left(-z + x\right) \cdot (z^2 + x^2 + x \cdot z) |
13,506 | -(x \times 2 - Q) = Q - 2 \times x |
20,357 | 2 \cdot 3^n = \frac{(-1) + 3^{n + 1}}{3 + (-1)} \Rightarrow -3^n + (-1) = 0 |
-10,992 | \frac{1}{11}\cdot 77 = 7 |
33,217 | a*2 - a = a |
11,612 | x \cdot x + x = (1/2 + x)^2 - 1/4 |
13,072 | \sum_{r=x}^n r = \sum_{r=1}^n r - \sum_{r=1}^{\left(-1\right) + x} r |
15,841 | \left|{B*\gamma*\gamma^W}\right| = \left|{B}\right|*\left|{\gamma*\gamma^W}\right| = \left|{B}\right|*\gamma*\gamma^W |
-2,145 | \pi*\frac{1}{12}*29 = \pi/2 + \pi*23/12 |
11,592 | 2^3\cdot 3\cdot 5 = (-1) + 11^2 |
16,302 | t = t\cdot \frac{3}{4} + t/4 |
50,206 | 4 + 6 + 10 + 1 = 21 |
-19,356 | 1/3 \cdot 7/(1/4) = 4/1 \cdot \dfrac{1}{3} \cdot 7 |
9,936 | (1 + 8)\cdot (4 + 1)\cdot \left(1 + 1\right)\cdot (1 + 1)\cdot (1 + 1) = 360 |
35,876 | 3/1 = 3*(-1) + p \Rightarrow p = 6 |
-20,369 | 5/5*\frac{-r*2 + 3*\left(-1\right)}{9*r + 6} = \frac{1}{30 + 45*r}*\left(-10*r + 15*(-1)\right) |
5,250 | 1 + 2^0 + 2^1*\cdots*2^{n + (-1)} + 2^n = 2*2^n = 2^{n + 1} |
14,158 | -ny^2 + x^2 = (-y\sqrt{n} + x) (y\sqrt{n} + x) |
9,823 | 1 + 4 \cdot 3^{9/8} \cdot \lambda - 4 \cdot 3^{\frac18} \cdot \lambda = 0 \Rightarrow 8 \cdot 3^{\frac18} \cdot \lambda = -1 |
24,279 | (a^3)^x + x = \left(a^3\right)^x + x^3 - x * x * x + x = (a^x + x) ((a^2)^x - xa^x + x^2) - x * x * x + x |
-27,735 | \frac{\text{d}}{\text{d}z} (-2\cot{z}) = -2\frac{\text{d}}{\text{d}z} \cot{z} = 2\csc^2{z} |
4,514 | \cos\left(x\right)\cdot \sin(d) + \sin(x)\cdot \cos(d) = \sin\left(d + x\right) |
35,670 | 1 = \sin{-\frac{3}{2}\cdot \pi} |
44,528 | \dfrac54 = \frac14\cdot 5 |
15,539 | \mathbb{N} = \left\{\cdots, 2, 0, 1\right\} |
-9,458 | 60 \cdot q + 54 = 2 \cdot 3 \cdot 3 \cdot 3 + q \cdot 2 \cdot 2 \cdot 3 \cdot 5 |
-19,509 | \frac{4}{\frac17}\times \frac13 = 7/1\times \tfrac43 |
5,235 | 24\cdot (x + 2)\cdot (x + 1) = 48 + x^2\cdot 24 + 72\cdot x |
20,717 | s^{x + 1} \gt s^{x + 1} + (-1) = (s^x + (-1))^s \gt s^{(x + \left(-1\right))\cdot s} |
39,494 | 3/36 = \dfrac{1}{6}*3/6 |
33,378 | \sum_{k=1}^m k + \sum_{k=1}^m 1 = \sum_{k=1}^m (k + 1) |
10,967 | \lambda = 1/(1/\lambda) |
-29,730 | 16*x^3 - 21*x^2 = \frac{\mathrm{d}}{\mathrm{d}x} (4*x^4 - 7*x^3 + 3) |
-15,786 | 41/10 = 8\cdot \dfrac{7}{10} - 5\cdot \frac{3}{10} |
3,282 | |x|^{-\alpha}\cdot \sum_{n=1}^∞ b_n = \sum_{n=1}^∞ b_n\cdot |x|^{-\alpha} |
8,599 | b\cdot b\cdot c = b = b\cdot b\cdot c |
1,482 | \frac{C}{\psi}*x = x*C/C*C/\psi \leq \dfrac{x}{\psi}*C/\psi |
23,636 | \sin\left(z\right) = \cos(z/2)\cdot \sin(z/2)\cdot 2 |
23,876 | (-x)! = (-x + (-1))! (-x) |
-9,348 | 2 \cdot 11 + 11 q = 22 + 11 q |
21,518 | \frac{9}{16} = 3/4*3/4 |
21,820 | V^x = \frac{1}{V^{-x}} |
-5,504 | \tfrac{1}{\left(q + 3*(-1)\right)*(q + 7*(-1))}*q + \frac{4*(3*(-1) + q)}{(q + 7*(-1))*(q + 3*\left(-1\right))} + \frac{(q + 7*(-1))*5}{(7*(-1) + q)*(q + 3*\left(-1\right))} = \frac{1}{(3*(-1) + q)*\left(q + 7*(-1)\right)}*\left(q + (3*(-1) + q)*4 + (7*(-1) + q)*5\right) |
26,782 | \frac{d}{d}\cdot g = g/d\cdot d |
23,252 | \frac{n!}{(n + 2 \cdot \left(-1\right))! \cdot 2!} = {n \choose 2} |
27,565 | 20/60\cdot 10/60\cdot 30/60 = \frac{1}{36} |
23,031 | \left(2 = \frac{1}{x^2}h^2 \Rightarrow h^2 = 2x^2\right) \Rightarrow h = x\cdot 2^{1 / 2} |
27,277 | 3^{4*x + 3} = 3^3*(10 + \left(-1\right))^{2*x} = 3^2 * 3*(1 + 10*(-1))^{2*x} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.