id
int64
-30,985
55.9k
text
stringlengths
5
437k
-21,202
1/2\cdot 2/3 = 2/6
881
(1 + y)^3 + 1 + 3*(y + 1)^2 = 5 + y^3 + y * y*6 + 9*y
35,726
240 = 5!\times 2
1,653
-\frac{256}{9} = -\frac{256}{9}
7,350
(z + 1)\times (z^2 - 6\times z + 13) = z^2 \times z - z \times z\times 5 + z\times 7 + 13
9,557
b_1 (2/9)^{(-1) + 1} = b_1
-6,559
\tfrac{1}{4 \cdot s + 4} \cdot 4 = \frac{4}{4 \cdot \left(1 + s\right)}
40,542
2^{n + (-1)} = \frac{1}{2} \cdot 2^n
12,580
180 = 3 \cdot 5 \cdot 4 \cdot 3
37,613
2^{4 \cdot (-1) + N} + 2^{N + 5 \cdot (-1)} + \cdots + 1 = 2^N \cdot (1/16 + 2 \cdot \left(-5\right) + \cdots + 2^{-N})
1,980
\left(-1\right)^3 \binom{-3}{3} = \binom{5}{3}
18,109
0 = z^2 + 9y^2 - 4z + 18 y + 4 = (z + 2(-1)) \cdot (z + 2(-1)) + 4(-1) + 9(y + 1)^2 + 9(-1) + 4
-7,602
\frac{i\cdot 16 + 11}{-i\cdot 5 + 2} = \frac{i\cdot 5 + 2}{5\cdot i + 2}\cdot \frac{1}{-i\cdot 5 + 2}\cdot \left(11 + 16\cdot i\right)
35,346
\frac{h\cdot x}{h + \frac{I}{n}} - x = \dfrac{1}{h + \frac{1}{n}\cdot I}\cdot (h\cdot x - (h + \frac{I}{n})\cdot x) = \dfrac{(-1)\cdot \frac1n\cdot x}{h + \frac{I}{n}}
3,492
x^2*y*z^2 + x^5 = (z*x + y^2)*(x*y*z - y^3) + x^5 + y^5
17,486
(n + 1) \cdot n/2 = {1 + n \choose 2}
-20,543
\dfrac{1}{(-3) \cdot r} \cdot (\left(-3\right) \cdot r) \cdot (-5/3) = \frac{r \cdot 15}{(-9) \cdot r}
32,668
18 = 27 + \left(-1\right) + 8 \cdot (-1)
-18,358
\frac{x \cdot x - x\cdot 6}{6(-1) + x^2 - 5x} = \dfrac{(x + 6\left(-1\right)) x}{(6\left(-1\right) + x) (1 + x)}
30,722
\frac{2}{2 + 2^{1 / 2}} = 2 - 2^{\frac{1}{2}}
26,803
\overline{(-1) + z} = (-1) + \overline{z}
16,152
-a/b = \dfrac{1}{b}\cdot ((-1)\cdot a) = \frac{a}{(-1)\cdot b}
15,462
x+2=\dfrac{(x-2)(x+2)}{(x-2)}=\dfrac{x^2-4}{x-2}
9,848
gd - ec = gd - c*0 + 0d - ec = gd - ec
-6,705
10^{-1} + \frac{1}{100}*6 = 6/100 + 10/100
5,965
\sum_{n=1}^\infty d \times n \times (2 \times (-1) - 1)^n = \sum_{n=1}^\infty d \times (-3)^n \times n
-2,960
\left(3 + 2\cdot (-1)\right)\cdot \sqrt{3} = \sqrt{3}
27,568
(x + y + A)^2 = x^2 + y^2 + A^2 + 2*(x*y + x*A + A*y)
25,476
1/9 + 2/15 = 11/45
12,036
\cos(\beta + x) = \cos{x}*\cos{\beta} - \sin{x}*\sin{\beta}
20,611
COV\left(X_1, X_2\right) = COV\left(X_2, X_1\right)
31,303
b \cdot g \cdot b = g = b \cdot g \cdot b
26,298
R_a*R_b = R_b*R_a
-18,281
\dfrac{1}{n^2 - n \cdot 7 + 12} \cdot (-3 \cdot n + n^2) = \frac{\left(3 \cdot (-1) + n\right) \cdot n}{(4 \cdot (-1) + n) \cdot \left(n + 3 \cdot (-1)\right)}
2,834
W\cdot x^2 = \left(x\cdot W + q\right)\cdot x = x\cdot (x\cdot W + q) + q\cdot x = x^2\cdot W + 2\cdot x\cdot q
16,405
2\times (-1) + y^2 - y = \left(y + 1\right)\times (y + 2\times (-1))
10,114
\mathbb{Var}\left(X + Y\right) = \mathbb{Var}\left(X\right) + \mathbb{Var}\left(Y\right) + 2 \mathbb{Cov}\left(X, Y\right) = \mathbb{Var}\left(X\right) + \mathbb{Var}\left(Y\right)
-26,063
\frac{1}{10}*(-24 - 18*i + 8*i + 6*(-1)) = \frac{1}{10}*\left(-30 - 10*i\right) = -3 - i
-27,382
591 = 10 + 581
13,679
\sqrt{4 \cdot p^2 + 4} = x \Rightarrow 4 + 4 \cdot p^2 = x^2\wedge p^2 = (4 \cdot (-1) + x^2)/4
-3,204
\sqrt{25}\cdot \sqrt{2} + \sqrt{2}\cdot \sqrt{9} = 5\cdot \sqrt{2} + \sqrt{2}\cdot 3
41,046
8^{\dfrac13} = 2
12,844
5!/2! = \frac{1}{(5 + 3*(-1))!}*5!
34,432
\frac{a + x}{-a + x} = \frac{1}{-a/x + 1} \cdot (1 + a/x)
20,104
7*2^4 - 7*2^3 = 7*2^3*(2 + (-1)) = 56
23,194
h \cdot h + 1 - 2\cdot h = (-h + 1)^2
19,301
\|(1 - w_n)^{\frac12} \cdot c \cdot (1 - w_n)^{\frac{1}{2}}\|^2 = \|c - w_n \cdot c\|^2
31,119
\mathbb{E}[V] = \mathbb{E}[p_H\times V_1 + p_F\times V_2] = p_H\times \mathbb{E}[V_1] + p_F\times \mathbb{E}[V_2]
22,570
d = b\Longrightarrow \{d, b\}
-4,094
\frac79*i = 7*i/9
-28,796
1 = \pi*2/(2\pi)
-20,527
56/(-48) = -\frac16 \cdot 7 \cdot (-\frac{1}{-8} \cdot 8)
2,472
-z^3 + x^3 = \left(-z + x\right) \cdot (z^2 + x^2 + x \cdot z)
13,506
-(x \times 2 - Q) = Q - 2 \times x
20,357
2 \cdot 3^n = \frac{(-1) + 3^{n + 1}}{3 + (-1)} \Rightarrow -3^n + (-1) = 0
-10,992
\frac{1}{11}\cdot 77 = 7
33,217
a*2 - a = a
11,612
x \cdot x + x = (1/2 + x)^2 - 1/4
13,072
\sum_{r=x}^n r = \sum_{r=1}^n r - \sum_{r=1}^{\left(-1\right) + x} r
15,841
\left|{B*\gamma*\gamma^W}\right| = \left|{B}\right|*\left|{\gamma*\gamma^W}\right| = \left|{B}\right|*\gamma*\gamma^W
-2,145
\pi*\frac{1}{12}*29 = \pi/2 + \pi*23/12
11,592
2^3\cdot 3\cdot 5 = (-1) + 11^2
16,302
t = t\cdot \frac{3}{4} + t/4
50,206
4 + 6 + 10 + 1 = 21
-19,356
1/3 \cdot 7/(1/4) = 4/1 \cdot \dfrac{1}{3} \cdot 7
9,936
(1 + 8)\cdot (4 + 1)\cdot \left(1 + 1\right)\cdot (1 + 1)\cdot (1 + 1) = 360
35,876
3/1 = 3*(-1) + p \Rightarrow p = 6
-20,369
5/5*\frac{-r*2 + 3*\left(-1\right)}{9*r + 6} = \frac{1}{30 + 45*r}*\left(-10*r + 15*(-1)\right)
5,250
1 + 2^0 + 2^1*\cdots*2^{n + (-1)} + 2^n = 2*2^n = 2^{n + 1}
14,158
-ny^2 + x^2 = (-y\sqrt{n} + x) (y\sqrt{n} + x)
9,823
1 + 4 \cdot 3^{9/8} \cdot \lambda - 4 \cdot 3^{\frac18} \cdot \lambda = 0 \Rightarrow 8 \cdot 3^{\frac18} \cdot \lambda = -1
24,279
(a^3)^x + x = \left(a^3\right)^x + x^3 - x * x * x + x = (a^x + x) ((a^2)^x - xa^x + x^2) - x * x * x + x
-27,735
\frac{\text{d}}{\text{d}z} (-2\cot{z}) = -2\frac{\text{d}}{\text{d}z} \cot{z} = 2\csc^2{z}
4,514
\cos\left(x\right)\cdot \sin(d) + \sin(x)\cdot \cos(d) = \sin\left(d + x\right)
35,670
1 = \sin{-\frac{3}{2}\cdot \pi}
44,528
\dfrac54 = \frac14\cdot 5
15,539
\mathbb{N} = \left\{\cdots, 2, 0, 1\right\}
-9,458
60 \cdot q + 54 = 2 \cdot 3 \cdot 3 \cdot 3 + q \cdot 2 \cdot 2 \cdot 3 \cdot 5
-19,509
\frac{4}{\frac17}\times \frac13 = 7/1\times \tfrac43
5,235
24\cdot (x + 2)\cdot (x + 1) = 48 + x^2\cdot 24 + 72\cdot x
20,717
s^{x + 1} \gt s^{x + 1} + (-1) = (s^x + (-1))^s \gt s^{(x + \left(-1\right))\cdot s}
39,494
3/36 = \dfrac{1}{6}*3/6
33,378
\sum_{k=1}^m k + \sum_{k=1}^m 1 = \sum_{k=1}^m (k + 1)
10,967
\lambda = 1/(1/\lambda)
-29,730
16*x^3 - 21*x^2 = \frac{\mathrm{d}}{\mathrm{d}x} (4*x^4 - 7*x^3 + 3)
-15,786
41/10 = 8\cdot \dfrac{7}{10} - 5\cdot \frac{3}{10}
3,282
|x|^{-\alpha}\cdot \sum_{n=1}^∞ b_n = \sum_{n=1}^∞ b_n\cdot |x|^{-\alpha}
8,599
b\cdot b\cdot c = b = b\cdot b\cdot c
1,482
\frac{C}{\psi}*x = x*C/C*C/\psi \leq \dfrac{x}{\psi}*C/\psi
23,636
\sin\left(z\right) = \cos(z/2)\cdot \sin(z/2)\cdot 2
23,876
(-x)! = (-x + (-1))! (-x)
-9,348
2 \cdot 11 + 11 q = 22 + 11 q
21,518
\frac{9}{16} = 3/4*3/4
21,820
V^x = \frac{1}{V^{-x}}
-5,504
\tfrac{1}{\left(q + 3*(-1)\right)*(q + 7*(-1))}*q + \frac{4*(3*(-1) + q)}{(q + 7*(-1))*(q + 3*\left(-1\right))} + \frac{(q + 7*(-1))*5}{(7*(-1) + q)*(q + 3*\left(-1\right))} = \frac{1}{(3*(-1) + q)*\left(q + 7*(-1)\right)}*\left(q + (3*(-1) + q)*4 + (7*(-1) + q)*5\right)
26,782
\frac{d}{d}\cdot g = g/d\cdot d
23,252
\frac{n!}{(n + 2 \cdot \left(-1\right))! \cdot 2!} = {n \choose 2}
27,565
20/60\cdot 10/60\cdot 30/60 = \frac{1}{36}
23,031
\left(2 = \frac{1}{x^2}h^2 \Rightarrow h^2 = 2x^2\right) \Rightarrow h = x\cdot 2^{1 / 2}
27,277
3^{4*x + 3} = 3^3*(10 + \left(-1\right))^{2*x} = 3^2 * 3*(1 + 10*(-1))^{2*x}