id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
6,845 | 2*((-1)*(-2)) = \left(-2\right)*(-2) |
2,298 | x_i^5 = -x_i \cdot x_i^2 - n \cdot x_i^2 = x_i + n - n \cdot x_i \cdot x_i |
36,559 | 2 = 7 + 5*(-1) = 5 + 3*(-1) |
14,093 | 7 + \frac{1}{8} = \tfrac{57}{8} |
12,445 | \dfrac56 \cdot (-p + 1) + 1/6 = p \Rightarrow p = \frac{6}{11} |
30,056 | j = e^{\frac{j\pi}{2}} = \cos{\pi/2} + j\sin{\pi/2} = 0 + j = j |
-7,593 | (22 + 32 i + 55 i + 80 \left(-1\right))/29 = \dfrac{1}{29}(-58 + 87 i) = -2 + 3i |
23,223 | -l*4 + 2*\left(-1\right) = 1 - 4*l + 3*\left(-1\right) |
-26,135 | 7\cdot (e^7 - \frac{1}{e^{14}}) = -\dfrac{7}{e^{14}} + 7\cdot e^7 |
-591 | (e^{\pi \cdot i \cdot 13/12})^{10} = e^{13 \cdot i \cdot \pi/12 \cdot 10} |
-9,240 | -y\cdot 50 - y^2\cdot 5 = -y\cdot 5\cdot y - y\cdot 2\cdot 5\cdot 5 |
15,426 | 1/\left(1\cdot 2\right) = \frac12 |
2,318 | 1 + (z + 1)*(x + (-1)) = -z + z*x + x |
16,730 | T_r = T_r |
-5,742 | \frac{5 \times p}{(p + 8 \times (-1)) \times (p + (-1))} = \frac{5 \times p}{8 + p^2 - 9 \times p} \times 1 |
-20,115 | (56 + 8\cdot g)/(g\cdot (-16)) = \frac{1}{(-2)\cdot g}\cdot (g + 7)\cdot 8/8 |
22,400 | d \cdot z \cdot z + z \cdot f + c = \frac{1}{d \cdot 4} \cdot (4 \cdot z \cdot z \cdot d \cdot d + f \cdot z \cdot d \cdot 4 + c \cdot d \cdot 4) |
23,743 | \left(1 - i\right)^2 = 1^2 - 2i + i * i = 1 - 2i + (-1) = -2i |
6,659 | \frac{(4 + (-1))!}{(3 + \left(-1\right))!} = 3!/2! = \frac{6}{2} = 3 |
28,077 | Z = F\Longrightarrow F^2 = Z^2 |
-16,480 | 4\cdot 9^{1/2}\cdot 13^{1/2} = 4\cdot 3\cdot 13^{1/2} = 12\cdot 13^{1/2} |
38,630 | f + 2*d = \left(3 + \left(-1\right)\right)*d + f |
-4,892 | 1.4 \times 10^6 = 10^{5 - -1} \times 1.4 |
31,305 | 8 = 2^{\dfrac{6}{2}} |
27,807 | \frac{1}{x + (-1)} \cdot (x^2 + (-1)) = \frac{1}{x + (-1)} \cdot (x + 1) \cdot (x + (-1)) = x + 1 |
-20,176 | \dfrac{1}{z\cdot 3 + 24\cdot (-1)}\cdot (6\cdot (-1) - 15\cdot z) = \frac{1}{z + 8\cdot (-1)}\cdot (-z\cdot 5 + 2\cdot (-1))\cdot 3/3 |
-15,210 | \frac{1}{\frac{1}{x^{20}}\cdot \dfrac{1}{x \cdot x\cdot \dfrac1r}} = \frac{x^{20}}{\frac{1}{x \cdot x}\cdot r} |
25,705 | \frac{1}{h\cdot g} = \frac{1}{h\cdot g} |
23,853 | {3 \choose 2} \cdot 2^{3 + 2(-1)} = 3 \cdot 2 = 6 |
-22,942 | \dfrac{70}{112} = \frac{14}{8 \cdot 14} \cdot 5 |
14,725 | -3 \cdot (y + 2 \cdot (-1))^2 = -3 \cdot (y^2 - 4 \cdot y + 4) = -3 \cdot y \cdot y + 12 \cdot y + 12 \cdot (-1) |
18,078 | c^{n - n} = c^n \times c^{-n} |
-11,988 | \frac{1}{20}\cdot 3 = \frac{s}{8\cdot \pi}\cdot 8\cdot \pi = s |
-29,730 | 16 \cdot y^3 - y^2 \cdot 21 = \frac{d}{dy} (4 \cdot y^4 - y^3 \cdot 7 + 3) |
-1,459 | 1/(5*(-\tfrac{9}{5})) = \frac{(-1)*5*\frac{1}{9}}{5} |
-20,896 | -\dfrac{2}{-2}*3/10 = -6/(-20) |
16,955 | (5/3)^y = \tfrac{5^y}{3^y} |
7,101 | \lambda\cdot x - \lambda_0\cdot x_0 = (x - x_0)\cdot (0\cdot (-1) + \lambda) + (\lambda - \lambda_0)\cdot x_0 |
9,324 | \frac{l!}{j! \cdot (l - j)!} = {l \choose j} |
23,214 | \frac{3900}{27405} = 1300\cdot 3/(1\cdot 27405) |
40,594 | \frac{384}{40320} = \frac{1}{105} |
6,806 | \frac{24}{24 + 10} = \dfrac{24}{34} = \frac{12}{17} |
21,578 | (1 + \sin{G})^2 + \cos^2{G} = 1 + 2 \cdot \sin{G} + \sin^2{G} + \cos^2{G} = 2 + 2 \cdot \sin{G} |
34,993 | 4(-1) + 12 + 8 = 16 |
-9,289 | 10\cdot y + 14 = 2\cdot 5\cdot y + 2\cdot 7 |
5,877 | \frac{7!}{7} \cdot 2 = 6! \cdot 2 |
-11,580 | -i\cdot 6 - 8 = -i\cdot 6 - 9 + 1 |
8,568 | \dfrac{1}{x*2} = 1/2/x |
-19,591 | \dfrac{1/6*5}{1/7*6} = \frac76*\frac56 |
14,953 | 1 - \frac{6!}{6^6} = 1 - \frac{1}{324} \cdot 5 = 319/324 |
27,830 | x\cdot c = a + g\Longrightarrow (a + g)/x = c |
31,620 | u = (\frac{1}{x + (-1)} (x + 1))^{1/2} \Rightarrow x = \dfrac{u^2 + 1}{u^2 + (-1)} = 1 + \frac{2}{u^2 + (-1)} |
-1,333 | -2/9\cdot 2/3 = \frac{1/9\cdot (-2)}{1/2\cdot 3} |
361 | {3 + d + 4\cdot (-1) \choose 3} + {3 + d \choose 3} - {2\cdot (-1) + 3 + d \choose 3}\cdot 2 = 4\cdot d |
38,000 | \frac{z}{z + (-1)} = \dfrac{1}{z + (-1)}\cdot (z + (-1) + 1) = 1 + \dfrac{1}{z + (-1)} |
-15,465 | \dfrac{1}{\frac{k^{12}}{p^4}\cdot p} = \frac{1}{p\cdot \dfrac{1}{p^4\cdot \frac{1}{k^{12}}}} |
-1,407 | 9*\frac{1}{4}/(1/9*(-1)) = 9/4*(-9/1) |
16,410 | 4^n + 15 \cdot n + (-1) = (-1) + \left(3 + 1\right)^n + n \cdot 15 |
27,758 | \frac{x\cdot Y}{B\cdot G} = \frac{1}{G}\cdot Y\cdot \frac{x}{B} |
7,453 | (z + x)^2 \cdot (x + z) = x^3 + z^3 + 3\cdot x^2\cdot z + z^2\cdot x\cdot 3 |
2,393 | \dfrac{1}{2! \cdot 1! \cdot 2! \cdot 2!} \cdot 7! = \binom{7}{2} \cdot \binom{1}{1} \cdot \binom{3}{2} \cdot \binom{5}{2} |
10,719 | (1 - y) \cdot (1 + y) = 1 - y \cdot y |
594 | \left|{Y + B\cdot x}\right| = \left|{Y + x\cdot B}\right| |
2,759 | \mathbb{E}(C) + \mathbb{E}(Z) = \mathbb{E}(C + Z) |
-22,198 | a^2 - 4*a + 3 = (3*(-1) + a)*(\left(-1\right) + a) |
26,904 | -(2 + 2 + 2 + (-1)) + 8 + 4 + 4 + 4 + 2 (-1) + 2 (-1) = 11 |
-30,252 | \dfrac{1}{y + 2}\cdot (y \cdot y + 11\cdot y + 18) = \frac{(y + 2)\cdot \left(y + 9\right)}{y + 2} = y + 9 |
-3,117 | \sqrt{13}*6 = \sqrt{13}*(2 + 1 + 3) |
19,056 | 1 + 2 \cdot (j \cdot j \cdot 2 - 6 \cdot j + 2) = 4 \cdot j^2 - 12 \cdot j + 4 + 1 |
8,312 | \frac12*1 = \frac12 |
-10,586 | \frac{20}{12 x + 8(-1)} = \frac{5}{x*3 + 2(-1)}*4/4 |
-22,068 | \dfrac{1}{40}\cdot 30 = \frac34 |
23,928 | 2z = i + \frac{1}{i} rightarrow i = z \pm \sqrt{z \cdot z + (-1)} |
-5,921 | \dfrac{3}{27 + q^2 + q*12} = \frac{1}{(q + 3) \left(9 + q\right)}3 |
-1,080 | \frac{1}{6 \cdot (-5/9)} = \frac{1}{6} \cdot (\frac{1}{5} \cdot \left(-9\right)) |
30,513 | -\dfrac{1}{-2}\cdot y = \dfrac{1}{-2}\cdot \left(\left(-1\right)\cdot y\right) = \frac{y}{2} |
1,444 | 3 \cdot C_3 = 12\Longrightarrow C_3 = 4 |
16,410 | \left(-1\right) + 4^n + 15\cdot n = (1 + 3)^n + n\cdot 15 + (-1) |
20,744 | \beta\cdot 2 = 0\Longrightarrow \beta = 0 |
-4,283 | \tfrac{54\cdot r^5}{r\cdot 45} = \frac{54}{45}\cdot \frac{r^5}{r} |
19,309 | 1 + \tfrac{1}{x + (-1)} = \frac{1}{x + (-1)} \times (x + (-1) + 1) = \dfrac{x}{x + (-1)} |
24,730 | \sum_{l=1}^{m + 1} l^3 = (m + 1)^3 + \sum_{l=1}^m l^3 |
30,618 | \frac{149}{32} = \tfrac{1}{8500\cdot (-1) + 11700}\cdot (8500\cdot \left(-1\right) + 23400) |
29,571 | (4 + 5 \times (-1))^2 \times (4 + 10) = 4 + 10 > 0 |
41,398 | \cos{\pi/4} = \sin{\dfrac{\pi}{4}} = 1 |
-30,967 | 5 \cdot s = 5 \cdot s |
12,247 | 2\cdot \left(\dfrac{\pi\cdot 64}{3}\cdot 1 - 2 \cdot 2\cdot \pi/3 - \frac{2^2}{3}\cdot \pi\cdot 2\right) = \frac{104\cdot \pi}{3} |
-30,265 | \dfrac{1}{z + 5} \cdot (z \cdot z + 10 \cdot z + 25) = \frac{1}{z + 5} \cdot (z + 5)^2 = z + 5 |
27,092 | z_2 = z_1^2 \Rightarrow 2z_1 = \frac{\partial}{\partial z_1} z_2 |
32,487 | \frac{1}{2! \cdot 1! \cdot 4!} \cdot 7! = {7 \choose 2} \cdot 5 |
1,719 | x \times a - a \times f - x \times g + f \times g = (-g + a) \times (-f + x) |
5,697 | (\frac{\pi}{4})^{\frac{1}{2}} = (1/2)! |
14,251 | 144^{\sin^2{z}} = (12^2)^{\sin^2{z}} = 12^{\sin^2{z}} \cdot 12^{\sin^2{z}} |
21,777 | y \cdot \left(4 + 4 \cdot m\right) = 4 \cdot (m + 1) \cdot y |
13,519 | 0 = \left]C, G_k\right[ = CG_k - G_k C |
20,902 | b_2\cdot i + a_1 + b_1\cdot i + a_2 = (b_1 + b_2)\cdot i + a_1 + a_2 |
7,020 | y^3 - 2\times y^2 + y^2\times 2 - 4\times y + y\times 4 + 8\times \left(-1\right) = y^3 + 8\times (-1) |
-23,252 | \frac{1}{35} \cdot 8 = 4/5 \cdot 2/7 |
-29,001 | \frac{1}{2} \cdot (0.25 + 0) = 0.125 |
4,056 | a^{h\cdot 2} = (a^h)^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.