id
int64
-30,985
55.9k
text
stringlengths
5
437k
29,006
(\sqrt{5} + 1)/2 = \tfrac{1}{2} + \dfrac{\sqrt{5}}{2}
3,301
\left(z = 1 + z \implies z^2 = 1 + z^2 + 2 \cdot z\right) \implies 2 \cdot z + 1 = 0
-1,947
-7/6\cdot \pi = -17/12\cdot \pi + \pi/4
3,869
\tfrac{(x\cdot m_A)^9}{\left(x\cdot m_A\right)^2} = \left(m_A\cdot x\right)^7
35,130
2^{-2 + 2\cdot (-1)} = \dfrac{1}{(2 + 2)^2}
5,297
a_1/x + \dfrac{a_2}{x} = (a_2 + a_1)/x
4,771
\varphi = \dfrac{1}{2} \cdot \left(1 + \sqrt{5}\right) = 1 + 1/\varphi
-7,598
\frac{1}{-i*2 + 2}(6 - 14 i) \dfrac{2 + 2i}{2 + i*2} = \frac{-14 i + 6}{2 - i*2}
19,339
\frac{2}{2} \cdot 1/6 = 1/6
-5,059
10^{4 - 3}*16.8 = 16.8*10^1
-20,286
-10/7*\dfrac33 = -30/21
4,941
X = B \cdot X - B \cdot X \Rightarrow X^2 = -X^2 \cdot B + X \cdot X \cdot B
29,450
\cos(A)\cdot \cos\left(B\right) + \sin(B)\cdot \sin(A) = \cos(A - B)
26,299
M_1 = M_1^{1/2}*M_1^{1/2}
15,182
\sqrt{e^{i \cdot x}} = e^{i \cdot x/2} = \cos\left(x/2\right) + i \cdot \sin(\frac{x}{2})
12,294
(a + b)/2 = \frac12*(2*a + b - a) = a + \frac12*(b - a)
-20,938
\frac{1}{9}9 (6 + x)/9 = (9x + 54)/81
42,735
1/2 = 1/(2*2) + \frac{1}{2*2}
-16,544
8\sqrt{175} = 8\sqrt{25\cdot 7}
37,320
c+(a+b)=(c+a)+b
9,194
v''\cdot x^2 + v'\cdot x = 1 \Rightarrow v''\cdot x + v' = \frac1x
25,785
x = 2 + x + 2 \left(-1\right)
-21,814
-13/10 = -\frac{1}{10}*13
-1,897
5/4 \pi = \pi \frac{7}{6} + \pi/12
19,274
0 = \left\{( 2, 2), ( 0, 0), ( 1, 1), ...\right\}
-1,170
\frac{1}{(-9)\cdot 1/8}\cdot (\left(-1\right)\cdot 8\cdot 1/3) = -\dfrac89\cdot (-8/3)
15,621
1386 = \frac{1}{2}\cdot \frac{1}{5!^2\cdot 1!}\cdot 11!
38,817
\sum_{k=1}^\infty \frac{1}{k^4} = \sum_{k=1}^\infty \frac{1}{(k \cdot 2)^4} + \sum_{k=0}^\infty \frac{1}{(2 \cdot k + 1)^4} \implies \sum_{k=0}^\infty \frac{...}{(k \cdot 2 + 1)^4} = \tfrac{1}{16} \cdot 15 \cdot \sum_{k=1}^\infty \dfrac{1}{k^4}
-4,857
10^{12 + 5(-1)}*0.81 = 10^7*0.81
36,635
m + n \leq z + y < m + n + 2 \Rightarrow \left\lfloor{y + z}\right\rfloor = m + n
-5,732
\dfrac{1}{5\cdot (-1) + 5\cdot t}\cdot 4 = \dfrac{4}{5\cdot (t + (-1))}
21,956
2 \times \cos(0)/\cos(0) = 2
-6,699
0/10 + 9/100 = 9/100 + \tfrac{1}{100} 0
-26,654
(3\cdot x + 1)\cdot (7\cdot \left(-1\right) + x) = 7\cdot (-1) + 3\cdot x^2 - 20\cdot x
18,672
x \cdot z + z \cdot x = z \cdot x
15,027
\frac{1}{x^2 + x + 1} \cdot \left(0.5 \cdot x \cdot x + x + 1\right) = 1 - \frac{0.5 \cdot x \cdot x}{x^2 + x + 1} \cdot 1 = 1 - \frac{1}{1 + 1/x + \frac{1}{x^2}} \cdot 0.5
-20,014
-6/5*\frac{x + 9*(-1)}{x + 9*(-1)} = \frac{1}{x*5 + 45*(-1)}*(-6*x + 54)
1,266
3^2*3^{x + 2} = 3^{4 + x}
-11,788
9^{-\frac{1}{2}} = (\dfrac19)^{\dfrac{1}{2}}
9,309
z^2 + 2z + 1 = (z + 1) \cdot (z + 1)
13,061
\dfrac{1}{2}*b^2 + \dfrac{f^2}{2} = \frac12*\left(f^2 + b^2\right)
27,614
(1 + 0.5 + 0.5^2)\cdot 305 = 305\cdot (1 + 0.5)\cdot 0.5 + 305
-9,175
60 \cdot (-1) + z \cdot 6 = -5 \cdot 2 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot z
15,111
\left( x, \Phi\left(f\right) \cdot B \cdot y\right) = ( x, \Phi(f) \cdot y \cdot B)
-27,696
d/dy (16*\sin{y}) = \cos{y}*16
35,074
-4 \cdot (3 + p) + 9 \cdot p^2 = (p \cdot 3 + (-1))^2 + 2 \cdot p + 13 \cdot (-1)
22,321
111\cdot \dotsm = 1
15,318
3 = 4 \cdot \csc(y + 2) - 3 \cdot \cot^2(y + 2) = 4 \cdot \csc(y + 2) - 3 \cdot (\csc^2\left(y + 2\right) + (-1))
3,964
x x - 4 (x + 1) = 8 (-1) + (x + 2 (-1)) (x + 2 (-1))
35,670
1 = \sin{-\frac12 \cdot \pi \cdot 3}
9,789
(1 + y) (1 + y * y) (1 + y^4) \dotsm*(1 + y^{2^n}) = \frac{1}{-y + 1}\left(1 - y^{2^{n + 1}}\right)
30,290
9 = (2 + 1) (2 + 1)
5,679
b\cdot \frac{a}{a}\cdot b\cdot a/b = \dfrac{b}{b}\cdot \frac{a}{a}\cdot b\cdot a
7,831
(n\cdot 2 + 2)! = (n\cdot 2 + 1)!\cdot (2\cdot n + 2)
957
\tfrac{1}{n^{\frac13}} = n^{-\tfrac{1}{3}}
17,599
X^3 + 1 = (X + 1) (X^2 - X + 1)
21,198
x^4 - x x*22 - x + 110 = \left(10 (-1) + x x + x\right) \left(x x - x + 11 \left(-1\right)\right)
8,271
6 = \frac12\cdot \left(4\cdot (-1) + 16\right)
8,827
1 - \frac{1}{216}*27 - \frac{111}{216} = \dfrac{1}{216}*78 \approx 0.3611
-1,590
\pi \times \frac{3}{4} = 0 + 3/4 \times \pi
17,660
6 \cdot \left(2^k + 3^{k + \left(-1\right)}\right) = 6 \cdot 2^k + 6 \cdot 3^{(-1) + k}
16,061
\left(x^2 + 2*x + 2\right)*\left(2 + x^2 - x*2\right) = x^4 + 4
14,586
-(1 + \cos{x \cdot 2})/2 + 1 = \sin^2{x}
5,150
-\frac{1}{y^2} = \frac{1}{y^4}*(\left(-1\right)*y^2)
-20,631
4/3 \times \dfrac{5 \times x}{x \times 5} \times 1 = \frac{20}{x \times 15} \times x
26,811
\frac{t'*a*1^{-1}}{s*t*1^{-1}} = 1/t*a/\left(s*1/t'\right)
41,299
0 = x^{32} + \left(-1\right) = \left(x^{16} + 1\right)\cdot (x^{16} + (-1)) = (x^{16} + 1)\cdot (x^8 + 1)\cdot \left(x^8 + (-1)\right)
31,474
\left(-2\cdot y + z\right)\cdot (z - y\cdot 3) = z \cdot z - z\cdot y\cdot 5 + y \cdot y\cdot 6
17,120
\frac{1}{a^2 + ab + b^2} = \frac{a - b}{(a - b) (a^2 + ab + b^2)} = \frac{a - b}{a^3 - b^3}
26,855
a \cdot b \cdot w = w \cdot b \cdot a
5,390
g \cdot f = g = f \cdot g
7,534
k_2 = \sqrt{x} \Rightarrow x = k_2^2
16,337
\frac{1}{R^2} = \frac{4}{R} + \left(-1\right) = 4\cdot (4 - R) + (-1) = 15 - 4\cdot R
8,818
\frac{1}{250}\times 203 = \frac{1}{30^4}\times 657720
6,047
f_2 \cdot g_2 - f_1 \cdot g_1 = g_2 \cdot f_2 - g_2 \cdot f_1 + g_2 \cdot f_1 - g_1 \cdot f_1
21,230
x^2\cdot 6 + 5\cdot y\cdot x + y \cdot y + x + 2\cdot y + 15\cdot (-1) = (5 + 3\cdot x + y)\cdot (3\cdot \left(-1\right) + x\cdot 2 + y)
-26,623
28-7x^2=7(4-x^2) =7(2+x)(2-x)
-9,289
10\times z + 14 = z\times 2\times 5 + 2\times 7
-6,602
\frac{4}{(x + 5 \cdot \left(-1\right)) \cdot 5} = \frac{4}{25 \cdot \left(-1\right) + x \cdot 5}
15,616
(2^2 + (-1))\cdot ((-1) + 3^2)\cdot \cdots\cdot (300^2 + (-1)) = ((-1) + 2)\cdot (1 + 2)\cdot (3 + (-1))\cdot (3 + 1)\cdot \cdots\cdot (300 + (-1))\cdot \left(1 + 300\right)
-611
\frac{143}{12}*\pi - 10*\pi = 23/12*\pi
5,857
(d - b) \cdot (d + b) = d^2 - b \cdot d + d \cdot b - b \cdot b = d^2 - b^2
9,718
0 = (A*Y - I*x)*v \implies Y*v*\left(-I*x + A*Y\right) = 0
-1,283
\tfrac{1}{1/5 \cdot 7} \cdot ((-7) \cdot 1/2) = -\frac72 \cdot \dfrac{1}{7} \cdot 5
32,800
-9 \cdot y \cdot y = -y \cdot y \cdot 9
25,722
54 = 10 \times (-1) + 2^6
5,105
\gamma\cdot \alpha\cdot \beta = \gamma\cdot \beta\cdot \alpha
9,146
h_1\cdot g\cdot h_2/g = \frac{g\cdot h_1}{g}\cdot \frac{h_2\cdot g}{g}\cdot 1
-27,476
48\cdot 4 = 192
6,309
\dfrac{1}{\left(2 + 0\right)^{\frac{1}{2}} + (2 + 0 \cdot \left(-1\right))^{\frac{1}{2}}} \cdot 2 = \dfrac{2}{2 \cdot 2^{\frac{1}{2}}} = \frac{1}{2^{1 / 2}}
35,782
\dfrac{1}{a \cdot b} = \frac{1}{a \cdot b}
44,809
7\cdot \left(2^{21} + (-1)\right) = 14680057
24,240
\left(x + z\right)^2 = z^2 + x^2 + xz \cdot 2
6,233
y_1 = -8\cdot y_1^3 - y_2\cdot y_2 = -4\cdot y_2 - 4\cdot y_1^3
16,861
\left(B e^A\right)^U = (e^A)^U B^U = e^{A^U} B^U
-1,238
\frac14*3*(-6/5) = ((-6)*\frac15)/\left(4*\frac{1}{3}\right)
9,048
( 2, 1, -5) + ( x, l, n) = ( 5, 9, 0)\Longrightarrow \left( 5, 9, 0\right) = ( 2 + x, 1 + l, 5 \cdot (-1) + n)
-10,656
\frac55\cdot (-4/n) = -\dfrac{1}{n\cdot 5}\cdot 20
21,089
\dfrac{b^2}{g^2} = 3^{\frac{1}{2}}/4 \Rightarrow 3^{1 / 2} = b,2 = g
26,372
\tan(x) = \frac{1}{1 - \frac{x * x}{3 - \frac{x * x}{5 - \ldots}}}*x