id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
21,061 | -h \cdot z = -h \cdot z |
-29,512 | \frac{5!}{(5 + 3\cdot (-1))!} = 60 |
-29,374 | -f^2 + a * a = (a - f)*(f + a) |
-20,849 | \frac{1}{p + 2}\times (7\times p + 14) = \frac11\times 7\times \frac{2 + p}{2 + p} |
16,642 | \tfrac{9!*16!}{25!} = \frac{1}{{25 \choose 9}} |
-4,588 | -\frac{1}{3 + z} + \frac{5}{3 \cdot (-1) + z} = \dfrac{4 \cdot z + 18}{z^2 + 9 \cdot \left(-1\right)} |
-17,788 | 2 = 15 \left(-1\right) + 17 |
-593 | \tfrac{35}{6}\cdot \pi - 4\cdot \pi = 11/6\cdot \pi |
-28,818 | \frac12*(2 + 6) = \dfrac{8}{2} = 4 |
11,523 | 2\cdot z + y'\cdot y\cdot 2 + 6\cdot (-1) + 4\cdot y' = 0\Longrightarrow y' = \frac{6 - 2\cdot z}{2\cdot y + 4} = \dfrac{3 - z}{y + 2} |
48,882 | 3 + 1 + 0 + 0 = 4 |
2,269 | 88 = 11*((-1) + 9) |
918 | \frac{1}{-\frac{1}{2^x} + 1}2^{-x} x = \dfrac{x}{2^x + (-1)} |
6,328 | x*z = z = 2 \neq 3 = 2*x = z*x |
11,049 | (u^2 + l\cdot u + l^2)\cdot (-l + u) = u^3 - l^3 |
-2,451 | \sqrt{10} + 5*\sqrt{10} = \sqrt{25}*\sqrt{10} + \sqrt{10} |
18,084 | 2\pi - \pi/2 = 3\pi/2 |
23,545 | \frac{1}{2} + 1 - \frac{1}{\frac{1}{2} + 1} = \frac56 > \frac{1}{2} |
3,117 | B^3 + X^3 + X^2 \cdot B \cdot 3 + B^2 \cdot X \cdot 3 = (B + X)^3 |
7,265 | -n^2 + m \cdot m = (m + n) \cdot (m - n) |
8,793 | r^2 + 1 = r*r + 1 |
35,969 | \sqrt{-k}\times \sqrt{-n} = \sqrt{-k\times (-n)} = \sqrt{k\times n} |
-27,629 | -8 + 3\cdot (-1) + 8 + 3\cdot \left(-1\right) = -8 + 8 + 3\cdot \left(-1\right) + 3\cdot (-1) = 0 + 6\cdot (-1) = -6 |
54,429 | 19^{19}=1,978,419,655,660,313,589,123,979 |
29,728 | \frac{9^8 \frac{1}{e^9}}{8!} = \frac{9^9 \frac{1}{e^9}}{9!} |
1,657 | 1/(g\times z_0) = 1/(g\times z_0) |
-3,183 | \sqrt{6} \cdot 3 = \sqrt{6} \cdot (1 + 2) |
28,214 | \dfrac{3 / 10}{2}1 = \frac{3}{20} |
29,477 | (z + 1)\times z! = (1 + z)! |
9,811 | 1/4 - \dfrac15 = \dfrac{1}{5*4} |
8,877 | 1 - \sin(y) = 1 - \cos(\tfrac{1}{2}*\pi - y) |
3,122 | 11 \sqrt{17} = (12 + 10) \sqrt{17}/2 |
-20,924 | \dfrac{10^{-1}}{(-1) + 7*s}*10 = \frac{10}{70*s + 10*(-1)} |
19,581 | m + m + \dots + m = m + 1 + (2 + m) \cdot \dots + 2 \cdot m |
44,717 | 14 = 14 + 2 \cdot 0 |
-9,248 | -k^3*16 = -k*k*k*2*2*2*2 |
5,564 | \dfrac{1}{2} \cdot (852 + 190) = 521 |
4,678 | 2*x^2 + 2*x*z + z * z = x^2 + \left(x + z\right)^2 |
19,472 | \sqrt{3}\cdot 81 = 3^{\frac92} |
31,769 | -\dfrac{1}{\dfrac12 \cdot (-\pi)} \cdot 2 = \frac{4}{\pi} |
-9,900 | 0.01\cdot (-44) = -\dfrac{44}{100} = -\frac{11}{25} |
17,764 | \frac{12}{5!}*7*15*14*13 = 1911 |
73 | \binom{m + (-1)}{2\cdot i + (-1)} = \binom{m + \left(-1\right)}{m + \left(-1\right) - 2\cdot i + (-1)} = \binom{m + (-1)}{m - 2\cdot i} |
34,916 | g * g = 4g = 40 + g |
20,285 | \dfrac{1}{17}*24 = \frac{7}{17} + 1 |
-26,468 | 20 + 5 \cdot z \cdot z - z \cdot 20 = (4 + z^2 - 4 \cdot z) \cdot 5 |
-1,780 | \frac{1}{4} \cdot 7 \cdot \pi + \pi \cdot \frac16 \cdot 11 = \frac{1}{12} \cdot 43 \cdot \pi |
12,570 | (1 - x) \cdot (1 - x^3) \cdot (1 - x^5) = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - x^9 |
34,069 | -3*4^2 + 448 = 400 |
15,806 | \frac{2\pi}{2}1 = \pi |
-20,716 | (\left(-1\right)\cdot 2\cdot q)/(\left(-2\right)\cdot q)\cdot (-7/4) = \frac{14\cdot q}{(-8)\cdot q} |
16,758 | (2 \cdot m + 1)^2 = \left(m^2 + m\right) \cdot 4 + 1 |
14,249 | 13\cdot (-1) + a\cdot 7 = 71 \Rightarrow 12 = a |
36,346 | 16 + 2 + 4 = 22 |
17,443 | 0 = 0 \cdot u = (1 - 1) \cdot u = u - u |
12,544 | l \times \binom{l + (-1)}{i + \left(-1\right)} = i \times \binom{l}{i} |
15,253 | \tfrac{2x^2 + x|x| + 2}{x \cdot x + 1} = \frac{3x^2 + 2}{x^2 + 1} = 3 - \frac{1}{x^2 + 1} |
-22,934 | \dfrac{5\cdot 3}{8\cdot 3} = 15/24 |
27,501 | z*a = x*a\Longrightarrow x = a*x = a*z = z |
-25,914 | 5.25 = \frac{63}{12} |
-23,451 | \frac{2\cdot \frac15}{3} = \frac{2}{15} |
24,678 | -\left(-\cosh{x} + \sinh{x}\right) \cdot (\sinh{x} + \cosh{x}) = 1 \Rightarrow 1 = (\sinh{x} + \cosh{x}) \cdot 5 |
2,823 | 1/(5x) = \frac{1}{5x} |
-20,870 | 4/4\cdot \frac{10\cdot j + 5}{7\cdot \left(-1\right) - 8\cdot j} = \frac{40\cdot j + 20}{28\cdot (-1) - 32\cdot j} |
276 | 2 + 2^2 \lt 2^3 + 1 \Rightarrow 6 < 8 |
27,867 | z^4 + z + 1 = (z + d) \cdot \left(z + d^2\right) \cdot (z + d^4) \cdot (z + d^8) = \left(z + d\right) \cdot \left(z + d^2\right) \cdot (z + d + 1) \cdot (z + d^2 + 1) |
2,492 | f = C_2 \cdot M_2 + C_1 \cdot M_1\Longrightarrow (-C_2 \cdot M_2 + f)/(C_1) = M_1 |
-27,267 | \sum_{m=1}^\infty \frac{3 \cdot (3 + 1)^m}{m \cdot 4^m} = \sum_{m=1}^\infty \frac{4^m}{m \cdot 4^m} \cdot 3 = \sum_{m=1}^\infty \frac3m = 3 \cdot \sum_{m=1}^\infty \frac{1}{m} |
30,305 | \frac{1}{m*2}2^m = \dfrac{2^{m*2}}{2^m m*2} |
2,279 | \frac{x^2}{y + z} = \dfrac{1}{4} \cdot \frac{1}{y + z} \cdot 4 \cdot x \cdot x \geq \left(4 \cdot x - y - z\right)/4 |
46,579 | \bar{s} \cdot \bar{x} \cdot (s + x + \bar{t}) = \bar{s} \cdot (\bar{x} \cdot s + \bar{x} \cdot x + \bar{x} \cdot \bar{t}) = \bar{s} \cdot (\bar{x} \cdot s + \bar{x} \cdot \bar{t}) = \bar{x} \cdot \bar{s} \cdot s + \bar{s} \cdot \bar{x} \cdot \bar{t} = \bar{s} \cdot \bar{x} \cdot \bar{t} |
11,097 | \tan^3(\arctan{y}) = \tan(\tan(\tan\left(\arctan{y}\right))) = \tan(\tan{y}) = \tan^2{y} |
26,943 | \frac{1}{2}(180 + 50 (-1)) = 65 |
-20,296 | \dfrac88*\frac{-r + 5*(-1)}{6*(-1) + r} = \dfrac{-8*r + 40*\left(-1\right)}{8*r + 48*(-1)} |
-5,890 | \frac{1}{3\cdot p + 6\cdot (-1)}\cdot 3 = \frac{3}{3\cdot \left(p + 2\cdot (-1)\right)} |
7,238 | m \cdot x + f = f + (m + 1 + (-1)) \cdot x |
14,483 | \cot(A) = \cos(A)/\sin(A) |
7,938 | 1/2 + \frac18 = 5/8 |
9,253 | \frac{\log_e(1/e)}{e} = -\frac1e |
36,085 | \frac{2\tan{z}}{1 + \tan^2{z}} = \sin{z*2} |
-350 | \frac{7!}{5! \times 2!} = 21 |
-10,454 | \dfrac{4}{8\times x} = \frac{1}{4\times x}\times 2\times 2/2 |
8,255 | 3663 = (\left(-1\right) + 100)\cdot 37 |
-2,259 | \frac{1}{18} = 4/18 - 3/18 |
-693 | \pi*5/3 = \pi*77/3 - \pi*24 |
354 | (y\cdot k)^2 = (y\cdot k) \cdot (y\cdot k) |
26,458 | \frac{1}{1 + x * x} = \frac{\mathrm{d}}{\mathrm{d}x} \tan^{-1}(x) |
-25,510 | \frac{\mathrm{d}}{\mathrm{d}j} (\frac{4}{2 + j}) = -\frac{1}{(j + 2)^2}\cdot 4 |
-6,720 | \dfrac{3}{10} + \dfrac{6}{100} = \dfrac{30}{100} + \dfrac{6}{100} |
20,740 | 40/67 = \frac{\frac19 \cdot 5}{3/8 + \dfrac{1}{9} \cdot 5} |
42,613 | \frac{1}{1 + a}\left(1 - \frac{1}{1 + a}\right) = \frac{1}{1+a} - \frac{1}{(1+a)^2} = \frac{1+a}{(1+a)^2} - \frac{1}{(1+a)^2} = \frac{1+a-1}{(1+a)^2} = \frac{1}{(1+a)^2}a |
20,761 | 1 + 2m + 1 + 3(-1) = m*2 + (-1) |
-5,291 | 7.8\cdot 10^3 = 10^{4\cdot (-1) + 7}\cdot 7.8 |
30,981 | 1 + ((-1) + z)^2 = 2 + z^2 - z*2 |
-15,659 | \dfrac{1}{\frac{1}{q^{20} \cdot \frac{1}{n^5}} \cdot q^4} = \frac{1}{q^4 \cdot \frac{n^5}{q^{20}}} |
10,928 | z * z + z + 1 = (z + 2) (z + 2) = (z + (-1)) (z + (-1)) |
-22,969 | \frac{4*5}{4*6} = \frac{20}{24} |
10,115 | 4*(16 + (-1)) = 60 |
-18,165 | 13 = 19 + 6 \cdot \left(-1\right) |
17,720 | b_1 + 2*b_1 = 3*b_1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.