id
int64
-30,985
55.9k
text
stringlengths
5
437k
21,061
-h \cdot z = -h \cdot z
-29,512
\frac{5!}{(5 + 3\cdot (-1))!} = 60
-29,374
-f^2 + a * a = (a - f)*(f + a)
-20,849
\frac{1}{p + 2}\times (7\times p + 14) = \frac11\times 7\times \frac{2 + p}{2 + p}
16,642
\tfrac{9!*16!}{25!} = \frac{1}{{25 \choose 9}}
-4,588
-\frac{1}{3 + z} + \frac{5}{3 \cdot (-1) + z} = \dfrac{4 \cdot z + 18}{z^2 + 9 \cdot \left(-1\right)}
-17,788
2 = 15 \left(-1\right) + 17
-593
\tfrac{35}{6}\cdot \pi - 4\cdot \pi = 11/6\cdot \pi
-28,818
\frac12*(2 + 6) = \dfrac{8}{2} = 4
11,523
2\cdot z + y'\cdot y\cdot 2 + 6\cdot (-1) + 4\cdot y' = 0\Longrightarrow y' = \frac{6 - 2\cdot z}{2\cdot y + 4} = \dfrac{3 - z}{y + 2}
48,882
3 + 1 + 0 + 0 = 4
2,269
88 = 11*((-1) + 9)
918
\frac{1}{-\frac{1}{2^x} + 1}2^{-x} x = \dfrac{x}{2^x + (-1)}
6,328
x*z = z = 2 \neq 3 = 2*x = z*x
11,049
(u^2 + l\cdot u + l^2)\cdot (-l + u) = u^3 - l^3
-2,451
\sqrt{10} + 5*\sqrt{10} = \sqrt{25}*\sqrt{10} + \sqrt{10}
18,084
2\pi - \pi/2 = 3\pi/2
23,545
\frac{1}{2} + 1 - \frac{1}{\frac{1}{2} + 1} = \frac56 > \frac{1}{2}
3,117
B^3 + X^3 + X^2 \cdot B \cdot 3 + B^2 \cdot X \cdot 3 = (B + X)^3
7,265
-n^2 + m \cdot m = (m + n) \cdot (m - n)
8,793
r^2 + 1 = r*r + 1
35,969
\sqrt{-k}\times \sqrt{-n} = \sqrt{-k\times (-n)} = \sqrt{k\times n}
-27,629
-8 + 3\cdot (-1) + 8 + 3\cdot \left(-1\right) = -8 + 8 + 3\cdot \left(-1\right) + 3\cdot (-1) = 0 + 6\cdot (-1) = -6
54,429
19^{19}=1,978,419,655,660,313,589,123,979
29,728
\frac{9^8 \frac{1}{e^9}}{8!} = \frac{9^9 \frac{1}{e^9}}{9!}
1,657
1/(g\times z_0) = 1/(g\times z_0)
-3,183
\sqrt{6} \cdot 3 = \sqrt{6} \cdot (1 + 2)
28,214
\dfrac{3 / 10}{2}1 = \frac{3}{20}
29,477
(z + 1)\times z! = (1 + z)!
9,811
1/4 - \dfrac15 = \dfrac{1}{5*4}
8,877
1 - \sin(y) = 1 - \cos(\tfrac{1}{2}*\pi - y)
3,122
11 \sqrt{17} = (12 + 10) \sqrt{17}/2
-20,924
\dfrac{10^{-1}}{(-1) + 7*s}*10 = \frac{10}{70*s + 10*(-1)}
19,581
m + m + \dots + m = m + 1 + (2 + m) \cdot \dots + 2 \cdot m
44,717
14 = 14 + 2 \cdot 0
-9,248
-k^3*16 = -k*k*k*2*2*2*2
5,564
\dfrac{1}{2} \cdot (852 + 190) = 521
4,678
2*x^2 + 2*x*z + z * z = x^2 + \left(x + z\right)^2
19,472
\sqrt{3}\cdot 81 = 3^{\frac92}
31,769
-\dfrac{1}{\dfrac12 \cdot (-\pi)} \cdot 2 = \frac{4}{\pi}
-9,900
0.01\cdot (-44) = -\dfrac{44}{100} = -\frac{11}{25}
17,764
\frac{12}{5!}*7*15*14*13 = 1911
73
\binom{m + (-1)}{2\cdot i + (-1)} = \binom{m + \left(-1\right)}{m + \left(-1\right) - 2\cdot i + (-1)} = \binom{m + (-1)}{m - 2\cdot i}
34,916
g * g = 4g = 40 + g
20,285
\dfrac{1}{17}*24 = \frac{7}{17} + 1
-26,468
20 + 5 \cdot z \cdot z - z \cdot 20 = (4 + z^2 - 4 \cdot z) \cdot 5
-1,780
\frac{1}{4} \cdot 7 \cdot \pi + \pi \cdot \frac16 \cdot 11 = \frac{1}{12} \cdot 43 \cdot \pi
12,570
(1 - x) \cdot (1 - x^3) \cdot (1 - x^5) = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - x^9
34,069
-3*4^2 + 448 = 400
15,806
\frac{2\pi}{2}1 = \pi
-20,716
(\left(-1\right)\cdot 2\cdot q)/(\left(-2\right)\cdot q)\cdot (-7/4) = \frac{14\cdot q}{(-8)\cdot q}
16,758
(2 \cdot m + 1)^2 = \left(m^2 + m\right) \cdot 4 + 1
14,249
13\cdot (-1) + a\cdot 7 = 71 \Rightarrow 12 = a
36,346
16 + 2 + 4 = 22
17,443
0 = 0 \cdot u = (1 - 1) \cdot u = u - u
12,544
l \times \binom{l + (-1)}{i + \left(-1\right)} = i \times \binom{l}{i}
15,253
\tfrac{2x^2 + x|x| + 2}{x \cdot x + 1} = \frac{3x^2 + 2}{x^2 + 1} = 3 - \frac{1}{x^2 + 1}
-22,934
\dfrac{5\cdot 3}{8\cdot 3} = 15/24
27,501
z*a = x*a\Longrightarrow x = a*x = a*z = z
-25,914
5.25 = \frac{63}{12}
-23,451
\frac{2\cdot \frac15}{3} = \frac{2}{15}
24,678
-\left(-\cosh{x} + \sinh{x}\right) \cdot (\sinh{x} + \cosh{x}) = 1 \Rightarrow 1 = (\sinh{x} + \cosh{x}) \cdot 5
2,823
1/(5x) = \frac{1}{5x}
-20,870
4/4\cdot \frac{10\cdot j + 5}{7\cdot \left(-1\right) - 8\cdot j} = \frac{40\cdot j + 20}{28\cdot (-1) - 32\cdot j}
276
2 + 2^2 \lt 2^3 + 1 \Rightarrow 6 < 8
27,867
z^4 + z + 1 = (z + d) \cdot \left(z + d^2\right) \cdot (z + d^4) \cdot (z + d^8) = \left(z + d\right) \cdot \left(z + d^2\right) \cdot (z + d + 1) \cdot (z + d^2 + 1)
2,492
f = C_2 \cdot M_2 + C_1 \cdot M_1\Longrightarrow (-C_2 \cdot M_2 + f)/(C_1) = M_1
-27,267
\sum_{m=1}^\infty \frac{3 \cdot (3 + 1)^m}{m \cdot 4^m} = \sum_{m=1}^\infty \frac{4^m}{m \cdot 4^m} \cdot 3 = \sum_{m=1}^\infty \frac3m = 3 \cdot \sum_{m=1}^\infty \frac{1}{m}
30,305
\frac{1}{m*2}2^m = \dfrac{2^{m*2}}{2^m m*2}
2,279
\frac{x^2}{y + z} = \dfrac{1}{4} \cdot \frac{1}{y + z} \cdot 4 \cdot x \cdot x \geq \left(4 \cdot x - y - z\right)/4
46,579
\bar{s} \cdot \bar{x} \cdot (s + x + \bar{t}) = \bar{s} \cdot (\bar{x} \cdot s + \bar{x} \cdot x + \bar{x} \cdot \bar{t}) = \bar{s} \cdot (\bar{x} \cdot s + \bar{x} \cdot \bar{t}) = \bar{x} \cdot \bar{s} \cdot s + \bar{s} \cdot \bar{x} \cdot \bar{t} = \bar{s} \cdot \bar{x} \cdot \bar{t}
11,097
\tan^3(\arctan{y}) = \tan(\tan(\tan\left(\arctan{y}\right))) = \tan(\tan{y}) = \tan^2{y}
26,943
\frac{1}{2}(180 + 50 (-1)) = 65
-20,296
\dfrac88*\frac{-r + 5*(-1)}{6*(-1) + r} = \dfrac{-8*r + 40*\left(-1\right)}{8*r + 48*(-1)}
-5,890
\frac{1}{3\cdot p + 6\cdot (-1)}\cdot 3 = \frac{3}{3\cdot \left(p + 2\cdot (-1)\right)}
7,238
m \cdot x + f = f + (m + 1 + (-1)) \cdot x
14,483
\cot(A) = \cos(A)/\sin(A)
7,938
1/2 + \frac18 = 5/8
9,253
\frac{\log_e(1/e)}{e} = -\frac1e
36,085
\frac{2\tan{z}}{1 + \tan^2{z}} = \sin{z*2}
-350
\frac{7!}{5! \times 2!} = 21
-10,454
\dfrac{4}{8\times x} = \frac{1}{4\times x}\times 2\times 2/2
8,255
3663 = (\left(-1\right) + 100)\cdot 37
-2,259
\frac{1}{18} = 4/18 - 3/18
-693
\pi*5/3 = \pi*77/3 - \pi*24
354
(y\cdot k)^2 = (y\cdot k) \cdot (y\cdot k)
26,458
\frac{1}{1 + x * x} = \frac{\mathrm{d}}{\mathrm{d}x} \tan^{-1}(x)
-25,510
\frac{\mathrm{d}}{\mathrm{d}j} (\frac{4}{2 + j}) = -\frac{1}{(j + 2)^2}\cdot 4
-6,720
\dfrac{3}{10} + \dfrac{6}{100} = \dfrac{30}{100} + \dfrac{6}{100}
20,740
40/67 = \frac{\frac19 \cdot 5}{3/8 + \dfrac{1}{9} \cdot 5}
42,613
\frac{1}{1 + a}\left(1 - \frac{1}{1 + a}\right) = \frac{1}{1+a} - \frac{1}{(1+a)^2} = \frac{1+a}{(1+a)^2} - \frac{1}{(1+a)^2} = \frac{1+a-1}{(1+a)^2} = \frac{1}{(1+a)^2}a
20,761
1 + 2m + 1 + 3(-1) = m*2 + (-1)
-5,291
7.8\cdot 10^3 = 10^{4\cdot (-1) + 7}\cdot 7.8
30,981
1 + ((-1) + z)^2 = 2 + z^2 - z*2
-15,659
\dfrac{1}{\frac{1}{q^{20} \cdot \frac{1}{n^5}} \cdot q^4} = \frac{1}{q^4 \cdot \frac{n^5}{q^{20}}}
10,928
z * z + z + 1 = (z + 2) (z + 2) = (z + (-1)) (z + (-1))
-22,969
\frac{4*5}{4*6} = \frac{20}{24}
10,115
4*(16 + (-1)) = 60
-18,165
13 = 19 + 6 \cdot \left(-1\right)
17,720
b_1 + 2*b_1 = 3*b_1