id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
4,207 | g/x*a/f = 1/(x*f)*g*a |
-20,215 | \dfrac{35 y + 30}{-y*28 + 24 (-1)} = \dfrac{1}{-y*7 + 6(-1)}(-7y + 6\left(-1\right)) \left(-5/4\right) |
-20,461 | \frac{s*\left(-1\right)}{s + 10}*\frac{1}{4}*4 = \frac{(-4)*s}{4*s + 40} |
6,789 | y_t \cdot y_l = y_l \cdot y_t |
16,250 | |0*(-1) + \frac1x*x * x| = |x + 0*(-1)| |
-30,259 | x^2 - x + 12\cdot (-1) = (3 + x)\cdot \left(x + 4\cdot (-1)\right) |
13,375 | p - \frac12*((-1) + p) = (p + 1)/2 |
16,618 | a\times b\times 2 = a\times b + b\times a |
10,645 | (\frac{1}{2}e^{-ir} + \frac{e^{ir}}{2})^m = \cosh^m{ir} = \cos^m{r} |
24,071 | 0 = U\cdot \sin(x)\cdot Z - \dfrac{g}{2}\cdot U^2\Longrightarrow U = Z\cdot \sin\left(x\right)\cdot 2/g |
12,910 | \left(z + 2*(-1)\right)^2 + (z^2 - 1/2)^2 = z * z - 4*z + 4 + z^4 - z * z + \tfrac{1}{4} = z^4 - 4*z + 17/4 |
-9,633 | 0.01\cdot \left(-80\right) = -\frac{80}{100} = -4/5 |
-20,482 | \frac{1}{70 \times m + 28} \times (4 \times (-1) - m \times 10) = \frac{1}{m \times 10 + 4} \times (4 + 10 \times m) \times (-\dfrac{1}{7}) |
2,121 | \sqrt{1 + \sqrt{y^3 + 2 + y + y^2}} = u \Rightarrow y^3 + 2 + y + y^2 = \left(u^2 + (-1)\right)^2 |
26,769 | (X \cdot B)^3 = B \cdot X \cdot X \cdot B \cdot X \cdot B |
-4,246 | \frac{x^4 \times 72}{48 \times x \times x^2} = 72/48 \times \frac{1}{x^3} \times x^4 |
157 | Var\left[x_X - x_Y\right] = Var\left[x_X\right] + Var\left[-x_Y\right] = Var\left[x_X\right] + Var\left[x_Y\right] |
25,192 | |X \cdot D| = |X| \cdot |D| |
14,188 | 4*(4 + (-1))/3 = 6 < 7 |
21,575 | 1 + \frac13 \cdot (3000 \cdot (-1) + 3333) = 112 |
-19,619 | 9/7*4/3 = \frac17*9/(3*1/4) |
18,922 | x*\Delta*z = \Delta*x*z |
-2,577 | \sqrt{7}*2 + 4\sqrt{7} = \sqrt{7} \sqrt{4} + \sqrt{7} \sqrt{16} |
-3,258 | 7^{\dfrac{1}{2}} \cdot (4 + (-1) + 2) = 5 \cdot 7^{1 / 2} |
-1,583 | \pi \frac{19}{12} = \frac{1}{6}5 \pi + 3/4 \pi |
11,287 | \sin{5\pi/2} = \sin{\pi/2} = 1 |
31,728 | \cos{x} \cdot \cos{\alpha} - \sin{x} \cdot \sin{\alpha} = \cos(\alpha + x) |
-7,660 | \frac{1 - i*7}{-3 - 4*i} = \frac{1 - 7*i}{-4*i - 3}*\frac{1}{-3 + i*4}*\left(4*i - 3\right) |
-28,113 | \tan\left(x\right) \sec(x) = \frac{d}{dx} \sec(x) |
5,747 | y^6 + \left(-1\right) = (y^3 + 1) \cdot (y^3 + \left(-1\right)) = (y^3 + 1) \cdot (y + (-1)) \cdot (y^2 + y^1 + y^0) |
9,725 | \sqrt{2\times z^2 \times z} + 2\times \sqrt{2\times z^3} + \sqrt{2\times z \times z^2} = 4\times \sqrt{2\times z^3} = 4\times z\times \sqrt{2\times z} |
-19,003 | 1/9 = \frac{1}{36 \pi}A_s*36 \pi = A_s |
16,951 | 1 = \sqrt{-\sin(\pi) + 1} |
28,196 | \sin{u*2} = \sin{u} \cos{u}*2 |
27,007 | 4 + 4 k = 4 \left(k + 1\right) |
5,621 | \left(0 \lt B,C < \pi\Longrightarrow \pi \gt |-B + C|\right)\Longrightarrow C - B = 0 |
-4,605 | -\frac{2}{4 + z} + \frac{1}{z + 5\cdot (-1)}\cdot 5 = \frac{30 + 3\cdot z}{20\cdot (-1) + z \cdot z - z} |
20,332 | |b_n|^{\tfrac1n} \leq \frac1p = \frac{1}{p} \Rightarrow p^{-n} \geq |b_n| |
-20,430 | \frac{21 (-1) - 7y}{12 + 4y} = -7/4 \frac{3 + y}{y + 3} |
6,076 | x^2 = 2*\sqrt{2*\sqrt{2*\sqrt{2*\sqrt{2*\sqrt{2*\sqrt{\cdots*2}}}}}} = 2*x |
4,433 | 1/3 = \frac{1/4}{1 - 1/4}\cdot 1 |
5,512 | \frac{1}{(3 - 2^{1 / 2}) \cdot (3 - 2^{1 / 2})} = \dfrac{1}{11 - 6\cdot 2^{\frac{1}{2}}} |
-25,022 | 4 - 64*Y^2 + 1024*Y^4 - Y^6*16384 + \dots = \frac{4}{Y^2*16 + 1} |
15,280 | \left(h \cdot a\right)^k = (a \cdot h)^k |
8,580 | \frac1{4N} + \frac1{N/3} + \frac1{4N/3} = \frac4N |
-3,343 | 32^{1/2} + 18^{1/2} - 2^{1/2} = (16*2)^{1/2} + (9*2)^{1/2} - 2^{1/2} |
14,905 | \dfrac{1/b\cdot f}{h} = f/(b\cdot h) |
7,162 | 60^3 = \left(2^2 \cdot 3 \cdot 5\right)^3 = 2^6 \cdot 3 \cdot 3^2 \cdot 5^3 |
35,727 | (1 + 1)^2 = 4 |
21,955 | A\cdot y + Z\cdot y = (Z + A)\cdot y |
25,988 | ab c = (a + b - ab) c = a + b - ab + c - (a + b - ab) c |
9,210 | h \cdot d_n - d_n = d_n \cdot (h + (-1)) |
25,544 | \cos(x) = \frac{\sin\left(2x\right)}{2\sin(x)} |
17,762 | k! = k\times (k + (-1))! = k\times (k + (-1))\times \left(k + 2\times \left(-1\right)\right)! |
8,829 | 2 \cdot (4 \cdot x^2 - 3 \cdot x + (-1)) = 2 \cdot (x + \left(-1\right)) \cdot (x + 1/4) = \dfrac{1}{2 \cdot \left(x + (-1)\right) \cdot (4 \cdot x + 1)} |
26,729 | (1 + s)\cdot \left((-1) + s\right) + 1 = s \cdot s |
5,288 | 1 + 3 + \dotsm + 2*x + (-1) + 2*(x + 1) + (-1) = x^2 + 2*x + 1 = (x + 1)^2 |
14,174 | 0 = (G - I \cdot c) \cdot (G - I \cdot c) \Rightarrow -c \cdot c \cdot I + G \cdot c \cdot 2 = G^2 |
1,744 | x^2 + x + 1 = (\frac12 + x)^2 + \frac14 \cdot 3 |
27,283 | (-1)^z = e^{i \cdot z \cdot \pi} = \cos(z \cdot \pi) + i \cdot \sin\left(z \cdot \pi\right) |
12,508 | \binom{m + (-1)}{m + (-1) - m - x} = \binom{m + (-1)}{(-1) + x} |
1,322 | A^3 = A \times A \times A |
47,982 | 7 = 4 \cdot 4 - 3^2 |
54,889 | 0.02 \approx -1/20.4 + \frac{1}{12.74} |
19,578 | \frac{1}{z \cdot z + 1} = -\frac{1}{-(z^2 + 2) + 1} |
-2,998 | 9 \times 2^{1 / 2} = 2^{\frac{1}{2}} \times (4 + 5) |
11,206 | (x + 1) * (x + 1) = x^2 + 1 = x + 1 + 1 = x |
-1,247 | 30/35 = \frac{30\cdot 1/5}{35\cdot 1/5} = 6/7 |
709 | \frac{1}{\dfrac{1}{y}g - c/y} = \frac{1}{g - c}y |
1,987 | -1/x + 1 = \frac{1}{x}\cdot (x + \left(-1\right)) |
6,940 | b \cdot c = 0 = c \cdot b |
5,673 | Y_{y_0} \Rightarrow Y_{y_0} |
19,401 | \dfrac{7}{3} \times z = z + z \times 4/3 |
-20,461 | 4/4 \frac{(-1) t}{10 + t} = \frac{(-1)*4 t}{t*4 + 40} |
15,126 | (b \cdot \dfrac{a}{b})^x = b \cdot a^x/b |
-5,777 | \dfrac{2}{(m + 5*(-1))*5} = \frac{2}{m*5 + 25*(-1)} |
1,584 | m = 316^2 - 3^6*17 = 316 * 316 - 3^4*3^2*17 = 316^2 - 3^4 (296^2 - m) |
-10,540 | \dfrac{4}{4} (-\dfrac{1}{4 x^3} 5) = -\frac{20}{x^3*16} |
-24,276 | 6 \times 6 + 8 \times \dfrac{2}{1} = 6 \times 6 + 8 \times 2 = 36 + 8 \times 2 = 36 + 16 = 52 |
32,420 | x + 2 + 2 \cdot \left(5x + 11\right) = 24 + 11 x |
34,636 | 7 = 5^{\frac{1}{2}} \cdot 5^{1 / 2} + 2^{1 / 2} \cdot 2^{1 / 2} |
23,824 | \dfrac159 = 9/5 |
-20,411 | \frac{x*(-8)}{-72*x + 72*(-1)} = \frac88*\dfrac{(-1)*x}{-9*x + 9*(-1)} |
8,604 | \frac{1}{x + 1} \cdot (2 \cdot \left(-1\right) + x \cdot x \cdot x + 4 \cdot x^2 + x) = 2 \cdot (-1) + x^2 + x \cdot 3 |
-15,839 | 56/10 = -8 \cdot \frac{1}{10} \cdot 2 + 9 \cdot \frac{8}{10} |
13,004 | (-z + x + y)^2 + (z - x + y)^2 + (z + x - y)^2 = 3\cdot x^2 + 3\cdot y \cdot y + 3\cdot z^2 - y\cdot x\cdot 2 - 2\cdot z\cdot x - y\cdot z\cdot 2 |
8,082 | -(-y + x)^2 + (y + x)^2 = 4\times x\times y |
-6,726 | 2/100 + 10^{-1} = 10/100 + \frac{2}{100} |
6,608 | 2 + 4 + 6 + \cdots + 2n = n*(2n + 2)/2 = n^2 + n |
19,868 | S^k = \frac{1^k}{0^k} = \frac{1}{0} = S \Rightarrow S^k = S |
4,351 | \binom{6}{2} \binom{9}{3} \cdot 4 \cdot 4^2 \binom{6}{3} = 1612800 |
-11,596 | 0 + 5\cdot (-1) + i\cdot 4 = -5 + i\cdot 4 |
-20,452 | -\dfrac{70}{56\cdot y + 49\cdot (-1)} = 7/7\cdot (-\frac{10}{8\cdot y + 7\cdot (-1)}) |
12,741 | 1 + 1/2 + 1/4 + \ldots + \frac{1}{2^k} = -\frac{1}{2^k} + 2 |
-8,065 | \frac{1}{5 + 5i}(5i + 5) \dfrac{i\cdot 45 + 5}{-i\cdot 5 + 5} = \tfrac{1}{5 - i\cdot 5}(45 i + 5) |
-7,004 | 4/8\cdot 5/9 = 5/18 |
30,248 | \pi\cdot 5^2 = 25\cdot \pi |
-14,594 | 84 = \dfrac{336}{4} |
11,711 | \mathbb{E}(-d) = -\mathbb{E}(d) |
536 | \left(-z + 1\right)^2 = ((-1) + z)^2 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.