id
int64
-30,985
55.9k
text
stringlengths
5
437k
-1,295
30/15 = 30\cdot \frac{1}{15}/(15\cdot \frac{1}{15}) = 2
-4,782
\frac{-3x + 12}{x^2 - 7x + 10} = -\frac{1}{2\left(-1\right) + x}2 - \tfrac{1}{x + 5(-1)}
26,168
2\cdot y \gt 3 - y\Longrightarrow y > 1
20,608
(m + 1)\cdot (m + (-1)) = m^2 + (-1)
10,117
(b^2 f + bf^2) \cdot 3 = bf \cdot f \cdot 3 + fb^2 \cdot 3
-19,617
\frac{10}{9}\times 7 = \tfrac19\times 70
-1,305
-2/3\cdot (-\frac{3}{4}) = \left((-1)\cdot 2\cdot \frac13\right)/(\frac{1}{3}\cdot (-4))
-24,225
(6 + 2)^2 = 8 \cdot 8 = 8^2 = 64
17,302
0.5 \cdot x = 1.5 \cdot x - x
26,494
-p^2 + d^2 = (p + d) \cdot (d - p)
-9,265
-d^2*35 + d*14 = -5*7*d*d + 2*7*d
-1,333
\frac{1}{3}\cdot 2\cdot (-2/9) = (\left(-1\right)\cdot 2\cdot 1/9)/(3\cdot 1/2)
18,854
\frac{1 + x^2}{(-1) + x^2} = \frac{1}{1 - \tfrac{1}{x} \cdot \tfrac{1}{x}} \cdot (1/x \cdot 1/x + 1)
20,662
2*(-1) + 2*k = 2*(\left(-1\right) + k)
1,267
-k^3 = -k k*(-k) = -k = -k
9,821
|e^{x'*i}*h_2 + e^{i*y}*h_1|^2 = h_1^2 + h_1*h_2*\cos(-x' + y)*2 + h_2 * h_2
-13,724
\frac{16}{8 + 6 (-1)} = \frac{16}{2} = 16/2 = 8
12,421
r^2\cdot \pi\cdot \pi\cdot x\cdot 2 = 2\cdot \pi \cdot \pi\cdot r^2\cdot x
18,906
d_2\cdot l = (d_2\cdot l)^{d_1} = d_2^{d_1}\cdot l^{d_1}
11,171
\sin(x)\cdot \sin(y) = \sin\left(x\right)\cdot \sin(y)
-21,858
-8/5 + \dfrac{1}{6} \cdot 9 = -\frac{8 \cdot 6}{5 \cdot 6} + \frac{1}{6 \cdot 5} \cdot 45 = -48/30 + 45/30 = -\frac{1}{30} \cdot \left(48 + 45\right) = -\frac{3}{30}
13,797
-4 \cdot 4 + 4 \cdot 26 \cdot 2 = 192
2,290
s + \frac{1}{2}\cdot (2 - s) = 2\cdot s/2 + (2 - s)/2 = \frac12\cdot (s + 2)
14,246
(-1/3 - \dfrac{1}{8} + 1/24 + \frac12) \cdot 2 = 1/6
2,977
\tfrac{1}{(n/4)^{1/2}}*(X - \frac12*n) = \frac{X*2}{n^{1/2}} - n^{1/2}
-19,666
14/8 = \tfrac1814
26,036
4\cdot q^2\cdot \pi - \pi\cdot q^2 = \pi\cdot q^2\cdot 3
35,210
1 = -x + n \Rightarrow x = (-1) + n
30,416
134 = 11 \cdot 11 + 3^2 + 2^2 = 10^2 + 5^2 + 3^2 = 9^2 + 7^2 + 2^2 = 7^2 + 7^2 + 6^2
24,236
B \backslash G + y = B \cap G + y^\complement = B \cap G^\complement + y
-14,150
\frac{66}{3 + 8} = 66/11 = \frac{1}{11} \cdot 66 = 6
40,187
23 = 54617663 - 77\cdot 709320
22,445
1 = |1| = |\dfrac1x \times x| = |x| \times |\frac1x|
15,705
v \cdot Y = v \Rightarrow \dfrac{v}{Y} = v
5,960
\sin(3t) = 3\sin t - 4\sin^3t
17,614
\cos(z + i\cdot y) = \cos{z}\cdot \cos{i\cdot y} - \sin{z}\cdot \sin{i\cdot y} = \cos{z}\cdot \cosh{y} - i\cdot \sin{z}\cdot \sinh{y}
4,583
\frac{1}{3}\cdot (3 + (-1)) = 2/3
-19,712
\dfrac15*28 = 4*7/(5)
114
\dfrac{\tfrac{1}{12}}{2} \cdot 1 = \frac{1}{24}
-1,730
\pi \cdot 5/6 - \frac{1}{6} \cdot 11 \cdot \pi = -\pi
9,973
x^2 + y^2 + z^2 = 2x \cdot x + 1 = 2xyz + 1
26,964
-8 = 8 \cdot \left(\cos{\pi} + i \cdot \sin{\pi}\right)
1,053
z\cdot y\cdot 2 + z^2 + y^2 = (z + y)^2
314
a^3 + b * b * b + c^2 * c - b*c*a*3 = (a + b + c)*(-c*a + a^2 + b * b + c^2 - a*b - c*b)
10,640
E\left[R_2 \times R_1\right] = E\left[-R_2 \times R_1\right] = E\left[-R_2 \times R_1\right] = -E\left[R_2 \times R_1\right]
-19,735
2/2 = \frac{1}{1\cdot 2}\cdot 2
16,007
-(h + x + f) \cdot 6 = -h \cdot x \cdot 3 + 2 \cdot \left(x + f + h\right) \cdot \left(x + f + h\right) - x \cdot f \cdot 3 - 3 \cdot f \cdot h \Rightarrow 0 = h \cdot x + f \cdot x + f \cdot h
33,576
x\cdot 0.01\cdot y = y\cdot 0.01\cdot x
23,019
(a + c)/b = (-1) + \dfrac1b\left(a + b + c\right)
24,077
1/4 = \frac{1}{36} + 1/9 + 1/9
-2,090
-\pi\cdot 4/3 + \pi/6 = -\pi\cdot 7/6
6,888
\frac{\frac{2}{9}}{1/3}\cdot 1 = \frac{1}{3}\cdot 2
28,575
9 + 9^2 + 9 \cdot (10^2 + \left(-1\right)) = 9 \cdot (1 + 10^2 + (-1) + 9) = 9 \cdot (10 \cdot 10 + 9) = 981
-20,000
\frac{5(-1) - 7z}{5(-1) - 7z} \dfrac{1}{8}9 = \frac{45 (-1) - 63 z}{40 (-1) - 56 z}
18,500
\binom{\left(-1\right) + p}{q + (-1)} p = \binom{p}{q} q
28,748
e + e - b = -b + e\cdot 2
35,040
4!/2 = \frac{24}{2} = 12 = 3*2^2
1,584
k = 316^2 - 3^6\cdot 17 = 316^2 - 3^4\cdot 3^2\cdot 17 = 316 \cdot 316 - 3^4\cdot \left(296^2 - k\right)
658
a^{(-1) + n} + ... + k^{3\cdot \left(-1\right) + n}\cdot a^2 + a\cdot k^{n + 2\cdot (-1)} + k^{(-1) + n} = \dfrac{1}{-k + a}\cdot \left(a^n - k^n\right)
12,609
c + f_2 + f_1 = c + f_2 + f_1
-28,798
150 = \frac{\pi}{1/150 \cdot 2\pi}2
4,136
\left((6\times 2^{1/2})^2 + 4 \times 4\right)^{1/2} = (72 + 16)^{1/2} = 88^{1/2}
-12,335
5\cdot \sqrt{7} = \sqrt{175}
32,443
2^4*3^4 = 1296
6,846
1/2 = 1/2*\frac{1}{2} + \frac12*\dfrac{1}{2}
40,194
3 + 2(-\dfrac{4}{3}) = 1/3
21,851
3b - b = 60 rightarrow 30 = b
1,791
c + 2 = 3 + c + (-1)
24,230
C_{2 + n} = C_{n + 1} + C_n \implies C_{n + 1} = -C_n + C_{2 + n}
2,030
\tfrac{1}{1 + x}(x^2 + 2x + 2) = x + 1 + \frac{1}{1 + x}
32,272
5 \cdot 5 - \left\lceil{\tfrac16 \cdot 5}\right\rceil + 5 \cdot (-1) = 19
-7,626
\dfrac{1}{-i + 2}\cdot (i\cdot 13 - 1)\cdot \frac{1}{i + 2}\cdot (2 + i) = \frac{1}{-i + 2}\cdot (13\cdot i - 1)
-23,143
-\tfrac{1}{3}4\cdot 3/2 = -2
8,985
1/(UT) = \frac{1}{TU}
-26,139
10 \cdot (e^{14} + (-1)) = e^{14} \cdot 10 - 10 e^0
21,272
(c + b)^2 = c^2 + b c\cdot 2 + b^2
23,568
(3^{2^9} + \left(-1\right)) \left(3^{2^9} + 1\right) = 3^{2^{10}} + (-1)
-7,396
\dfrac{1/9\cdot 4}{5} = 4/45
-621
\frac{\pi}{3} = \frac{25}{3}\cdot \pi - \pi\cdot 8
5,846
-24 = h \times 32 \implies h = -3/4
34,763
163\cdot (-1) + 42^2 = 40^2 + 1^2
7,820
a^2 - b^2 = \left(b + a\right)*\left(-b + a\right)
7,949
\sin(x) \cos(x) \cdot 2 = \sin\left(2 x\right)
4,238
z = 4 - x^2 - y^2\Longrightarrow 0 = x^2 + y^2 + z + 4*(-1)
8,956
4 \cdot (4^j + (-1)) = 4^{j + 1} + 4(-1) = 4^{j + 1} + 3(-1) + (-1)
8,569
2z = z + 1 - 1 - z
29,115
f + yx*3 = 0 \Rightarrow -f/\left(3x\right) = y
-2,199
\tfrac{2}{13} = 6/13 - \frac{4}{13}
-4,476
\frac{1}{10 + x^2 - 7 \cdot x} \cdot \left(33 - 9 \cdot x\right) = -\frac{5}{x + 2 \cdot \left(-1\right)} - \dfrac{1}{x + 5 \cdot (-1)} \cdot 4
8,437
\cos{\frac18 \cdot \pi} = (2^{1/2} + 2)^{1/2}/2
4,365
\frac{1}{7}6 = 6/7
8,064
π/2 = π/10 + π\cdot 2/5
-434
3/2*\pi = -6*\pi + \pi*15/2
30,087
w^T\cdot q = w^T\cdot q
12,818
3 \cdot \dfrac{930}{2} \cdot 1 = 1395
-15,170
\dfrac{n^4}{p^9\cdot \frac{1}{n^3}} = \dfrac{1}{\frac{1}{\dfrac{1}{p^9}\cdot n^2 \cdot n}\cdot \dfrac{1}{n^4}}
29,890
\frac{z + \left(-1\right)}{(z + (-1))^2} = \frac{1}{(-1) + z}
26,303
1 = (\sqrt{15} + 4)^{\tfrac{1}{3}}\cdot \left(4 - \sqrt{15}\right)^{1/3}
-1,548
5/8 = \dfrac{1}{8}\cdot 5
-25,371
\tan{y} = \frac{1}{\cos{y}}*\sin{y}