id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-8,090 | \frac{1}{26} (115 + 75 i - 23 i + 15) = \frac{1}{26} (130 + 52 i) = 5 + 2 i |
10,888 | \dfrac{1}{(z_1 + 2 \cdot (-1)) \cdot (z_2 + 2 \cdot (-1))} \cdot ((-5) \cdot (-z_1 + z_2)) = \dfrac{1}{(2 \cdot (-1) + z_2) \cdot (2 \cdot (-1) + z_1)} \cdot (-(3 \cdot (-1) + 4 \cdot z_1) \cdot \left(2 \cdot (-1) + z_2\right) + \left(3 \cdot (-1) + 4 \cdot z_2\right) \cdot \left(2 \cdot (-1) + z_1\right)) |
14,231 | bw + dw = w*(b + d) |
-6,349 | \frac{x \cdot 2}{x^2 + x \cdot 12 + 35} \cdot 1 = \tfrac{x \cdot 2}{(5 + x) \cdot \left(x + 7\right)} |
23,187 | \lambda_i \cdot (j - k) = j \cdot \lambda_i - k \cdot \lambda_i |
23,553 | \left(-y + 1\right) \cdot \left(y + 1\right) = -y^2 + 1 |
8,990 | \left\{256, \ldots, 129130\right\} = F_1 \Rightarrow |F_1| = 128 |
21,849 | \sqrt{\sin^2(t) + \cos^2(t)} td a = td a |
-10,084 | 0.01 \cdot (-99) = -99/100 = -0.99 |
47,607 | \sin(x)=2\,{\frac {\tan \left( x/2 \right) }{1+ \left( \tan \left( x/2 \right) \right) ^{2}}} |
19,450 | \frac{269}{8} + \frac18 \cdot (5 \cdot (-1) + 2 \cdot x) \cdot (x^2 \cdot 4 + x \cdot 10 + 49) = x^3 + x \cdot 6 + 3 |
17,141 | a - D - c = a - D - c |
25,176 | (x+x^2+\cdots+x^6)^3= (x+x^2+\cdots+x^6) (x+x^2+\cdots+x^6) (x+x^2+\cdots+x^6) |
17,785 | p = 1/2 = 1 - p |
5,644 | -\dfrac{1}{(x + 1) \cdot (x + 1)} = d/dx \frac{1}{1 + x} |
5,422 | -y + y \cdot y = y\cdot (y + \left(-1\right)) |
26,094 | (a + b)^2 = a \cdot a + b \cdot b + 2\cdot a\cdot b = a^2 + b^2 + a\cdot b = a + b + a\cdot b = a\cdot b |
7,476 | n\cdot \frac{1}{3}\cdot 17 - 14/3 = 5/3\cdot n - 14/3 + 12/3\cdot n |
10,523 | 6666 \cdot \dfrac12 \cdot 120 = 6666 \cdot 60 |
33,888 | \sin^2\phi=1-\cos^2\phi |
-20,482 | -1/7 \frac{n \cdot 10 + 4}{n \cdot 10 + 4} = \frac{1}{28 + 70 n}(4(-1) - n \cdot 10) |
-1,373 | (\frac16\times \left(-5\right))/(1/4\times 9) = -5/6\times 4/9 |
5,783 | -(m + \left(-1\right))^2 = -m^2 + 4*m + (-1) - 2*m |
-19,305 | \frac{\frac{1}{4} \cdot 5}{3 \cdot \frac{1}{5}} = \frac{5}{3} \cdot \frac{5}{4} |
49,147 | 42=7\cdot6 |
8,896 | 5\cdot i^2 + i^2\cdot 3 + i^2 = 9\cdot i \cdot i |
-11,982 | 1/2 = r/(4\cdot \pi)\cdot 4\cdot \pi = r |
16,335 | q \cdot (e^2 - e) = 0 = (q \cdot e - q) \cdot e |
7,844 | \frac{1}{l + l^2} = \frac1l - \frac{1}{1 + l} |
22,868 | \cos\left(x\right) = (-1) + 2\cdot \cos^2(\dfrac{x}{2}) |
6,789 | y_p\cdot y_l = y_l\cdot y_p |
2,289 | 2^i = 2\cdot 2^{i + (-1)} |
29,350 | \left(x - f\right) * \left(x - f\right) = (x - f)*(x - f) |
14,970 | 120\cdot x + x\cdot 22 = 142\cdot x |
26,019 | \frac1n \cdot (n + 1) \cdot x = \frac{x^{1 + n}}{n \cdot x^n} \cdot (1 + n) |
6,555 | \dfrac{3}{2} = 3/2 = 2\cdot 3/4 |
10,129 | t \cdot U = t \cdot Y = k rightarrow t \cdot U \cdot Y = k |
39,097 | (f - c)^2 = -(d - g)^2 rightarrow 0 = \left(-g + d\right)^2 + \left(-c + f\right)^2 |
-19,501 | \frac{4 \cdot 1/3}{7 \cdot 1/6} = 4/3 \cdot 6/7 |
1,684 | M + M^2 + M^3 + M^4 + \dotsm = \frac{M}{1 - M} |
24,321 | \frac{\pi}{12} = -\frac{\pi}{6} + \frac{\pi}{4} |
28,627 | d \cdot 0 = 0 = 0 \cdot d |
14,160 | h + h = (h + h)^2 = h^2 + h \cdot h + h^2 + h^2 = h + h + h + h \Rightarrow 0 = h + h |
18,217 | 2a + 6a = 8a = 2^3 a |
20,754 | \left(x + \sqrt{2}\right) \cdot \left(x - \sqrt{2}\right) = 2 \cdot (-1) + x \cdot x |
-20,008 | \dfrac{1}{1}\cdot 1 = \frac{-4\cdot a + 2}{2 - 4\cdot a} |
22,910 | (-1) + x^3 - x^2 + x = \left(1 + x^2\right)\times \left((-1) + x\right) |
-23,242 | \tfrac{5}{18} = \tfrac{5}{8} \cdot 4/9 |
2,370 | y^{2 \cdot (-1) + 4/3} = y^{-\frac{2}{3}} |
20,920 | y\frac{dy}{dx}=\frac{d}{dx}\left(\frac{y^2}{2}\right) |
32,736 | c^{m + n} = c^n*c^m |
-4,364 | x\dfrac134 = x*4/3 |
-3,275 | \sqrt{16\cdot 7} - \sqrt{7} + \sqrt{4\cdot 7} = \sqrt{28} + \sqrt{112} - \sqrt{7} |
6,940 | d_1 \cdot d_2 = 0 = d_2 \cdot d_1 |
-27,459 | 5 + \frac{15}{4} + \frac{1}{16} 45 = 185/16 |
-26,549 | y^2 \cdot 3 + 30 y + 75 = 3 \left(25 + y^2 + y \cdot 10\right) |
29,462 | 2\alpha + \beta = \left(\beta/2 + \alpha\right) \cdot 2 |
22,018 | (-h + a)*(h + a) = -h^2 + a^2 |
-2,255 | -7/11 + \dfrac{10}{11} = 3/11 |
30,092 | \left(\frac{\partial}{\partial x} (x\cdot u) = e^x \Rightarrow x\cdot u = \int e^x\,dx = e^x + b\right) \Rightarrow (e^x + b)/x = u |
-3,578 | \dfrac{p^5}{p} = pp p p p/p = p^4 |
-18,265 | \frac{(2*\left(-1\right) + s)*(s + 8*(-1))}{s*\left(s + 8*\left(-1\right)\right)} = \frac{16 + s^2 - s*10}{-s*8 + s^2} |
-5,492 | \frac{3}{\left(t + 4 \cdot \left(-1\right)\right) \cdot 2} = \frac{3}{8 \cdot (-1) + 2 \cdot t} |
14,138 | \frac{1}{2^n \cdot n \cdot 2} \cdot 2^{2 \cdot n} = \tfrac{2^n}{n \cdot 2} |
-29,412 | -\dfrac{6}{7} \times \left(-\dfrac{5}{4}\right) = \dfrac{-6 \times (-5)}{7 \times 4} = \dfrac{30}{28} = \dfrac{15}{14} |
8,016 | \binom{2}{1} \binom{4}{1} \binom{4}{1} \binom{10}{1} + 8 = 328 |
29,520 | c \cdot x \cdot B = c \cdot x \cdot B |
-24,779 | \frac14 (-\sqrt{2} + \sqrt{6}) = \cos{\pi\cdot 5/12} |
7,149 | x_i = x_i*0*0 |
1,284 | 3 = 3^{\tfrac12} \cdot 3^{1/2} |
-6,754 | 72 = 6 \cdot 4 \cdot 3 |
2,963 | 1^3 + 2^3 + 3^3\cdot \dots + m^3 = (1 + 2 + 3\cdot \dots + m)^2 |
24,361 | x c = 1 \Rightarrow c x = 1 |
10,695 | (-p + 1)/p = \tan^2(w) rightarrow \cos^2(w) = p |
-18,053 | 38 + 3\times (-1) = 35 |
2,757 | |h + x*i| = \left(h^2 + x^2\right)^{1 / 2} = |h - x*i| |
41,241 | \tan(x+y)=\frac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)}=1 \implies x+y=\frac{\pi}{4} |
-21,130 | \frac{3}{4}\cdot \frac{2}{2} = \frac{1}{8}\cdot 6 |
9,041 | d/b \cdot b = d \cdot b/b |
25,488 | \left(b_X + (-1)\right) \cdot (1 + b_X) = (-1) + b_X \cdot b_X |
11,525 | y^2 + 10\cdot y + 15 = y^2 + 10\cdot y + 25 + 10\cdot (-1) = (y + 5)^2 - \left(\sqrt{10}\right)^2 |
25,068 | 1/2 = 0 + \frac14 + \frac18 + \dotsm |
-6,382 | \dfrac{2}{40\cdot (-1) + x \cdot x - 3\cdot x} = \tfrac{2}{(x + 8\cdot (-1))\cdot (x + 5)} |
12,418 | n*x - x*m = (n - m)*x |
-1,858 | \pi/3 + \frac143 \pi = \pi \dfrac{13}{12} |
31,433 | \tfrac16\times (1 + 2 + 3 + 4 + 5 + 5) = \frac{10}{3} = 3.333 |
159 | \cos(y) \cos(z) - \sin(y) \sin(z) = \cos(z + y) |
2,268 | e * e*e * e * e*0 = 0 |
27,322 | \frac{y}{\sqrt{y^2 + 1}} = \sin\left(\tan^{-1}(y)\right) |
33,936 | \frac{dz}{dt} = \frac{dz^1 + 1}{dt^1 + 1}/(\frac{dz}{dt}) |
31,051 | 3000 = 5^3*2 * 2 * 2*3 |
-6,177 | \frac{1}{2 \cdot \left(s + 5 \cdot (-1)\right)} \cdot 2 = \dfrac{2}{s \cdot 2 + 10 \cdot \left(-1\right)} |
-4,049 | y^2*\dfrac32 = \dfrac{y^2*3}{2} |
-20,264 | \frac{1}{-20\cdot p + 30}\cdot (p\cdot 24 + 36\cdot \left(-1\right)) = -\frac15\cdot 6\cdot \frac{-p\cdot 4 + 6}{6 - 4\cdot p} |
11,185 | -k_2 + k_1 \cdot (\left(-1\right) + k_2) = -k_2 + k_2 \cdot k_1 - k_1 |
13,895 | z_2^2 + z_1^2 + z_2 \cdot z_1 \cdot 2 = (z_1 + z_2) \cdot (z_1 + z_2) |
17,594 | \frac{1}{12} = \frac1y\cdot 7 \Rightarrow y = 84 |
-23,161 | -\frac19*16*2/3 = -\frac{1}{27}*32 |
32,456 | (p^2)^2 = p^4 |
9,212 | \frac{1}{x + 1} = \frac{1}{x^2 + (-1)}*((-1) + x) |
Subsets and Splits