id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-29,588 | \frac{\mathrm{d}}{\mathrm{d}z} (2\cdot z^2 - 6\cdot z + 5) = 6\cdot (-1) + z\cdot 4 |
39,123 | (a + d)^2 = a^2 + 2*a*d + d * d \geq a * a + d * d |
41,171 | 10^{15} + (-1) = 9\cdot 111\cdot 1001001001001 |
-5,490 | \frac{1}{(7 + q)\cdot (2 + q)\cdot 2}\cdot 6 = \frac12\cdot 2\cdot \frac{1}{(q + 2)\cdot (q + 7)}\cdot 3 |
42,486 | 4*11 + 3*4 = 56 |
30,223 | \tfrac{1}{2}(5 + 15) = 10 |
-5,581 | \dfrac{4 \cdot (y + 4 \cdot (-1)) - 5 \cdot \left(y + 6 \cdot (-1)\right) + (-1)}{\left(y + 4 \cdot (-1)\right) \cdot (6 \cdot (-1) + y)} = \dfrac{4}{\left(y + 4 \cdot (-1)\right) \cdot \left(6 \cdot (-1) + y\right)} \cdot (y + 4 \cdot (-1)) - \frac{5 \cdot (y + 6 \cdot (-1))}{(4 \cdot (-1) + y) \cdot (y + 6 \cdot (-1))} - \frac{1}{(4 \cdot (-1) + y) \cdot \left(y + 6 \cdot (-1)\right)} |
21,892 | n = (2 + \left(-1\right) + n \cdot 2 + (-1))/2 |
-11,536 | 10 \cdot i + 40 = 25 + 15 + 10 \cdot i |
12,552 | (0*(-1) + z)*(z + 0*\left(-1\right)) = z^2 |
18,954 | \frac{\frac{5}{18}}{\frac{7}{9}} = \frac{5}{14} |
26,598 | l/h = 1/(1/l*h) |
28,132 | (V + X)^2 - X^2 - V^2 = V*X + X*V |
22,691 | x-\frac{1}{2}=\frac{2x-1}{2} |
-1,387 | -\frac{1}{9}\cdot \tfrac79 = (1/9 \left(-1\right))/(1/7\cdot 9) |
-20,173 | 10/(-70) = -1/7*(-\frac{1}{-10}*10) |
18,418 | |x \cdot T| = |T| \cdot |x| |
-2,257 | \dfrac{2}{18} = 5/18 - \frac{3}{18} |
13,796 | z^{\frac32} = (1 + z + (-1))^{\dfrac32} |
14,557 | y = \tfrac{y}{|y|}\cdot |y| |
4,682 | 4 \cdot (\frac{1}{5} \cdot 2)^{n + (-1)} = \frac{1}{5^{n + (-1)}} \cdot 2^{n + (-1)} \cdot 2 \cdot 2 |
16,391 | \frac{1}{y + 4} \cdot y = \frac{1}{y - i + 4 + i} \cdot y |
-4,794 | 6.3 \times 10 = \frac{63.0}{10000} \times 1 = 6.3/1000 |
-10,357 | -\frac{9}{12\cdot n}\cdot 3/3 = -27/(n\cdot 36) |
526 | (1 - q)^7 - 7*(1 - q)^6*q = \left(1 - q\right)^6*\left(1 - q - 7*q\right) = (1 - q)^6*(1 - 8*q) |
-26,288 | 5 = Y \cdot e^{\left(-2\right) \cdot 0} = Y |
-24,883 | \frac{11}{12} = \dfrac{x}{12 \cdot \pi} \cdot 12 \cdot \pi = x |
-13,896 | 10 + 6 \cdot 16/2 = 10 + 6 \cdot 8 = 10 + 6 \cdot 8 = 10 + 48 = 58 |
4,466 | \left(\delta - g\right)^2 = \delta^2 - 2\cdot \delta\cdot g + g^2 = \delta^2 - g \cdot g |
-549 | \left(e^{19*i*\pi/12}\right)^6 = e^{19*\pi*i/12*6} |
30,534 | i = 2^{2\cdot \left(L + 1\right)} + (-1) = 4\cdot 4^L + \left(-1\right) |
31,204 | \overline{x} = \frac1x = x^4 |
-11,970 | \frac12 = \dfrac{p}{8\pi}*8\pi = p |
8,550 | (z + x) r = x r + z r |
28,068 | 0 = e^{\sin{z \cdot Q}} + z^2 - 2 \cdot Q + (-1) \approx z \cdot Q + z^2 - 2 \cdot Q |
18,877 | (1324*H)^2 = 1324^2*H = 12*34*H = H |
-23,991 | 10 + \left(\dfrac{4}{4}\right)= 10 + (1) = 10 + 1 = 11 |
22,498 | z \cdot 0 = (z + 0) \cdot (0 + 0) = z \cdot 0 + z \cdot 0 \Rightarrow 0 = z \cdot 0 |
51,797 | 1/7893600 = 1/23\times 1/25\times \frac{1}{26}/24/22 |
21,403 | 1 - 3*2/21 = 15/21 = \frac{5}{7} |
18,571 | H^\vartheta*G = G*H^\vartheta |
29,301 | 10152 = 3^3 \cdot 2^3 \cdot 47 |
2,291 | {n \choose 2}\times 2 + {n \choose 0}\times 2 = n^2 - n + 2 |
-613 | -4 \pi + \frac{1}{2} 11 \pi = \pi \frac{3}{2} |
-10,435 | -\dfrac{5}{2\cdot (-1) + 4\cdot q}\cdot \frac55 = -\tfrac{1}{q\cdot 20 + 10\cdot (-1)}\cdot 25 |
11,231 | 1^2 \times 2 - 4 + 3 = 1 |
7,883 | \frac{1}{2^{1 + n}}(n + 1) = \frac{1}{2^{n + 1}}\left(3(-1) + 2n + 4 - n\right) |
26,494 | -p \cdot p + h^2 = (p + h) \cdot \left(-p + h\right) |
6,016 | \frac{\partial}{\partial t} (zy) = z\frac{\mathrm{d}y}{\mathrm{d}t} + y\frac{\mathrm{d}z}{\mathrm{d}t} |
-22,958 | \dfrac{1}{30}*42 = 7*6/(5*6) |
-9,243 | -60*y + 90 = 2*3*3*5 - 2*2*3*5*y |
13,699 | y^4*y*2 = 2*y^5 |
25,188 | a\cdot m + m\cdot b = m\cdot \left(b + a\right) |
-14,535 | \frac{10}{4 + 2 \cdot (-1)} = 10/2 = \dfrac{10}{2} = 5 |
-22,969 | \dfrac{20}{24} = \dfrac{20}{6*4}1 |
50,356 | (x - x_0)^2 / a^2 + (y-y_0)^2 / b^2 = 1\implies (x - x_0)^2 / a^2 + (y-y_0)^2 / b^2 - 1=0 |
29,722 | d\cdot x\cdot z = x\cdot z = x\cdot z = d\cdot x\cdot z |
-29,593 | d/dz (-2z^4) = -2d/dz z^4 = -2 \cdot 4z^3 = -8z^3 |
-20,927 | -\frac37 \frac{q + 2 (-1)}{q + 2 (-1)} = \frac{6 - 3 q}{7 q + 14 (-1)} |
884 | 1 = \left|{\frac{X}{X}}\right| = \left|{X}\right|\cdot \left|{\frac1X}\right| |
4,368 | C_1\cdot C_3\cdot f\cdot C_2 = C_3\cdot C_2\cdot C_1\cdot f |
20,319 | i\times \sin(\pi\times 5/4) + \cos(5\times \pi/4) = \left(\sqrt{2}\times \left(-1\right)\times (i + 1)\right)/2 |
-26,950 | \sum_{k=1}^\infty \frac{(3 + 4)^k}{k \cdot 7^k} \cdot \left(k + 6\right) = \sum_{k=1}^\infty \frac{\left(k + 6\right) \cdot 7^k}{k \cdot 7^k} = \sum_{k=1}^\infty \frac1k \cdot (k + 6) |
-29,591 | d/dy \left(2 y^2 - 6 y + 5\right) = y\cdot 4 + 6 \left(-1\right) |
-15,900 | \dfrac{20}{10} = -\frac{5}{10}\cdot 5 + 9\cdot \frac{1}{10}\cdot 5 |
21,089 | \frac{b^2}{c^2} = \frac14\cdot 3^{1/2} \Rightarrow b = 3^{1/2},c = 2 |
6,129 | 1/3 + \frac{1}{4*3} = -\frac{1}{3*4} + \dfrac12 |
-123 | 4\cdot (-1) - 21 = -25 |
37,370 | 36 + \left(2\cdot 6 + 9\right)\cdot 2 = 78 |
19,334 | (x - a) \cdot \left(x + a\right) = x^2 - a^2 = x^2 + 1 - a \cdot a + 1 |
36,360 | a^{l + 1} = a^l*a |
390 | e^{2*y + \left(-1\right)}*2 = d/dy (e^{y*2 + (-1)} + 1) |
1,476 | \left(-y*3 + 4 = 7\Longrightarrow -y*3 = 3\right)\Longrightarrow y = -1 = 7 |
17,368 | (n*2)! = {2n \choose n} n!^2 |
7,718 | \frac1yx yx = x\frac{y}{y}x |
12,883 | |a| = |a - g + g| \leq |a - g| + |a| |
46,547 | \frac{\mathrm{d}x}{\mathrm{d}x} = \frac{\mathrm{d}x}{\mathrm{d}x} |
2,804 | \left(t + (-1)\right) \cdot ((-1) + t^2 - 2 \cdot t) = t^3 - t^2 \cdot 3 + t + 1 |
16,567 | \sin{2y} = \sin{y} \cos{y}\cdot 2 |
34,921 | J + I = A \Rightarrow A = \sqrt{J} + \sqrt{I} |
30,847 | 60 = 150/5 \times (3 + \left(-1\right)) |
-14,279 | 9 + (6 - 4)\cdot 9 = 9 + (6 + 4\cdot (-1))\cdot 9 = 9 + 2\cdot 9 = 9 + 18 = 27 |
14,158 | (z*\sqrt{k} + Z)*(Z - \sqrt{k}*z) = Z^2 - k*z^2 |
24,101 | (x + 1)! - x! = (x + 1) x! - x! = \left(x + 1 + (-1)\right) x! = xx! |
14,196 | \cos(\pi + i) = -\cos{i} = -\left(e^{i^2} + e^{-i^2}\right)/2 = -\frac{1}{2}\cdot (e + \frac{1}{e}) |
819 | 2\cdot R - R = R |
6,593 | -m^2 + 8 \cdot m + 18 = -(m^2 - 8 \cdot m + 18 \cdot (-1)) = -((m + 4 \cdot (-1))^2 + 34 \cdot \left(-1\right)) = -(m + 4 \cdot \left(-1\right) - \sqrt{34}) \cdot (m + 4 \cdot \left(-1\right) + \sqrt{34}) |
33,417 | \frac{\partial}{\partial z} z^k = z^{k + (-1)} \cdot k |
15,654 | {n \choose r} = \frac{n!}{r! (n - r)!} |
3,660 | (x^2 + xb + b^2) (-b + x) = -b \cdot b \cdot b + x^3 |
-4,093 | 6/5 x^3 = 6x^3/5 |
15,977 | 1 + z^2 + z = \frac{z^3 + (-1)}{\left(-1\right) + z} |
22,267 | -\sin{\frac13\pi} = \sin{\frac43\pi} |
31,876 | z \cdot z + 8 \cdot z + 7 = (z + 1) \cdot (7 + z) |
23,219 | \frac{(2\cdot n + 1)\cdot (1 + n)}{(2\cdot n + 1)\cdot \left(3 + n\cdot 2\right)} = \frac{1 + n}{3 + n\cdot 2} |
-6,730 | \frac{1}{100} \cdot 3 + 3/10 = \frac{30}{100} + \frac{3}{100} |
-6,699 | \dfrac{0}{100} + \frac{9}{100} = \frac{0}{10} + \frac{9}{100} |
8,030 | \frac14 \cdot \pi + \frac{1}{3} \cdot \pi = \frac{7}{12} \cdot \pi |
33,371 | 48\times 6 + 2\times3 + 6\times1= 300 |
29,750 | \left(y^2 - z * z + y*4 + 4 = 0 \Rightarrow 0 = -z^2 + (y + 2)^2\right) \Rightarrow (y + 2 + z)*(y + 2 - z) = 0 |
Subsets and Splits