id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-4,814 | 1.8/1000 = \dfrac{1}{1000}1.8 |
-25,510 | \frac{d}{dx} (\frac{1}{2 + x} 4) = -\frac{1}{\left(2 + x\right)^2} 4 |
31,873 | \cos{x} + \sin{x} = Y \cdot \sin(x + x_0) = Y \cdot \sin{x} \cdot \cos{x_0} + Y \cdot \cos{x} \cdot \sin{x_0} |
23,589 | \left(S + 2 \times (-1)\right) \times 2^n = 0 = (S + 1) \times (-1^n) |
21,659 | h\cdot h + g\cdot h + h\cdot g + g\cdot g = (h + g)^2 |
5,670 | 2\cdot b \cdot b - b\cdot 2 + (-1) = 0\Longrightarrow b = \frac12\cdot (1 \pm 3^{1/2}) |
12,437 | (-1)^{1/n} = \left(e^{\pi\cdot i}\right)^{\frac{1}{n}} = e^{\pi\cdot i/n} |
494 | z^3 - \gamma^3 = (z^2 + \gamma\cdot z + \gamma^2)\cdot (z - \gamma) |
-19,626 | \frac{1}{3}*8/(7*1/5) = 5/7*\frac{8}{3} |
34,091 | \dfrac{x}{y} = 1/\left(\frac1x y\right) |
-6,628 | \frac{3}{5 \cdot (n + 4)} = \tfrac{3}{n \cdot 5 + 20} |
7,356 | z^4 \cdot 7 + 4 \cdot z^3 + z^2 \cdot 8 + 11 \cdot z - z^4 \cdot 7 - 3 \cdot z \cdot z \cdot 2 - 2 \cdot (z \cdot 5 + 2 \cdot z^3 + z \cdot z) = z |
35,924 | 2*z*y^2*z*2 = y * y*z^2*4 |
20,821 | a a - b b = (a - b) (a + b) |
-1,810 | -\frac{1}{6}\pi + \frac{\pi}{6} = 0 |
10,823 | 2100/9 = 700/3 = 699/3 + \frac13 = 233 + \dfrac{1}{3} |
-742 | (e^{\frac{11}{6} \times \pi \times i})^{11} = e^{\dfrac{1}{6} \times \pi \times 11 \times i \times 11} |
-5,619 | \frac{1}{(6\cdot (-1) + y)\cdot (y + 5)}\cdot 2 = \frac{2}{30\cdot \left(-1\right) + y^2 - y} |
-20,978 | \dfrac{15 - 12\times x}{-21\times x + 12} = 3/3\times \tfrac{-4\times x + 5}{-7\times x + 4} |
-7,298 | \frac27\cdot 0 = 0 |
-471 | (e^{\frac{5}{12} \cdot \pi \cdot i})^{12} = e^{\dfrac{5}{12} \cdot \pi \cdot i \cdot 12} |
13,388 | (1 + l)^2 = 1 + l \cdot l + 2\cdot l |
37,797 | 2 \cdot z + x - z = z + x |
-20,953 | \dfrac{64}{s\cdot 40}\cdot s = \frac{8}{5}\cdot s\cdot 8/(8\cdot s) |
12,661 | (b + c) a = ac + ba |
19,325 | (1/4)^2 + (1/2)^2 + (1/4) \cdot (1/4) = \frac{3}{8} = 0.375 |
-10,266 | \frac{3}{3} (-\frac{4}{5x + 10}) = -\frac{12}{30 + 15 x} |
-1,581 | \dfrac{23}{12} \pi + \pi/6 = \pi \cdot 25/12 |
960 | \dfrac{2101}{3125} = 1 - (\frac154)^5 |
6,398 | \binom{2}{0}\times \binom{2}{1}\times \binom{4}{1} = 8 |
17,935 | 25 + 20 \cdot \left(-1\right) = 5 |
8,719 | 150 = 5!/(2!*3!) \binom{6}{4} |
-12,344 | \sqrt{7} \cdot 3 = \sqrt{63} |
-9,269 | y*y*2*2 + y*y*2*2*y = 4*y^2 + y^3*4 |
-21,059 | 2/4 = \frac48 |
-20,160 | \dfrac{24}{-12 x + 36 (-1)} = \frac{6}{-x \cdot 3 + 9 (-1)} \frac{4}{4} |
8,184 | \frac{1}{p! \times \left(-p + n\right)!} \times n! = \binom{n}{p} |
7,329 | d^2*I_k + I_k*x^2 = I_k*(d^2 + x^2) |
21,322 | 3 = 11 - 4k \Rightarrow 2 = k |
14,844 | 27 + D \cdot 26 + x = 26 \cdot (1 + D) + x + 1 |
8,406 | \left(\frac{y}{b}\right)^2 = (y/b)^2 |
-11,962 | 2/5 = s/\left(4\pi\right)*4\pi = s |
14,209 | \dfrac{2}{2^n} = \frac{1}{2^{n + \left(-1\right)}} |
-22,288 | (1 + r)\cdot \left(9 + r\right) = 9 + r^2 + 10\cdot r |
-17,690 | 38\cdot \left(-1\right) + 56 = 18 |
8,694 | z^{2^{n + 1}} = (z^{2^n})^2 |
20,345 | y \cdot y - 2 \cdot y + 3 \cdot \left(-1\right) = (y + 1) \cdot (y + 3 \cdot (-1)) |
-20,745 | \dfrac{1}{-8} \cdot (5 - 10 \cdot x) \cdot \dfrac{9}{9} = (-90 \cdot x + 45)/(-72) |
3,693 | 10 = 4l \implies \frac52 = l |
18,224 | \left\lfloor{\frac{1}{4} \cdot (300/3 + 2)^2}\right\rfloor = 2601 |
-2,184 | \frac{3}{11} - 2/11 = \frac{1}{11} |
25,964 | 108124016 = \left(2002\cdot (-1) + 15504\right)\cdot (6006 + 2002) |
4,981 | {5 \choose 2} {5 \choose 3} = 100 |
42,468 | 2^4 + 3^2 = 5^2 |
8,888 | (-1) + n^2 = \left(n + 1\right) \left(n + (-1)\right) |
4,608 | x - N + (-1) = x - N + 1 |
-12,593 | 3 = \dfrac{31.5}{10.5} |
8,257 | x \cdot x + x \cdot 2 - -7 \cdot x + x^2 = 9 \cdot x |
-9,529 | 27 = 3\cdot 9 |
27,048 | 12/17\cdot 2/3 = \frac{8}{17} |
12,228 | x^2 + 2*y^2 + B^2 + 2*y^2 = x^2 + 4*y^2 + B^2 |
6,186 | c^{\dfrac{1}{2}\cdot 3}/(\frac1c) = c^{3/2}\cdot c = c^{5/2} |
-4,464 | 20 \cdot (-1) + Y^2 - Y = (Y + 4) \cdot (Y + 5 \cdot (-1)) |
1,747 | \left(3 + n\right) \cdot (\left(-1\right) + n) = n \cdot n + n \cdot 2 + 3 \cdot \left(-1\right) |
16,182 | \sin(1 + m) = \sin(m) \cos\left(1\right) + \sin\left(1\right) \cos(m) |
26,801 | 8315 = 21 \times 21 \times 5 \times 3 + 5^2 \times 21 \times 3 + 5^3 |
-555 | \dfrac{1}{12} \pi = 169/12 \pi - \pi*14 |
33,703 | 1 = \sin(\theta) \implies \theta = \pi/2 |
31,822 | -(m^2 + (-1)) + m^2 \cdot 2 = m^2 + 1 |
18,173 | x^2 = ((-1) + x)^2 + x\cdot 2 + (-1) |
34,442 | \sqrt{-1 + \sqrt{2}\cdot 2} = \sqrt{2\cdot \sqrt{2} - 1} |
29,746 | \frac{1}{z^2}(C_1 + zC_2) = \frac{C_2}{z} + \frac{C_1}{z^2} |
20,018 | 1/60 = \dfrac18\cdot (\dfrac13 - 1/5) |
32,141 | 4\times 3! = 24 |
43,577 | -3\cdot 4 + 48 = 36 |
-7,732 | \left(40 + 16 \cdot i + 100 \cdot i + 40 \cdot (-1)\right)/29 = \tfrac{1}{29} \cdot (0 + 116 \cdot i) = 4 \cdot i |
13,522 | 0 = Iy \Rightarrow I = 0\text{ or }y = 0 |
1,698 | \sin(H + B) = \cos(B) \cdot \sin(H) + \sin(B) \cdot \cos(H) |
15,111 | ( x, B*y*\Phi(f)) = ( x, y*B*\Phi(f)) |
1,936 | \pi\cdot 3/2 + \cos{\dfrac{3}{2}\cdot \pi} = y + 1 \Rightarrow 2\cdot (-1) + \pi\cdot 3/2 = y |
2,703 | \left(z + 5 \cdot (-1) \geq 0 \Rightarrow z + 5 \cdot (-1) = 1\right) \Rightarrow z = 6 |
43,809 | 965 = 5 \cdot 193 |
12,661 | ha + ag = a\cdot (g + h) |
27,463 | 1260 = 2 \cdot 2\cdot 3 \cdot 3\cdot 5\cdot 7 |
1,052 | (a + g)\times (a \times a - a\times g + g^2) = a^3 - a^2\times g + a\times g^2 + a \times a\times g - a\times g^2 + g^3 = a \times a \times a + g^3 |
8,149 | 2 + 2*z = 2*\left(z + 1\right) |
37,383 | P(x) = X^x\cdot B = B\cdot X^x |
30,608 | 47 = 2*(-1) + (1 + 2*3) * (1 + 2*3) |
-29,563 | \dfrac{1}{z} \cdot (2 \cdot \left(-1\right) + 3 \cdot z^3 - z) = -2/z + \frac{3}{z} \cdot z^3 - z/z |
30,849 | 2\cdot (-1) + n = -\left(3 + (-1)\right) + n |
13,108 | 0 = T * T - \lambda * \lambda = \left(T - \lambda\right)*(T + \lambda) = (T - \lambda)*\left(T - -\lambda\right) |
32,148 | \infty + 2(-1) = \infty |
5,993 | \left(-x_0^{1/2} + x^{1/2}\right) (x_0^{1/2} + x^{1/2}) = x - x_0 |
-27,416 | 667 + 10 = 677 |
5,223 | (a \times b)^2 = (b \times a)^2 |
-5,159 | 0.81\cdot 10^{6 + 2\cdot (-1)} = 0.81\cdot 10^4 |
31,498 | (g \cdot g + a^2 + g\cdot a)\cdot 4 = \left(g + 2\cdot a\right)^2 + 3\cdot g^2 |
-10,630 | \frac{25}{t\times 15} = 5/5\times \frac{5}{t\times 3} |
-7,967 | (-21 + 72 \cdot i + 28 \cdot i + 96)/25 = (75 + 100 \cdot i)/25 = 3 + 4 \cdot i |
11,942 | (A+B)x = 0 \implies Ax + Bx = 0 |
Subsets and Splits