id
int64
-30,985
55.9k
text
stringlengths
5
437k
30,285
\operatorname{acos}(0) = \operatorname{acos}\left(\frac{-1^2 + 1}{1^2 + 1}\right)
7,255
(1 + x^2 - x)\cdot \left(1 + x^2 + x\right) = 1 + x^4 + x \cdot x
18,137
\frac{12\cdot 3}{2} = 18
-24,697
\sqrt{42\cdot x^4\cdot b^6} = \sqrt{(x^2)^2\cdot (b^3)^2\cdot 2\cdot 3\cdot 7} = \sqrt{(x^2)^2}\cdot \sqrt{\left(b^3\right)^2}\cdot \sqrt{42} = x^2\cdot b \cdot b \cdot b\cdot \sqrt{42} = x^2\cdot b^3\cdot \sqrt{42}
6,490
(p^2 + q^2)\cdot \left(x \cdot x + s^2\right) = (p\cdot x + q\cdot s) \cdot (p\cdot x + q\cdot s) + (q\cdot x - p\cdot s) \cdot (q\cdot x - p\cdot s) = \left(p\cdot x - q\cdot s\right)^2 + (p\cdot s + q\cdot x) \cdot (p\cdot s + q\cdot x)
-12,937
3/21 = \dfrac17
12,991
4 * 4*2 + 2^2 = 3^2*4
9,340
\sqrt{(\frac{1}{\sqrt{2}})^2 + (1/\left(\sqrt{2}\right))^2} = \sqrt{\frac{1}{2} + 1/2} = 1
-20,345
\frac{8 + 4*q}{18*q + 16} = \frac{2}{2}*\dfrac{4 + 2*q}{8 + 9*q}
5,162
\left(I\times x\right)^2 = I^2\times x = I\times x
26,332
6 = (1 + 1) \cdot (1 + 2)
22,121
\frac{1}{6 * 6^2}*(27 + 6*3 + 3) = \frac{48}{216} = 2/9
-8,954
\dfrac{119.2}{100} = 119.2\%
-27,037
\sum_{n=1}^\infty \dfrac{(1 + 5)^n}{n\cdot 6^n}\cdot (n + 2) = \sum_{n=1}^\infty \frac{6^n}{n\cdot 6^n}\cdot (n + 2) = \sum_{n=1}^\infty (n + 2)/n
25,968
z*0.04 = z*4\%
11,837
\sin(C_2 + C_1) = \sin{C_1}\cdot \cos{C_2} + \sin{C_2}\cdot \cos{C_1}
16,628
e\cdot y = e\cdot y
14,998
0 = 3\cdot (8\cdot p^3 - 36\cdot p \cdot p + 42\cdot p + 15\cdot (-1)) - (2\cdot p + 3)\cdot (12\cdot p \cdot p - 36\cdot p + 25) = 76\cdot p + 78\cdot (-1)
16,359
-\sin{B} \cos{A} + \sin{A} \cos{B} = \sin(-B + A)
-3,127
\sqrt{13}*3 + \sqrt{13} = \sqrt{13}*\sqrt{9} + \sqrt{13}
10,510
0 = 2^2 - 4\cdot 1
-19,461
\frac{1}{2}*7/\left(1/8*9\right) = \frac127*\dfrac198
13,034
(J + 1)^2 + (-1) = J^2 + J*2
-1,637
-\pi\cdot 7/6 = -\pi \frac145 + \frac{\pi}{12}
-26,546
1 + x\cdot 2 + x \cdot x = 1^2 + 2\cdot x + x^2
43,922
\left(3\cdot 5\cdot 11\right)^2\cdot 61 = 1660725
14,326
\dfrac13\cdot (1 - h) = \frac13 \Rightarrow h = 0
40,076
\pi = 3.14 \cdot \dotsm
7,787
1/(\sqrt{k}) = \frac{1}{\sqrt{k} + \sqrt{k}} 2 \lt \dfrac{2}{\sqrt{k} + \sqrt{k + (-1)}}
-2,026
-\pi\cdot 11/6 + \dfrac16\cdot 11\cdot \pi = 0
-6,697
7/10 + 5/100 = \frac{1}{100}\cdot 5 + \tfrac{1}{100}\cdot 70
32,713
3 + \chi^2 + (-1) = 2 + \chi^2
-2,455
\sqrt{2} \cdot (5 + 3) = 8 \cdot \sqrt{2}
7,674
x^n + x n x^{n + \left(-1\right)} = x^n + n x^n = \left(n + 1\right) x^n = \left(n + 1\right) x^{n + 1 + (-1)}
12,431
0 = 0 (-1) = \left(1 - 1\right) (-1) = (-1) - -1 = -1 - -1
23,908
\sinh^2(y) = \left(e^y - e^{-y}\right)^2/4 = \frac14 (e^{2 y} + e^{-2 y} - 2 e^0)
12,926
0 = (2 \cdot x + (-1)) \cdot 2 \Rightarrow \frac12 = x
29,081
0/0 = \dfrac{1}{0}*0 = 1
5,473
\frac17\cdot 16 = 4\cdot \frac{8}{14}
10,589
2 \cdot x + (-1) = -\cos(2 \cdot \operatorname{asin}(\sqrt{x})) = 2 \cdot \sin^2(\operatorname{asin}\left(\sqrt{x}\right)) + \left(-1\right) = 2 \cdot x + (-1)
-12,548
156 + 112 (-1) = 44
14,691
\left(-1\right) + \cos^2(x)\cdot 2 = \cos\left(x\cdot 2\right)
10,378
\frac{1}{1! \cdot 0!} \cdot 1! \cdot \frac{3!}{1! \cdot 2!} \cdot \dfrac{7!}{3! \cdot 4!} = \dfrac{7!}{1! \cdot 2! \cdot 4!}
-19,425
\frac{5\cdot \frac16}{1/4\cdot 9} = \frac49\cdot \frac56
13,398
-1/2\cdot z + z\cdot 3/4 = z\cdot 1/4
-16,892
-7 = -7 \cdot (-4 \cdot i) - -35 = 28 \cdot i + 35 = 28 \cdot i + 35
46,789
793 \cdot 793^2 + 854 \cdot 854 \cdot 854 = 183^4
2,823
1/\left(x\cdot 5\right) = 1/(5\cdot x)
-19,346
\frac{9 / 5}{9 \cdot 1/2} \cdot 1 = 9/5 \cdot 2/9
-26,222
\frac{\text{d}}{\text{d}x} e^{-7\times x^2 + x\times 6} = \left(-x\times 14 + 6\right)\times e^{-x^2\times 7 + 6\times x}
-10,123
-3/4 = -\dfrac{15}{20}
-6,961
66 = 11\cdot 2\cdot 3
-19,424
\dfrac{1}{8}*9/(1/6*7) = 9/8*\frac{1}{7}*6
-20,504
\tfrac{1}{9 \cdot x + 27 \cdot (-1)} \cdot (-8 \cdot x + 24) = \frac{x + 3 \cdot (-1)}{3 \cdot (-1) + x} \cdot (-8/9)
-6,969
48 = 2\cdot 4\cdot 6
-11,468
8\cdot i + 0 + 6\cdot (-1) = -6 + i\cdot 8
-18,309
\frac{k}{(7 \cdot (-1) + k) \cdot (2 \cdot (-1) + k)} \cdot (k + 7 \cdot (-1)) = \frac{-7 \cdot k + k^2}{k^2 - 9 \cdot k + 14}
-8,536
\frac{8}{12} - 2/4 = \tfrac{8}{12} - 2*3/\left(4*3\right) = \frac{1}{12}*8 - \frac{6}{12} = (8 + 6*(-1))/12 = \frac{2}{12}
5,588
10 \cdot h^2 - 7 \cdot f \cdot h + f^2 = (f - h \cdot 5) \cdot (f - h \cdot 2)
5,380
a^{m + (-1)} \cdot a = a^m
5,149
1/z - \frac1x = \frac{x - z}{z \cdot x}
10,851
\sqrt{n} = n^{1/2} = n^{1 - \frac12} = \frac{n}{n^{\frac12}}
21,614
(5\cdot w + \left(-1\right))^2 = 25\cdot w \cdot w - w\cdot 10 + 1
29,238
\dfrac{m + 1}{m^{s \cdot 2}} = \dfrac{1}{m^{2 \cdot s}} + \frac{1}{m^{2 \cdot s}} \cdot m
20,269
(i + 1)! = i! \cdot (i + 1) \lt 2^i \cdot \left(i + 1\right)
-4,461
-\frac{1}{y + 3*\left(-1\right)}*2 - \tfrac{3}{y + 4} = \dfrac{-y*5 + 1}{12*(-1) + y^2 + y}
338
l = 2*l/2 = (2*l + 1)/2
18,798
3 = 3 * 3 * 3/3 - 2*3
-4,703
-\dfrac{4}{(-1) + z} - \frac{1}{2(-1) + z} = \frac{1}{2 + z^2 - 3z}(9 - 5z)
14,544
x^5 - 10\cdot x + 12 = 12 + (-2\cdot x + x^2 \cdot x)\cdot (2 + x^2) - 6\cdot x
17,074
17^2 + 5^2 + 7^2 + 11 \cdot 11 + 13^2 = 653
-26,061
\frac15*(-2 - 16*i + i + 8*(-1)) = (-10 - 15*i)/5 = -2 - 3*i
30,270
1 + 2^{10} = (1 + 2 \cdot 2)\cdot (1 + 2^8 - 2^6 + 2^4 - 2^2)
21,522
\frac{\partial}{\partial z} z^k = z^{(-1) + k}\cdot k
1,659
\cos{x \cdot 2} = 2 \cdot \cos^2{x} + (-1)\Longrightarrow \cos^2{x} = (\cos{2 \cdot x} + 1)/2
15,794
15^2 + 20^2 = 25 \cdot 25 = 7 \cdot 7 + 24 \cdot 24
24,667
\mathbb{E}\left[X \cdot X\right] = \mathbb{E}\left[X\right] \mathbb{E}\left[X\right]
-10,441
-\frac{10}{9*(-1) + 3*t}*2/2 = -\frac{20}{18*(-1) + 6*t}
32,918
20/3 = \dfrac{5}{3}\cdot 4
10,106
(4\cdot n + n^2\cdot 4)/4 = n^2 + n
-16,518
6\cdot \sqrt{25}\cdot \sqrt{11} = 6\cdot 5\cdot \sqrt{11} = 30\cdot \sqrt{11}
-7,846
\frac15 \cdot (-11 - 3 \cdot i - 22 \cdot i + 6) = \frac15 \cdot (-5 - 25 \cdot i) = -1 - 5 \cdot i
-13,078
-1.6384 \div 0.04 = -40.96
-26,556
\left(x + 1\right)^2 = x^2 + 1^2 + x \cdot 2
22,153
\frac{1}{(-y + 1)^3} = (1 + y + y^2 + \cdots)^3
13,309
a^2 - x^2 = \left(-x + a\right)\cdot \left(x + a\right)
34,793
20 = \frac{5!}{3!\times 1!\times 1!}
14,621
(-3*17 + 60)*2 + 17 (-1) = 2*60 - 7*17
-3,859
d^2/2 = \frac{d^2}{2}
-19,272
5/3 \cdot 6/7 = \frac{\frac{5}{3}}{\frac{1}{6} \cdot 7} \cdot 1
31,355
\cos{π \cdot 4/5} = \cos{\dfrac15 \cdot π \cdot 6}
45,807
\dfrac{5}{14}*56 = 20
36,914
u = 1/u
24,629
m + n + \left(-1\right) = 2 + m + (-1) + n + 2*(-1)
34,643
r + l/x = \left(x \times r + l\right)/x
6,204
0.3 = \dfrac{0.4\cdot 0.3}{0.4}
5,842
\frac{1}{10} \cdot (100 + 110 + 120 + 130 + ... + 190) = 145
22,611
7(2*4 + (-1)) * (2*4 + (-1)) = 2\left((-1) + 2*7\right)^2 + \left(2 + (-1)\right)^2*5
35,509
3 \cdot \frac{1}{6} \cdot 5 = 15/6 = 5/2
15,148
2 \times x_0 = x_0 - -x_0