id
int64
-30,985
55.9k
text
stringlengths
5
437k
-18,254
\frac{1}{q^2 - 9 \cdot q + 8} \cdot \left(6 \cdot \left(-1\right) + q^2 + 5 \cdot q\right) = \frac{(q + (-1)) \cdot \left(q + 6\right)}{(8 \cdot (-1) + q) \cdot \left((-1) + q\right)}
-29,962
8y^3 + y^2 \cdot 3 + y \cdot 6 = d/dy (2y^4 + y \cdot y \cdot y + 3y^2)
-3,351
5 \times 2^{1/2} = (4 + 1) \times 2^{1/2}
6,776
\left(z^2 - z + 3\right) \cdot \left((-1) + z\right) \cdot (2 + z) - 5 \cdot z + 7 = z^4 + 1
-22,366
(3 + l) \cdot \left(l + 6 \cdot (-1)\right) = l^2 - 3 \cdot l + 18 \cdot (-1)
-20,198
10/10 (-\frac57) = -\frac{50}{70}
-18,772
\frac{y*6}{3} = y*2
6,465
\frac{1}{99 \times 999} \times (71700 + 71000 \times (-1) - 717 + 71 \times (-1)) = \frac{1}{99 \times 999} \times (700 + 717 \times (-1) + 71) > 0
17,407
M = M^{1/2} * M^{1/2}
5,008
(-x + 100)^2 = 10000 - x\cdot 200 + x \cdot x
-10,611
5/5*(-\frac{6}{t + 3*(-1)}) = -\frac{30}{15*\left(-1\right) + t*5}
13,810
W_0 \cdot x_0 = x_0 \cdot W_0
24,770
4 + y^4 = \left(2 + y^2 + 2 \cdot y\right) \cdot (2 + y^2 - 2 \cdot y)
23,027
g*b*c = g*b/c = \frac{1}{b*\tfrac1c}*g = g*c/b
-18,563
3\cdot r + 4\cdot (-1) = 6\cdot \left(2\cdot r + (-1)\right) = 12\cdot r + 6\cdot (-1)
4,301
\frac12*\sqrt{2} = \sqrt{\frac12}
8,890
n \cdot a = a \cdot n
-2,350
\frac{1}{20} = \frac{5}{20} - 4/20
-11,017
\dfrac{130}{13} = 10
-23,210
-\frac{1}{27}4 (-1/3) = 4/81
30,967
K^1 \coloneqq K
28,970
\frac{x + c}{x + d} + (-1) = \frac{1}{x + d}\cdot \left(x + c - x + d\right) = \dfrac{c - d}{x + d}
7,922
\dfrac{a \cdot \frac{1}{g}}{a \cdot \frac1g} = 1 = \frac1a \cdot a
-2,206
\frac{5}{11} = 9/11 - 4/11
-16,914
5 = 5 \times 3 \times q + 5 \times \left(-7\right) = 15 \times q - 35 = 15 \times q + 35 \times (-1)
-23,066
-32/3 = -8*\frac13*4
-4,512
\frac{20 + \xi\cdot 2}{12\cdot (-1) + \xi^2 - \xi} = -\frac{2}{\xi + 3} + \frac{1}{\xi + 4\cdot (-1)}\cdot 4
4,665
\sin(2\cdot A) + \sin(2\cdot B) + 2\cdot \sin(A + B) = ... = 4\cdot \sin(A + B)\cdot \sin^2((A - B)/2)
-518
e^{\dfrac12 \cdot 3 \cdot i \cdot \pi \cdot 10} = (e^{3 \cdot \pi \cdot i/2})^{10}
10,420
\left(-1\right) + 5^{l \cdot 2} = (1 + 5^l) \cdot (5^l + (-1))
-15,788
-47/10 = \dfrac{7}{10} - 9/10 \cdot 6
7,249
13^4*7^2*3^2*17^5 = \left(3*7*13^2\right) * \left(3*7*13^2\right)*17^5
7,670
k + 2 \cdot (-1) - i + 1 = k + 2 \cdot (-1) - (-1) + i
6,884
\sin(\pi + f) = -\sin\left(f\right)
-22,213
l \cdot l - 11\cdot l + 18 = (9\cdot \left(-1\right) + l)\cdot (2\cdot \left(-1\right) + l)
41,412
\binom{10}{8}\cdot \binom{2}{2} = 45
8,512
y*\left(f + h\right) = yf + hy
-20,533
\frac{1}{1}\cdot 4\cdot \frac{1}{5 + 7\cdot y}\cdot (7\cdot y + 5) = \dfrac{1}{5 + 7\cdot y}\cdot (20 + 28\cdot y)
32,607
Z \times x = x \times Z
37,914
2\times 60 - 109 = 11
-22,044
\dfrac{1}{4}\cdot 9 = 27/12
32,653
a \cdot f = \frac{1}{f \cdot a} = f \cdot a
41,164
3630 = 480 + 180 + 360 + 720 + 90 + 1080 + 360 + 360
-7,077
3/13\cdot 4/14 = \frac{6}{91}
35,281
5 \cdot \frac{16}{36} - 5 \cdot 20/36 = -20/36 = -\frac{5}{9}
1,970
X B = X B
3,389
13/12 = 1/2 + \frac14 + \frac{1}{3}
-9,070
99.6/100 = 99.6\%
-6,260
\dfrac{4}{(2\cdot (-1) + h)\cdot 2} = \frac{1}{4\cdot (-1) + 2\cdot h}\cdot 4
31,957
\cos(B + A) = -\sin{B}\cdot \sin{A} + \cos{B}\cdot \cos{A}
2,106
\sin(\theta) \cdot \cos(\varphi) + \cos(\theta) \cdot \sin(\varphi) = \sin\left(\varphi + \theta\right)
33,070
(x + 1)^3 = x \cdot x \cdot x + 3 \cdot x^2 + 3 \cdot x + 1 = x^3 + 3 \cdot x + 3 \cdot x^2 + 1 \gt 3 \cdot x^2 + 1
6,559
\tan^{-1}(0) + \tan^{-1}(0^2 + (-1)) = 0 + \tan^{-1}(-1) = \left((-1)\cdot \pi\right)/4
-2,457
\sqrt{5}\cdot \left(5 + 3\cdot (-1)\right) = 2\cdot \sqrt{5}
-20,658
-7/3\cdot \frac{1}{p + 10\cdot (-1)}\cdot (p + 10\cdot \left(-1\right)) = \frac{-7\cdot p + 70}{p\cdot 3 + 30\cdot \left(-1\right)}
-17,472
18\cdot (-1) + 20 = 2
-28,770
\frac12 + \frac{1}{2*z + 6} = \tfrac{4 + z}{2*z + 6}
28,700
\frac{12}{26} = \dfrac{6}{13}
-6,011
\frac{3}{(d + 1) \cdot 3} = \frac{1}{d \cdot 3 + 3} \cdot 3
-654
-\pi \cdot 16 + \pi \cdot \frac{33}{2} = \pi/2
11,275
r^nr^m = r^{n+m} \in IJ
13,795
\frac{1}{L + x} = x - L + L^2 - L^3 + \ldots
4,559
\sin(z_2 + z_1) = \cos{z_1} \sin{z_2} + \sin{z_1} \cos{z_2}
-21,021
\frac{1}{50*n}*(-5*n + 25*(-1)) = 5/5*(5*\left(-1\right) - n)/\left(n*10\right)
48,033
\left((a + b)^2 = a \cdot b \implies a^2 + 2 \cdot a \cdot b + b \cdot b = b \cdot a\right) \implies b \cdot b + a \cdot a + a \cdot b = 0
16,609
\tfrac{(1 + 1 + 1)!}{1! \cdot 1! \cdot 1!} = 3! = 6
21,497
c + y \cdot f = 0 \Rightarrow y = ((-1) \cdot c)/f
17,213
h^{z + c} = h^c \cdot h^z
15,666
(12 (-1) + x^2 + 5x) (5\left(-1\right) + x) = x^3 - 37 x + 60
10,496
14.5 = \cos{z} + 5 \Rightarrow \cos{z} = 9.5
-4,128
\frac{5}{12} = \frac{1}{12} \times 5
-12,684
38 = \frac15*190
30,505
f\frac{1}{b}/\left(f\tfrac{1}{b}\right) = 1 = fb/b/f
-1,419
\dfrac{1}{9\cdot \dfrac17\cdot 8} = \frac{1}{9}\cdot \frac{7}{8}
-10,391
-12 = 5 + 16 \cdot d + 20 \cdot (-1) = 16 \cdot d + 15 \cdot (-1)
28,045
0.5441 = 0.08 \cdot 0.49 + \left((-1) \cdot 0.01 + 1\right) \cdot 0.51
-18,383
\frac{1}{(x + 4(-1)) (x + 4(-1))}(x + 4(-1)) x = \tfrac{1}{16 + x * x - 8x}(x * x - x*4)
13,288
-(3*\left(-1\right) + x * x)^2 + x^4 - 6*x^2 + 4*x + 3*\left(-1\right) = 12*(-1) + 4*x
13,925
-e^{x*3} + \frac{\mathrm{d}15}{\mathrm{d}x} = -3*e^{3*x}
-30,558
-\frac{1}{32} \cdot 256 = 32/(-4) = -\dfrac{1}{\frac12} \cdot 4 = -8
14,970
y \cdot 142 = 22 y + 120 y
-26,401
z^n\times z^m = z^{n + m}
-23,808
\frac{1}{7 + 2} \cdot 45 = 45/9 = \frac19 \cdot 45 = 5
28,319
1 + z + \cdots z^{K_k} = \frac{1}{1 - z} (1 - z^{K_k + 1})
19,276
πR*2 πr * r = π * π Rr^2*2
-18,980
7/24 = \frac{1}{4\cdot \pi}\cdot A_s\cdot 4\cdot \pi = A_s
-6,708
8/10 + \frac{1}{100}\cdot 4 = 4/100 + \frac{80}{100}
-28,800
\frac{π \cdot 2}{\dfrac{1}{29.5} \cdot π \cdot 2} = 29.5
6,069
1=B+C \implies C=1-B
-19,301
\dfrac{1}{5} \div \dfrac{9}{5} = \dfrac{1}{5} \times \dfrac{5}{9}
8,636
a*H*n*H/\left(a*H\right) = n*H = a*\frac1a*n*H
8,179
1 = z y^n \Rightarrow y^{-n} = z
2,610
65 = \frac12 \cdot (1^7 + 1^7 + 2^7)
24,863
1 - y = 1 - y^2 = (1 - y)*(1 + y)
4,485
\frac{1}{4}\cdot 3 = \frac{3\cdot \frac{1}{10}}{1/10 + 3/10}
16,332
-2 * 2 * 2 + z^3 = (2^2 + z^2 + z*2)*(z + 2*(-1))
11,988
(-1) + n*2 = 2\left(n + (-1)\right) + 1
-6,801
12 \times 10 \times 5 = 600
-15,810
37/10 = -\frac{1}{10} \cdot 8 + 9/10 \cdot 5
25,843
\pi/2 + \frac{\pi}{2} + \frac{\pi}{3} \cdot 2 = \pi \cdot 5/3