id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-18,254 | \frac{1}{q^2 - 9 \cdot q + 8} \cdot \left(6 \cdot \left(-1\right) + q^2 + 5 \cdot q\right) = \frac{(q + (-1)) \cdot \left(q + 6\right)}{(8 \cdot (-1) + q) \cdot \left((-1) + q\right)} |
-29,962 | 8y^3 + y^2 \cdot 3 + y \cdot 6 = d/dy (2y^4 + y \cdot y \cdot y + 3y^2) |
-3,351 | 5 \times 2^{1/2} = (4 + 1) \times 2^{1/2} |
6,776 | \left(z^2 - z + 3\right) \cdot \left((-1) + z\right) \cdot (2 + z) - 5 \cdot z + 7 = z^4 + 1 |
-22,366 | (3 + l) \cdot \left(l + 6 \cdot (-1)\right) = l^2 - 3 \cdot l + 18 \cdot (-1) |
-20,198 | 10/10 (-\frac57) = -\frac{50}{70} |
-18,772 | \frac{y*6}{3} = y*2 |
6,465 | \frac{1}{99 \times 999} \times (71700 + 71000 \times (-1) - 717 + 71 \times (-1)) = \frac{1}{99 \times 999} \times (700 + 717 \times (-1) + 71) > 0 |
17,407 | M = M^{1/2} * M^{1/2} |
5,008 | (-x + 100)^2 = 10000 - x\cdot 200 + x \cdot x |
-10,611 | 5/5*(-\frac{6}{t + 3*(-1)}) = -\frac{30}{15*\left(-1\right) + t*5} |
13,810 | W_0 \cdot x_0 = x_0 \cdot W_0 |
24,770 | 4 + y^4 = \left(2 + y^2 + 2 \cdot y\right) \cdot (2 + y^2 - 2 \cdot y) |
23,027 | g*b*c = g*b/c = \frac{1}{b*\tfrac1c}*g = g*c/b |
-18,563 | 3\cdot r + 4\cdot (-1) = 6\cdot \left(2\cdot r + (-1)\right) = 12\cdot r + 6\cdot (-1) |
4,301 | \frac12*\sqrt{2} = \sqrt{\frac12} |
8,890 | n \cdot a = a \cdot n |
-2,350 | \frac{1}{20} = \frac{5}{20} - 4/20 |
-11,017 | \dfrac{130}{13} = 10 |
-23,210 | -\frac{1}{27}4 (-1/3) = 4/81 |
30,967 | K^1 \coloneqq K |
28,970 | \frac{x + c}{x + d} + (-1) = \frac{1}{x + d}\cdot \left(x + c - x + d\right) = \dfrac{c - d}{x + d} |
7,922 | \dfrac{a \cdot \frac{1}{g}}{a \cdot \frac1g} = 1 = \frac1a \cdot a |
-2,206 | \frac{5}{11} = 9/11 - 4/11 |
-16,914 | 5 = 5 \times 3 \times q + 5 \times \left(-7\right) = 15 \times q - 35 = 15 \times q + 35 \times (-1) |
-23,066 | -32/3 = -8*\frac13*4 |
-4,512 | \frac{20 + \xi\cdot 2}{12\cdot (-1) + \xi^2 - \xi} = -\frac{2}{\xi + 3} + \frac{1}{\xi + 4\cdot (-1)}\cdot 4 |
4,665 | \sin(2\cdot A) + \sin(2\cdot B) + 2\cdot \sin(A + B) = ... = 4\cdot \sin(A + B)\cdot \sin^2((A - B)/2) |
-518 | e^{\dfrac12 \cdot 3 \cdot i \cdot \pi \cdot 10} = (e^{3 \cdot \pi \cdot i/2})^{10} |
10,420 | \left(-1\right) + 5^{l \cdot 2} = (1 + 5^l) \cdot (5^l + (-1)) |
-15,788 | -47/10 = \dfrac{7}{10} - 9/10 \cdot 6 |
7,249 | 13^4*7^2*3^2*17^5 = \left(3*7*13^2\right) * \left(3*7*13^2\right)*17^5 |
7,670 | k + 2 \cdot (-1) - i + 1 = k + 2 \cdot (-1) - (-1) + i |
6,884 | \sin(\pi + f) = -\sin\left(f\right) |
-22,213 | l \cdot l - 11\cdot l + 18 = (9\cdot \left(-1\right) + l)\cdot (2\cdot \left(-1\right) + l) |
41,412 | \binom{10}{8}\cdot \binom{2}{2} = 45 |
8,512 | y*\left(f + h\right) = yf + hy |
-20,533 | \frac{1}{1}\cdot 4\cdot \frac{1}{5 + 7\cdot y}\cdot (7\cdot y + 5) = \dfrac{1}{5 + 7\cdot y}\cdot (20 + 28\cdot y) |
32,607 | Z \times x = x \times Z |
37,914 | 2\times 60 - 109 = 11 |
-22,044 | \dfrac{1}{4}\cdot 9 = 27/12 |
32,653 | a \cdot f = \frac{1}{f \cdot a} = f \cdot a |
41,164 | 3630 = 480 + 180 + 360 + 720 + 90 + 1080 + 360 + 360 |
-7,077 | 3/13\cdot 4/14 = \frac{6}{91} |
35,281 | 5 \cdot \frac{16}{36} - 5 \cdot 20/36 = -20/36 = -\frac{5}{9} |
1,970 | X B = X B |
3,389 | 13/12 = 1/2 + \frac14 + \frac{1}{3} |
-9,070 | 99.6/100 = 99.6\% |
-6,260 | \dfrac{4}{(2\cdot (-1) + h)\cdot 2} = \frac{1}{4\cdot (-1) + 2\cdot h}\cdot 4 |
31,957 | \cos(B + A) = -\sin{B}\cdot \sin{A} + \cos{B}\cdot \cos{A} |
2,106 | \sin(\theta) \cdot \cos(\varphi) + \cos(\theta) \cdot \sin(\varphi) = \sin\left(\varphi + \theta\right) |
33,070 | (x + 1)^3 = x \cdot x \cdot x + 3 \cdot x^2 + 3 \cdot x + 1 = x^3 + 3 \cdot x + 3 \cdot x^2 + 1 \gt 3 \cdot x^2 + 1 |
6,559 | \tan^{-1}(0) + \tan^{-1}(0^2 + (-1)) = 0 + \tan^{-1}(-1) = \left((-1)\cdot \pi\right)/4 |
-2,457 | \sqrt{5}\cdot \left(5 + 3\cdot (-1)\right) = 2\cdot \sqrt{5} |
-20,658 | -7/3\cdot \frac{1}{p + 10\cdot (-1)}\cdot (p + 10\cdot \left(-1\right)) = \frac{-7\cdot p + 70}{p\cdot 3 + 30\cdot \left(-1\right)} |
-17,472 | 18\cdot (-1) + 20 = 2 |
-28,770 | \frac12 + \frac{1}{2*z + 6} = \tfrac{4 + z}{2*z + 6} |
28,700 | \frac{12}{26} = \dfrac{6}{13} |
-6,011 | \frac{3}{(d + 1) \cdot 3} = \frac{1}{d \cdot 3 + 3} \cdot 3 |
-654 | -\pi \cdot 16 + \pi \cdot \frac{33}{2} = \pi/2 |
11,275 | r^nr^m = r^{n+m} \in IJ |
13,795 | \frac{1}{L + x} = x - L + L^2 - L^3 + \ldots |
4,559 | \sin(z_2 + z_1) = \cos{z_1} \sin{z_2} + \sin{z_1} \cos{z_2} |
-21,021 | \frac{1}{50*n}*(-5*n + 25*(-1)) = 5/5*(5*\left(-1\right) - n)/\left(n*10\right) |
48,033 | \left((a + b)^2 = a \cdot b \implies a^2 + 2 \cdot a \cdot b + b \cdot b = b \cdot a\right) \implies b \cdot b + a \cdot a + a \cdot b = 0 |
16,609 | \tfrac{(1 + 1 + 1)!}{1! \cdot 1! \cdot 1!} = 3! = 6 |
21,497 | c + y \cdot f = 0 \Rightarrow y = ((-1) \cdot c)/f |
17,213 | h^{z + c} = h^c \cdot h^z |
15,666 | (12 (-1) + x^2 + 5x) (5\left(-1\right) + x) = x^3 - 37 x + 60 |
10,496 | 14.5 = \cos{z} + 5 \Rightarrow \cos{z} = 9.5 |
-4,128 | \frac{5}{12} = \frac{1}{12} \times 5 |
-12,684 | 38 = \frac15*190 |
30,505 | f\frac{1}{b}/\left(f\tfrac{1}{b}\right) = 1 = fb/b/f |
-1,419 | \dfrac{1}{9\cdot \dfrac17\cdot 8} = \frac{1}{9}\cdot \frac{7}{8} |
-10,391 | -12 = 5 + 16 \cdot d + 20 \cdot (-1) = 16 \cdot d + 15 \cdot (-1) |
28,045 | 0.5441 = 0.08 \cdot 0.49 + \left((-1) \cdot 0.01 + 1\right) \cdot 0.51 |
-18,383 | \frac{1}{(x + 4(-1)) (x + 4(-1))}(x + 4(-1)) x = \tfrac{1}{16 + x * x - 8x}(x * x - x*4) |
13,288 | -(3*\left(-1\right) + x * x)^2 + x^4 - 6*x^2 + 4*x + 3*\left(-1\right) = 12*(-1) + 4*x |
13,925 | -e^{x*3} + \frac{\mathrm{d}15}{\mathrm{d}x} = -3*e^{3*x} |
-30,558 | -\frac{1}{32} \cdot 256 = 32/(-4) = -\dfrac{1}{\frac12} \cdot 4 = -8 |
14,970 | y \cdot 142 = 22 y + 120 y |
-26,401 | z^n\times z^m = z^{n + m} |
-23,808 | \frac{1}{7 + 2} \cdot 45 = 45/9 = \frac19 \cdot 45 = 5 |
28,319 | 1 + z + \cdots z^{K_k} = \frac{1}{1 - z} (1 - z^{K_k + 1}) |
19,276 | πR*2 πr * r = π * π Rr^2*2 |
-18,980 | 7/24 = \frac{1}{4\cdot \pi}\cdot A_s\cdot 4\cdot \pi = A_s |
-6,708 | 8/10 + \frac{1}{100}\cdot 4 = 4/100 + \frac{80}{100} |
-28,800 | \frac{π \cdot 2}{\dfrac{1}{29.5} \cdot π \cdot 2} = 29.5 |
6,069 | 1=B+C \implies C=1-B |
-19,301 | \dfrac{1}{5} \div \dfrac{9}{5} = \dfrac{1}{5} \times \dfrac{5}{9} |
8,636 | a*H*n*H/\left(a*H\right) = n*H = a*\frac1a*n*H |
8,179 | 1 = z y^n \Rightarrow y^{-n} = z |
2,610 | 65 = \frac12 \cdot (1^7 + 1^7 + 2^7) |
24,863 | 1 - y = 1 - y^2 = (1 - y)*(1 + y) |
4,485 | \frac{1}{4}\cdot 3 = \frac{3\cdot \frac{1}{10}}{1/10 + 3/10} |
16,332 | -2 * 2 * 2 + z^3 = (2^2 + z^2 + z*2)*(z + 2*(-1)) |
11,988 | (-1) + n*2 = 2\left(n + (-1)\right) + 1 |
-6,801 | 12 \times 10 \times 5 = 600 |
-15,810 | 37/10 = -\frac{1}{10} \cdot 8 + 9/10 \cdot 5 |
25,843 | \pi/2 + \frac{\pi}{2} + \frac{\pi}{3} \cdot 2 = \pi \cdot 5/3 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.