id
int64
-30,985
55.9k
text
stringlengths
5
437k
20,767
y \cdot x/100 = \frac{x}{100} \cdot y
-1,695
\pi*17/12 + \pi*\dfrac{11}{12} = \dfrac{7}{3}*\pi
21,296
|b_n a_n - ab| = |b_n a_n - ba + ba_n - a_n b|
10,767
x = x - \sum_{j=2}^n e_j*x_j + \sum_{j=2}^n e_j*x_j = \sum_{j=1}^n e_j*x_j
12,549
p^2 - p = p*(\left(-1\right) + p)
-7,737
\frac{1}{i\cdot 4 + 2}\cdot (-i\cdot 2 + 4)\cdot \tfrac{-i\cdot 4 + 2}{-i\cdot 4 + 2} = \frac{1}{2 + 4\cdot i}\cdot (4 - 2\cdot i)
36,798
-\frac{1}{15} \cdot 4 = -4/15
30,284
\{\} = \left( \left(-1\right) + z_1, \alpha\right) \implies \{\} = [z_1, \alpha]
-7,766
\frac{1}{3 - i \cdot 3}(-i \cdot 3 + 3) \frac{-3 - 3i}{3 + i \cdot 3} = \frac{-i \cdot 3 - 3}{i \cdot 3 + 3}
28,461
26 = 5^2 + 1^2 = 4^2 + 3^2 + 1^2 = 3^2 + 3 \cdot 3 + 2^2 + 2^2
25,964
108124016 = \left(2002\cdot (-1) + 15504\right)\cdot (2002 + 6006)
-22,547
\tfrac{8}{9}\cdot \frac78 = 8\cdot 7/\left(9\cdot 8\right) = 56/72 = \frac{1}{9}\cdot 7
-5,925
\frac{2*g}{(2 + g)*(g + 6)} = \frac{g*2}{g * g + 8*g + 12}
-23,599
\frac{1/3*2}{7} = 2/21
11,167
n^2 + n*3 + 2 - n*3 + 3*(-1) = n^2 + (-1)
24,533
\frac{1}{2} 109824 = 54912
15,694
(1 - q)^2 = 1 - 2q + q * q
-2,877
-(9*13)^{1/2} + (25*13)^{1/2} = 325^{1/2} - 117^{1/2}
21,892
\dfrac{1}{2} \cdot \left(2 + (-1) + 2 \cdot n + (-1)\right) = n
-25,952
0.58 = \tfrac{4.64}{8}
29,792
m \cdot (m + \left(-1\right))! = m!
21,276
0 = \frac1x rightarrow 1 = 0x
22,284
(3\cdot (-1) + x)\cdot (6\cdot (-1) + x) = 18 + x^2 - 9\cdot x
-13,838
\frac{72}{7 + 5} = \frac{72}{12} = \tfrac{72}{12} = 6
-20,843
-\frac{1}{7}\cdot 4\cdot \frac{4\cdot q}{4\cdot q} = ((-16)\cdot q)/(q\cdot 28)
6,615
\cos{x} = \sin{x}\Longrightarrow \frac12 \times \left(e^{x \times i} + e^{-i \times x}\right) = \frac{1}{2 \times i} \times (-e^{-i \times x} + e^{x \times i})
10,253
\dfrac{t_i - \frac{1}{t_i}}{t_i + (-1)} = 1 + \dfrac{1 - \dfrac{1}{t_i}}{t_i + (-1)} \geq 1 + \frac{1}{2 \times (t_i + (-1))}
25,978
(-1)^n\cdot \binom{-2}{n} = \binom{n + 1}{n} = \binom{n + 1}{1} = n + 1
11,006
2 = \sin^2{F_2} + \sin^2{F_1} + \sin^2{C} \Rightarrow 1 - \cos^2{F_2} + 1 - -\sin^2{C} + \cos^2{F_1} = 2
29,145
50 K = \dfrac{1}{20} 1000 K
24,255
\ln\left(r\right) + r = \int (r + 1)/r\,dr
15,584
\frac{1}{c*b} = \dfrac{1}{b*c}
18,935
\frac{1}{4}*5*t = 15 + t\Longrightarrow t = 60
30,197
x \cdot x \cdot x + (-1) = ((-1) + x) \cdot (1 + x^2 + x)
6,017
y = e^h + \left(-1\right) \implies \ln(1 + y) = h
32,390
k\cdot k! + k! = (k + 1)!
-15,682
\frac{1}{\frac{1}{\dfrac{1}{r^2} x^4}}x^4 = \frac{x^4}{r^2 \frac{1}{x^4}}
-23,721
\frac37 \cdot 3/4 = \tfrac{9}{28}
-6,094
\frac{3}{z^2 + 8*z + 9*(-1)} = \frac{3}{\left(z + 9\right)*(z + (-1))}
21,647
-\sin{s} \cos{x} + \cos{s} \sin{x} = \sin(-s + x)
15,102
w^9 = \left(w^3\right)^3
6,876
x^2 - 2\cdot x\cdot a + a^2 + b^2 = b^2 + (-a + x)^2
9,446
1 = x \cdot 12 + 5 \cdot y\Longrightarrow x = -2\wedge y = 5
12,908
\dfrac{v^2}{x^2} = (\frac{1}{x}\times v)^2
-26,582
\left(7x + 4\right) (-7x + 4) = 16 - 49 x^2
26,732
\frac{1}{4}\cdot π + \dfrac{π\cdot \left(-1\right)}{4} - q = -q
47,755
120^2\cdot 25\cdot 4 = 1440000
-1,856
7/12 \cdot π + \frac{π}{4} = 5/6 \cdot π
33,138
G_x\cdot G_\rho = G_\rho\cdot G_x
32,354
(x + z)^3 = (x + z) \cdot (x + z) \cdot (x + z) = (x + z) \cdot \left(x^2 + 2 \cdot x \cdot z + z \cdot z\right)
17,757
\left(3\cdot (-1) + y\right)\cdot (4\cdot (-1) + y)\cdot (y + 5\cdot (-1)) = 60\cdot (-1) + y^3 - 12\cdot y^2 + 47\cdot y
17,463
y^{\frac73} = y^{4/3 + \dfrac33} = y^{\dfrac43}*y^{\frac{3}{3}} = y^{\frac13*4}*y
28,283
\frac16 \cdot (-i + 6) = -\frac16 \cdot i + 1
6,470
\tan(y \cdot 3) = \tan\left(y \cdot 3\right)
19,282
z*H*x = H*z*x
32,066
4004001 = 2001 * 2001
45,117
x\cdot v = v\cdot x
31,602
\cos(-2 \cdot 2 + 2^2) = \cos\left(-2 \cdot 0 + 0^2\right)
33,181
L_k + L_l = L_l + L_k
40,019
25 = 68 + 43\times (-1)
14,631
1/7 + \dfrac{1}{42} = \frac{1}{6}
26,324
(g\cdot f)^2 \cdot (f\cdot g) = f \cdot f^2\cdot g^3
35,910
\frac{1}{24}7 = 91/24 + 2(-1) - 1^{-1} - 1/2
16,989
(x\times 3)^2 = 9\times x^2
498
6\cdot 252 = 1512
7,092
g^2 - b^2 = (g + b)*\left(-b + g\right)
12,926
0 = (c \cdot 2 + \left(-1\right)) \cdot 2 \Rightarrow \frac12 = c
8,009
\tfrac32\cdot 1/2\cdot 3 = \tfrac{9}{4}
974
\left(9 = y \times y \Rightarrow 9^{1/2} = y\right) \Rightarrow 3 = y
32,782
Z \cup Y \setminus Z = Z \cup \left(Y \cap Z^c\right) = (Y \cup Z) \cap (Z \cup Z^c) = Y \cup Z
-4,731
-\frac{1}{z + 3}\cdot 4 + \frac{2}{5\cdot (-1) + z} = \frac{26 - 2\cdot z}{z^2 - 2\cdot z + 15\cdot \left(-1\right)}
7,092
h \cdot h - g \cdot g = (g + h)\cdot (h - g)
19,131
(-8/3 + 3)^2*\frac{2}{9} = \frac{2}{81}
26,575
\frac124 = \frac21 = \frac{6}{3} = \dots
32,700
((1 + p)/2)^2 - \left(\dfrac{1}{2}\left(p + \left(-1\right)\right)\right)^2 = p
-24,660
\frac{12}{30} = \frac{2 \cdot 6}{6 \cdot 5}
18,102
N\cdot x\cdot b = b\cdot N\cdot N\cdot x
12,835
x^2 + x + 2(-1) + 2\sqrt{x^3 - x^2 - x + 1} = x * x * x \Rightarrow 4(x^3 - x^2 - x + 1) = (x^3 - x * x - x + 2) * (x^3 - x * x - x + 2)
3,293
-x^2 + (1 + x) * (1 + x) = 2*x + 1
4,106
(\int_0^1 (-\sigma + b)\,\text{d}\sigma) \cdot 2 = \frac{\partial}{\partial b} \int\limits_0^1 (\sigma - b)^2\,\text{d}\sigma
-14,041
7 + \frac{1}{5}50 = 7 + 10 = 17
20,269
(i + 1)! = i! (i + 1) < 2^i\cdot (i + 1)
39,323
4 \cdot (-1) + 3 + 1 = 0
1,404
5 \cdot y^3 + y^2 \cdot 20 - y \cdot 195 + 270 = (y + 9) \cdot (2 \cdot (-1) + y) \cdot (y + 3 \cdot (-1)) \cdot 5
5,467
-\tfrac{1}{2 + x} \cdot \left(2 \cdot \left(-1\right) + x\right) = \frac{1}{2 + x} \cdot \left(-x + 2\right)
17,482
-\left(a^2 + c \cdot c\right)^2 + (a^2 - c^2)^2 = -a^4 - 2\cdot a^2\cdot c^2 - c^4 + a^4 - 2\cdot a^2\cdot c^2 + c^4 = -4\cdot a^2\cdot c \cdot c
966
(2 \cdot (-1) + z) \cdot 5 = 10 \cdot \left(-1\right) + z \cdot 5
20,273
(-\sqrt{x^2 + 1} + t + x) \cdot (t + x + \sqrt{x \cdot x + 1}) = t \cdot t + 2 \cdot x \cdot t + (-1)
18,968
zz = z \cdot z = z + 1
27,569
d \cdot x \cdot f = d \cdot x \cdot f = \frac{d}{x \cdot f}
6,208
34658 = 1^3 + 14^3 + 17^3 + 30^2 \times 30
34,920
\sqrt{-4} = \sqrt{4}*\sqrt{-1} = 2i
5,919
258\cdot 4 + 147 \left(-7\right) = 3
1,423
\binom{5}{1} \times 6! \times 5! \times 2 = 864000
28,480
0 = \frac{z^2 - y^2}{z^2 + y \cdot y} \implies z \cdot z = y \cdot y
-30,287
\frac12(0 + 8) = \frac82 = 4
-26,654
3\times z^2 - z\times 20 + 7\times (-1) = (z\times 3 + 1)\times (z + 7\times (-1))
15,878
(n * n + \frac{n}{2})^2 = n^4 + n^3 + \tfrac{1}{4}n^2 < n^4 + n^3 + n * n + n + 1
-20,225
-\frac72\cdot (-\frac{1}{-9}\cdot 9) = \frac{63}{-18}
18,049
\frac{1}{2} \cdot (\frac{10303}{63} + 9 \cdot \left(-1\right)) = \dfrac{1}{63} \cdot 4868 \approx 77.27