id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
25,344 | \binom{(-1) + 17}{3} + \binom{17 + (-1)}{2} + \binom{(-1) + 17}{2} = 800 |
-20,357 | \dfrac{(-14)\cdot y}{28\cdot y + 63\cdot (-1)} = 7/7\cdot \frac{y\cdot (-2)}{y\cdot 4 + 9\cdot (-1)} |
6,584 | (y^2 - c\cdot y + (-1))\cdot (y \cdot y + c\cdot y + (-1)) = (y^2 + (-1))^2 - c \cdot c\cdot y^2 = y^4 - (2 + c^2)\cdot y^2 + 1 |
-11,098 | (z + 4)^2 + d = (z + 4) \cdot (z + 4) + d = z^2 + 8 \cdot z + 16 + d |
-647 | e^{2 π i} = \left(e^{π i}\right)^2 = (-1)^2 = 1 |
25,967 | 2*b + 3*b = 10\Longrightarrow b = 2 |
9,767 | l + 2\cdot (5\cdot z + 3) = 10\cdot z + 6 + l |
16,393 | -\dfrac{1}{c + x}c + 1 = \frac{1}{c + x}x |
13,346 | -2*p*x*D_1^2*D_2 * D_2 + 2*p*(D_1*D_2)^2*x = p*(-D_2*D_1 + D_1*D_2)^2*x |
-20,626 | (8\cdot y + 9)/\left(5\cdot y\right)\cdot 3/3 = \frac{1}{15\cdot y}\cdot \left(24\cdot y + 27\right) |
1,197 | 3 \cdot 2^{n + 1} = 3 \cdot 2^n + 3 \cdot 2^n \gt 4 \cdot n \cdot n + 1 + 4 \cdot n^2 + 1 |
2,979 | (-3*\sqrt{y^2 + (-1)} + 4)/(y*5) = \sin{r} \Rightarrow 9*\left(y * y + (-1)\right) = (4 - 5*\sin{r}*y)^2 |
4,896 | q \cdot q/4 - \frac{2}{16} = \frac14 \cdot q \cdot q - 1/8 |
-10,362 | -\frac{1}{3\cdot n}\cdot 6\cdot 12/12 = -72/(n\cdot 36) |
6,934 | q^{(-1) + f}\cdot q = q^f |
32,558 | 12 = \left(1 + 1 + 2\right)*3 |
23,197 | A^{r + p} = A^r*A^p |
18,978 | (l + 5)^3 = l^3 + l^2 \cdot 15 + 75 \cdot l + 125 |
3,547 | -y^3 + x^3 = (x^2 + x*y + y^2)*\left(-y + x\right) |
29,851 | \dfrac{1}{216}\cdot 181 = 1 - \tfrac{1}{216}\cdot (5 + 5 + 8 + 9 + 8) |
6,543 | 2014 + 21*(-1) = 1993 |
21,777 | z*(m + 1)*4 = (m*4 + 4)*z |
-9,124 | q \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 72 \cdot q |
36,969 | (gf' + fg') h + fg h' = fgh' + f' gh + hg' f |
31,308 | Y^{l + n} = Y^n Y^l |
24,645 | \sqrt{x}/x = \frac{\sqrt{x}}{\sqrt{x}\cdot \sqrt{x}} = 1/(\sqrt{x}) |
17,007 | 1 = \tfrac133 = 3*0.333 \dotsm = 0.999 \dotsm |
20,664 | \cosh^2(x) = \frac{(e^{x}+e^{-x})^2}{4} = \frac{e^{2x}+e^{-2x}+2e^0}{4} |
894 | \frac{4321}{4322}*4322/4323/4321 = \frac{1}{4323} |
-29,061 | c^6*c^0 = c^6 |
23,829 | \dfrac{1}{3 + (-1)}\cdot 2 = 1 |
43,510 | 0 = 0\times 1^{-1}/1 |
-2,359 | (-10)^3 = (-10) \times \left(-10\right) \times (-10) = 100 \times (-10) = -1000 |
34,443 | -4*a * a + b^2 = (a*2 + b)*(b - 2*a) |
12,565 | t^{\dfrac{5}{2}} = \dfrac{1}{t^{1/2}}\cdot t^3 |
28,802 | (1 + n)\cdot n! = (n + 1)! |
-20,417 | 4/4*\frac{(-6)*t}{t + 3} = \dfrac{1}{4*t + 12}*(t*(-24)) |
7,868 | e z/e = z |
11,239 | (d^\beta)^l = d^{\beta\cdot l} = d^{l\cdot \beta} |
21,582 | (H_2^2 - H_1 \cdot H_2 + H_1^2) \cdot (H_2 + H_1) = H_1^3 + H_2^3 |
5,848 | 1/\left(a*c\right) = 1/(a*c) |
28,207 | \frac{n!}{(n - r)!*r!} = \binom{n}{r} |
-20,360 | \frac{10}{10} \cdot \tfrac{1}{k + 9} \cdot (4 + k \cdot 4) = \frac{40 + 40 \cdot k}{10 \cdot k + 90} |
7,775 | 4\cdot k^2 = -\left(k^2 + (-1)\right)^2 + (1 + k^2) \cdot (1 + k^2) |
35,754 | x^2 - 2\cdot i = x \cdot x - (1 + i)^2 = (x + (-1) - i)\cdot (x + 1 + i) |
34,896 | \left(-1\right) + \dfrac{100}{4} = 24 |
-9,257 | 10 + 50*t = t*2*5*5 + 2*5 |
6,227 | \sec(x) := \frac{1}{\cos\left(x\right)} |
17,004 | 3 = \left(-16^2 + \frac{7950}{30}\right)^{1 / 2} |
-7,630 | (10 - 5 \cdot i - 20 \cdot i + 10 \cdot \left(-1\right))/5 = \tfrac{1}{5} \cdot (0 - 25 \cdot i) = -5 \cdot i |
-4,931 | 29.4*10^5 = 10^{5 + 0}*29.4 |
21,627 | 0 + (1 + x^2 + x) = x^2 + x + 1 |
-13,139 | 30.87\cdot \frac{1}{9}/(-0.7) = 30.87/(9\cdot \left(-0.7\right)) = \frac{1}{-6.3}\cdot 30.87 |
41,944 | 50 = 5a^1 + 0a^0 = 5a |
27,927 | 2 = (5 + \sqrt{23})*\left(-\sqrt{23} + 5\right) |
25,392 | (2*n + 2)*(2*n + 1)*(2*n)! = (2*n + 2)! |
50,000 | 8 + 10^6 = 1000008 |
19,416 | \sqrt{\lambda^2} = \sqrt{(-\lambda)^2} = -\lambda |
27,765 | 90 = z\cdot 8 rightarrow z = 45/4 = 11.25 |
19,849 | 2^{2 \cdot n} = \frac{1}{2} \cdot 2^{2 \cdot n + 1} |
-3,920 | 11\times k = 11\times k |
-3,440 | \sqrt{11}\cdot (3 + 2) = 5\cdot \sqrt{11} |
-17,502 | 84 = 18 + 66 |
-27,625 | -3 + 5*(-1) + 2*\left(-1\right) = -8 + 2*(-1) = -10 |
29,189 | \sqrt{z^6} = |z \cdot z \cdot z| = -z^3 |
12,619 | -\frac{x}{d} = \tfrac{1}{d}\cdot (\left(-1\right)\cdot x) = x/((-1)\cdot d) |
-16,581 | 9\sqrt{16} \sqrt{3} = 9 \cdot 4 \sqrt{3} = 36 \sqrt{3} |
-20,261 | 9/9\cdot \frac{6\cdot (-1) + x\cdot 10}{8\cdot (-1) - x\cdot 3} = \frac{1}{-x\cdot 27 + 72\cdot \left(-1\right)}\cdot (54\cdot (-1) + x\cdot 90) |
-16,503 | \sqrt{32} \times 9 = 9 \times \sqrt{16 \times 2} |
2,114 | 3x^3 + 10 x * x + 14 x + 8 = 3x^3 + 6x^2 + 6x + 4x^2 + 8x + 8 = (3x + 4) (x^2 + 2x + 2) |
564 | \alpha a = a \alpha |
51,100 | \frac{\partial}{\partial y} (y\cdot e^{-k\cdot y}) = y\cdot \frac{\partial}{\partial y} e^{-k\cdot y} + \frac{\text{d}y}{\text{d}y}\cdot e^{-k\cdot y} = -k\cdot y\cdot e^{-k\cdot y} + e^{-k\cdot y} |
-5,248 | 18.8\times 10^{-4 + 5} = 18.8\times 10^1 |
-7,679 | \frac{1}{-i + 4}(5i - 20) \frac{1}{i + 4}(i + 4) = \tfrac{1}{4 - i}(-20 + 5i) |
26,380 | 2*(-1) + \frac{13^2}{5^2} = \dfrac{1}{5^2}*(12^2 - 5^2) |
5,777 | (2-\sqrt{3})(2+\sqrt{3})=1 |
30,036 | p = \dfrac{1}{d^2} g^2 \implies d^2 p = g^2 |
6,978 | (-(f - g) \cdot (f - g) + (g + f)^2)/4 = g\cdot f |
18,185 | Y/X = G/D = \frac{Y + G}{X + D} |
251 | \frac{26}{27} \cdot 3/51 + \frac{1}{27} = \frac{1}{459} 43 |
18,275 | \tfrac{1}{\frac{1}{x + x} + \frac{1}{x + x}} = x |
30,112 | 2 \cdot \sin(\pi/18) = 2 \cdot \cos\left(4 \cdot \pi/9\right) |
870 | (4^2 + 3^2)\cdot 5^2 = 5^4 |
10,719 | (-z + 1)\cdot (1 + z) = 1 - z^2 |
37,805 | \sqrt{z} = z^{\dfrac12} |
-20,347 | 8/8*\frac{1}{-10}*(-n*5 + 2*(-1)) = \dfrac{1}{-80}*(16*(-1) - n*40) |
12,964 | \cos(a + b) = \sin(\pi/2 - a - b) = \cos(a) \cos(b) - \sin(a) \sin(b) |
4,808 | (-\beta + x) \cdot \left(x + \beta\right) = x \cdot x - \beta^2 |
2,936 | (-x^2 + b^2)/2 = -\frac{1}{2} \cdot x^2 + \frac12 \cdot b \cdot b |
2,943 | e^{\frac{1}{\dfrac1x}} = e^x |
14,466 | \dfrac{0*\left(-1\right) + f}{f - a} = \frac{f}{-a + f} |
-11,980 | \dfrac{7}{24} = \dfrac{s}{16\pi} \times 16\pi = s |
-5,316 | 38.4 \times 10^{-2\,+\,4} = 38.4 \times 10^{2} |
24,690 | 1/6 + 1/6 = \dfrac{1}{3} |
-3,286 | 2^{1 / 2}*\left(5 + 3\left(-1\right)\right) = 2*2^{1 / 2} |
12,464 | ((-1)*0.5 + m)^2 = m^2 - m + 0.25 |
34,054 | ( 1, -1/3) = \left[-1, 5\right] = [1, 2] |
-15,382 | \dfrac{t^3}{i\times t^2}\times \frac{1}{i^6} = \dfrac{(\dfrac{t}{i \times i})^3}{i\times t \times t} |
33,027 | 100 \left(-1\right) + 200 = 100 |
-23,551 | \frac{1/8}{2} \cdot 3 = 3/16 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.