id
int64
-30,985
55.9k
text
stringlengths
5
437k
-23,299
1 - \dfrac17 = 6/7
36,095
2\times 17 = 34
8,040
4 = \frac{4*\left(-1\right) + 28}{2*(-1) + 8}
27,249
-l_2 + x - l_1 = x - l_2 + l_1
-13,600
8 \cdot 8 + 6 \cdot \frac{45}{9} = 8 \cdot 8 + 6 \cdot 5 = 64 + 6 \cdot 5 = 64 + 30 = 94
14,365
\frac{1}{X} \cdot \frac{1}{X} = \frac{1}{X^2}
4,427
y \cdot y - y\cdot 5 + 6 = (y + 3\cdot (-1))\cdot (2\cdot \left(-1\right) + y)
1,147
\tan{x} + (-1) = \dfrac{1}{\cos{x}}\sin{x} + (-1) = \frac{1}{\cos{x}}(\sin{x} - \cos{x})
834
n \cdot 21 + 15 \cdot m = 3 \cdot (n \cdot 7 + 5 \cdot m)
17,754
\dfrac{1}{4\cdot (1/5 + 1/4)} = 5/9
-20,847
\frac{m*(-48)}{18*m} = \frac{m*6}{m*6}*(-\frac83)
34,443
b^2 - 4\cdot a^2 = (b + 2\cdot a)\cdot \left(b - 2\cdot a\right)
-18,787
2 = \frac{6}{3}
-26,639
81 (-1) + y^6\cdot 16 = (4 y^3 + 9 (-1)) (4 y^3 + 9)
-2,830
\sqrt{6} + \sqrt{6}*5 = \sqrt{25}*\sqrt{6} + \sqrt{6}
1,128
u_x + e \cdot u_y = 1 = \left( 1, e\right) \cdot \left( u_x, u_y\right)
15,574
\left(a + x\right) \cdot \left(a + x\right) = a \cdot a + 2xa + x^2
-19,679
12/5 = 2\cdot 6/(5)
-19,463
\frac95\cdot \dfrac14\cdot 3 = 3\cdot 1/4/(1/9\cdot 5)
17,460
1/(x d) = 1/(x d)
14,456
7^2 + 1 * 1 = 2*5^2
28,898
I = I^4 + x^4 = (I + x)\cdot (I - x + x \cdot x - x^3)
-18,483
4\cdot r + 2 = 10\cdot (3\cdot r + 7\cdot (-1)) = 30\cdot r + 70\cdot (-1)
14,491
8.25 = \dfrac{2^9}{2^{12}} \cdot 66
19,516
48/51\cdot \frac{1}{50}6 = 288/2550
-20,055
\dfrac{k}{(-1) \cdot 81 \cdot k} \cdot 36 = -4/9 \cdot \frac{(-9) \cdot k}{k \cdot (-9)}
26,516
3 = 5 \cdot (-1) + 8
19,836
\frac{1}{1 - y} = 1 + y + y^2 + y^3 \cdot \cdots
15,804
\log_e\left(k\right)\cdot \log_e(2) = \log_e(2)\cdot \log_e(k)
39,532
x\cdot f\cdot x = x\cdot x\cdot f
23,169
\dfrac{1}{7} \sqrt{3} + \frac{\sqrt{3}}{14}*5 = \frac{\sqrt{3}}{2}
633
\left(y^k + f^k \Leftrightarrow 0 = y + f\right)\Longrightarrow 0 = f^k + y^k
26,413
18*17/2 = 153
28,201
\dfrac{1}{10^4}\cdot 999999 / 1000000 = 9.99999\cdot 10^{-5}
7,756
4^2 + 20^2 + 50^2 = 4*27^2
-17,717
56 + 53*(-1) = 3
40,120
x - x^{i + 1} = S - x S = (1 - x) S
-3,702
40/45 \cdot \frac{y^4}{y^3} = \frac{y^4}{45 \cdot y \cdot y \cdot y} \cdot 40
18,247
\frac{\partial}{\partial x} (X*x^q) = X*x^{q + \left(-1\right)}*q
11,957
(2*(-1) + k)*(3*(-1) + k)/2 + 2 = (k^2 - k*3 + 2)/2 - 2*(-1) + k + 2
5,880
A \cdot y = K \implies y = K/A
-7,534
\frac{1}{3 - i\cdot 5}(-19 i - 9) = \frac{5i + 3}{3 + 5i} \dfrac{-9 - 19 i}{3 - i\cdot 5}
-25,865
4^5 = \frac{4^8}{4 \cdot 4 \cdot 4}
1,145
(a + (a + (a + \cdots)^{\dfrac{1}{2}})^{1 / 2})^{1 / 2} = \frac{1}{2}\cdot (1 + (1 + a\cdot 4)^{1 / 2})
25,466
(T^2)^2 = T^4 = T^2 \cdot T \cdot T = T^2 \cdot T = T^3 = T \cdot T
30,820
h^m h^0 = h^m = h^{m + 0}
-7,503
\frac{15}{2} = \frac16*45
10,145
\frac{l}{1 + l \cdot 2} = \dfrac{1}{1 + 2 \cdot (1 + (1 - l)/\left(2l\right))}
16,132
504 = 2 \cdot 2^2\cdot 3^2\cdot 7
15,680
\sin^r(\|x\|)/\|x\| = \|x\|^{(-1) + r} \cdot \dfrac{1}{\|x\|^r} \cdot \sin^r(\|x\|)
-180
10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = \frac{10!}{(6 \cdot (-1) + 10)!}
-9,143
-r\cdot 9 = -r\cdot 3\cdot 3
50,535
12 + \left(-1\right) + (-1) = 10
31,066
\frac{d}{dx} \tan^{-1}(x) = \tfrac{1}{1 + x \cdot x}
13,215
4\times a^2 = 2^2\times a^2 = (2\times a)^2 = (2\times a)^2
19,138
q + (-1) = (-1) + p \Rightarrow p = q
-5,393
\frac{28}{10^6} = \tfrac{1}{10^6} \cdot 28
14,622
\left(a \cdot b\right)^3 = 1 = 1 = a^3 \cdot b^3
8,804
V^{x + l} = V^x \cdot V^l
17,151
\frac{\mathrm{d}}{\mathrm{d}z} \tan\left(z^2\right) = \sec^2(z \cdot z) \cdot 2 \cdot z = 2 \cdot z \cdot \sec^2(z^2)
26,829
r \cdot \alpha \cdot \beta = r \cdot \beta \cdot \alpha
-26,130
4\cos(2π) - 4\cos(3π/2) = 4 + 0 = 4
23,201
1 = (4/5)^2 + \left(3/5\right)^2
3,155
\left(1 + z\right)^{1/2} = \sqrt{z + 1}
16,326
x = (x - YB) (x - 0.4 B) = x - (0.4 + Y - 0.4 Y) B
21,699
x + d + f = x + d + f
-15,189
\dfrac{1}{\frac{1}{z^5*t^{25}}*\tfrac{1}{t^6}} = \frac{1}{\dfrac{1}{t^{25}}*\dfrac{1}{z^5}}*t^6
1,144
x*b*d = x*b*d
-25,049
5/13*\dfrac{4}{12} = \frac{20}{156} = 5/39
-22,315
(9 + r)*(4 + r) = 36 + r^2 + 13*r
-30,322
1 = 4 + 3*\left(-1\right)
-4,235
\frac{x}{60\cdot x^4}\cdot 50 = 50/60\cdot \dfrac{1}{x^4}\cdot x
17,098
92 \cdot c > a \cdot 90 \Rightarrow 2 \cdot c \gt 90 \cdot (a - c) \geq 90 \cdot 2 = 180
6,302
0 = k\cdot 3 + (-1)\Longrightarrow k = 1/3
-7,064
\frac{1}{7} \cdot 2 \cdot 3/6 = 1/7
-6,351
\frac{1}{(r + 10)\cdot 5} = \frac{1}{50 + 5\cdot r}
27,371
4725 = 7^1\cdot 3^3\cdot 5^2
13,853
n^2\cdot 4 + 4\cdot n + 1 = 4\cdot (n \cdot n + n) + 1
13,184
(a + h)^2 = a^2 + 2 h a + h h
16,495
1 + 5 + 5^2 + ... + 5^{l + (-1)} = \dfrac{5^l + (-1)}{5 + (-1)} = (5^l + (-1))/4
-7,034
\dfrac{5}{36} = \dfrac59 \cdot \frac{1}{8} \cdot 2
-17,009
3 = 3 \cdot (-t) + 3 \cdot (-5) = -3 \cdot t - 15 = -3 \cdot t + 15 \cdot \left(-1\right)
18,493
k^3 + 1 = (k^2 - k + 1)\cdot (k + 1)
3,062
(a - h)^2 = (h - a) \cdot (h - a) = a \cdot a + h \cdot h - 2ah
20,567
1/17 = \dfrac{3}{51}
-4,329
\frac{2}{y \cdot y^2\cdot 5} = \frac{2}{y^3}\cdot \frac{1}{5}
12,434
7\times 3 - 2\times 5 = 11
26,100
|z| = \sqrt{z^2} \Rightarrow z^2 = |z|^2
14,665
y^2 - x^3 - x^2 = (y - \sqrt{1 + x} \cdot x) \cdot \left(x \cdot \sqrt{x + 1} + y\right)
5,103
\frac{1}{b} + 1/h = 1/x \Rightarrow x \cdot h + x \cdot b = b \cdot h
26,638
(n + 1)! = \left(n + 1\right) n \ldots\cdot 2 = \left(n + 1\right) n!
-1,543
\frac{5}{9} = \frac{1}{9}\cdot 5
9,864
-m_2 \alpha + \alpha m_1 = \alpha \cdot (m_1 - m_2)
32,760
\left(\sqrt{ab}\right)^2 = ab
26,249
(\int\limits_0^f B\,dz) \cdot 2 = \int\limits_{-f}^f B\,dz
-13,876
\left(6 + 3 - 8*6\right)*10 = (6 + 3 + 48*(-1))*10 = (6 - 45)*10 = (6 + 45*(-1))*10 = (-39)*10 = (-39)*10 = -390
-27,728
-\cot\left(z\right)\cdot \csc(z) = \frac{\mathrm{d}}{\mathrm{d}z} \csc\left(z\right)
44,327
191 = 2^6\cdot 3 + (-1)
24,015
\frac{9}{10}*\frac{9}{12} = \frac{1}{40} 27 = 0.675
36,383
(2 + 3) \cdot (2 + 3) = 5^2 = 25