id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-23,299 | 1 - \dfrac17 = 6/7 |
36,095 | 2\times 17 = 34 |
8,040 | 4 = \frac{4*\left(-1\right) + 28}{2*(-1) + 8} |
27,249 | -l_2 + x - l_1 = x - l_2 + l_1 |
-13,600 | 8 \cdot 8 + 6 \cdot \frac{45}{9} = 8 \cdot 8 + 6 \cdot 5 = 64 + 6 \cdot 5 = 64 + 30 = 94 |
14,365 | \frac{1}{X} \cdot \frac{1}{X} = \frac{1}{X^2} |
4,427 | y \cdot y - y\cdot 5 + 6 = (y + 3\cdot (-1))\cdot (2\cdot \left(-1\right) + y) |
1,147 | \tan{x} + (-1) = \dfrac{1}{\cos{x}}\sin{x} + (-1) = \frac{1}{\cos{x}}(\sin{x} - \cos{x}) |
834 | n \cdot 21 + 15 \cdot m = 3 \cdot (n \cdot 7 + 5 \cdot m) |
17,754 | \dfrac{1}{4\cdot (1/5 + 1/4)} = 5/9 |
-20,847 | \frac{m*(-48)}{18*m} = \frac{m*6}{m*6}*(-\frac83) |
34,443 | b^2 - 4\cdot a^2 = (b + 2\cdot a)\cdot \left(b - 2\cdot a\right) |
-18,787 | 2 = \frac{6}{3} |
-26,639 | 81 (-1) + y^6\cdot 16 = (4 y^3 + 9 (-1)) (4 y^3 + 9) |
-2,830 | \sqrt{6} + \sqrt{6}*5 = \sqrt{25}*\sqrt{6} + \sqrt{6} |
1,128 | u_x + e \cdot u_y = 1 = \left( 1, e\right) \cdot \left( u_x, u_y\right) |
15,574 | \left(a + x\right) \cdot \left(a + x\right) = a \cdot a + 2xa + x^2 |
-19,679 | 12/5 = 2\cdot 6/(5) |
-19,463 | \frac95\cdot \dfrac14\cdot 3 = 3\cdot 1/4/(1/9\cdot 5) |
17,460 | 1/(x d) = 1/(x d) |
14,456 | 7^2 + 1 * 1 = 2*5^2 |
28,898 | I = I^4 + x^4 = (I + x)\cdot (I - x + x \cdot x - x^3) |
-18,483 | 4\cdot r + 2 = 10\cdot (3\cdot r + 7\cdot (-1)) = 30\cdot r + 70\cdot (-1) |
14,491 | 8.25 = \dfrac{2^9}{2^{12}} \cdot 66 |
19,516 | 48/51\cdot \frac{1}{50}6 = 288/2550 |
-20,055 | \dfrac{k}{(-1) \cdot 81 \cdot k} \cdot 36 = -4/9 \cdot \frac{(-9) \cdot k}{k \cdot (-9)} |
26,516 | 3 = 5 \cdot (-1) + 8 |
19,836 | \frac{1}{1 - y} = 1 + y + y^2 + y^3 \cdot \cdots |
15,804 | \log_e\left(k\right)\cdot \log_e(2) = \log_e(2)\cdot \log_e(k) |
39,532 | x\cdot f\cdot x = x\cdot x\cdot f |
23,169 | \dfrac{1}{7} \sqrt{3} + \frac{\sqrt{3}}{14}*5 = \frac{\sqrt{3}}{2} |
633 | \left(y^k + f^k \Leftrightarrow 0 = y + f\right)\Longrightarrow 0 = f^k + y^k |
26,413 | 18*17/2 = 153 |
28,201 | \dfrac{1}{10^4}\cdot 999999 / 1000000 = 9.99999\cdot 10^{-5} |
7,756 | 4^2 + 20^2 + 50^2 = 4*27^2 |
-17,717 | 56 + 53*(-1) = 3 |
40,120 | x - x^{i + 1} = S - x S = (1 - x) S |
-3,702 | 40/45 \cdot \frac{y^4}{y^3} = \frac{y^4}{45 \cdot y \cdot y \cdot y} \cdot 40 |
18,247 | \frac{\partial}{\partial x} (X*x^q) = X*x^{q + \left(-1\right)}*q |
11,957 | (2*(-1) + k)*(3*(-1) + k)/2 + 2 = (k^2 - k*3 + 2)/2 - 2*(-1) + k + 2 |
5,880 | A \cdot y = K \implies y = K/A |
-7,534 | \frac{1}{3 - i\cdot 5}(-19 i - 9) = \frac{5i + 3}{3 + 5i} \dfrac{-9 - 19 i}{3 - i\cdot 5} |
-25,865 | 4^5 = \frac{4^8}{4 \cdot 4 \cdot 4} |
1,145 | (a + (a + (a + \cdots)^{\dfrac{1}{2}})^{1 / 2})^{1 / 2} = \frac{1}{2}\cdot (1 + (1 + a\cdot 4)^{1 / 2}) |
25,466 | (T^2)^2 = T^4 = T^2 \cdot T \cdot T = T^2 \cdot T = T^3 = T \cdot T |
30,820 | h^m h^0 = h^m = h^{m + 0} |
-7,503 | \frac{15}{2} = \frac16*45 |
10,145 | \frac{l}{1 + l \cdot 2} = \dfrac{1}{1 + 2 \cdot (1 + (1 - l)/\left(2l\right))} |
16,132 | 504 = 2 \cdot 2^2\cdot 3^2\cdot 7 |
15,680 | \sin^r(\|x\|)/\|x\| = \|x\|^{(-1) + r} \cdot \dfrac{1}{\|x\|^r} \cdot \sin^r(\|x\|) |
-180 | 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 = \frac{10!}{(6 \cdot (-1) + 10)!} |
-9,143 | -r\cdot 9 = -r\cdot 3\cdot 3 |
50,535 | 12 + \left(-1\right) + (-1) = 10 |
31,066 | \frac{d}{dx} \tan^{-1}(x) = \tfrac{1}{1 + x \cdot x} |
13,215 | 4\times a^2 = 2^2\times a^2 = (2\times a)^2 = (2\times a)^2 |
19,138 | q + (-1) = (-1) + p \Rightarrow p = q |
-5,393 | \frac{28}{10^6} = \tfrac{1}{10^6} \cdot 28 |
14,622 | \left(a \cdot b\right)^3 = 1 = 1 = a^3 \cdot b^3 |
8,804 | V^{x + l} = V^x \cdot V^l |
17,151 | \frac{\mathrm{d}}{\mathrm{d}z} \tan\left(z^2\right) = \sec^2(z \cdot z) \cdot 2 \cdot z = 2 \cdot z \cdot \sec^2(z^2) |
26,829 | r \cdot \alpha \cdot \beta = r \cdot \beta \cdot \alpha |
-26,130 | 4\cos(2π) - 4\cos(3π/2) = 4 + 0 = 4 |
23,201 | 1 = (4/5)^2 + \left(3/5\right)^2 |
3,155 | \left(1 + z\right)^{1/2} = \sqrt{z + 1} |
16,326 | x = (x - YB) (x - 0.4 B) = x - (0.4 + Y - 0.4 Y) B |
21,699 | x + d + f = x + d + f |
-15,189 | \dfrac{1}{\frac{1}{z^5*t^{25}}*\tfrac{1}{t^6}} = \frac{1}{\dfrac{1}{t^{25}}*\dfrac{1}{z^5}}*t^6 |
1,144 | x*b*d = x*b*d |
-25,049 | 5/13*\dfrac{4}{12} = \frac{20}{156} = 5/39 |
-22,315 | (9 + r)*(4 + r) = 36 + r^2 + 13*r |
-30,322 | 1 = 4 + 3*\left(-1\right) |
-4,235 | \frac{x}{60\cdot x^4}\cdot 50 = 50/60\cdot \dfrac{1}{x^4}\cdot x |
17,098 | 92 \cdot c > a \cdot 90 \Rightarrow 2 \cdot c \gt 90 \cdot (a - c) \geq 90 \cdot 2 = 180 |
6,302 | 0 = k\cdot 3 + (-1)\Longrightarrow k = 1/3 |
-7,064 | \frac{1}{7} \cdot 2 \cdot 3/6 = 1/7 |
-6,351 | \frac{1}{(r + 10)\cdot 5} = \frac{1}{50 + 5\cdot r} |
27,371 | 4725 = 7^1\cdot 3^3\cdot 5^2 |
13,853 | n^2\cdot 4 + 4\cdot n + 1 = 4\cdot (n \cdot n + n) + 1 |
13,184 | (a + h)^2 = a^2 + 2 h a + h h |
16,495 | 1 + 5 + 5^2 + ... + 5^{l + (-1)} = \dfrac{5^l + (-1)}{5 + (-1)} = (5^l + (-1))/4 |
-7,034 | \dfrac{5}{36} = \dfrac59 \cdot \frac{1}{8} \cdot 2 |
-17,009 | 3 = 3 \cdot (-t) + 3 \cdot (-5) = -3 \cdot t - 15 = -3 \cdot t + 15 \cdot \left(-1\right) |
18,493 | k^3 + 1 = (k^2 - k + 1)\cdot (k + 1) |
3,062 | (a - h)^2 = (h - a) \cdot (h - a) = a \cdot a + h \cdot h - 2ah |
20,567 | 1/17 = \dfrac{3}{51} |
-4,329 | \frac{2}{y \cdot y^2\cdot 5} = \frac{2}{y^3}\cdot \frac{1}{5} |
12,434 | 7\times 3 - 2\times 5 = 11 |
26,100 | |z| = \sqrt{z^2} \Rightarrow z^2 = |z|^2 |
14,665 | y^2 - x^3 - x^2 = (y - \sqrt{1 + x} \cdot x) \cdot \left(x \cdot \sqrt{x + 1} + y\right) |
5,103 | \frac{1}{b} + 1/h = 1/x \Rightarrow x \cdot h + x \cdot b = b \cdot h |
26,638 | (n + 1)! = \left(n + 1\right) n \ldots\cdot 2 = \left(n + 1\right) n! |
-1,543 | \frac{5}{9} = \frac{1}{9}\cdot 5 |
9,864 | -m_2 \alpha + \alpha m_1 = \alpha \cdot (m_1 - m_2) |
32,760 | \left(\sqrt{ab}\right)^2 = ab |
26,249 | (\int\limits_0^f B\,dz) \cdot 2 = \int\limits_{-f}^f B\,dz |
-13,876 | \left(6 + 3 - 8*6\right)*10 = (6 + 3 + 48*(-1))*10 = (6 - 45)*10 = (6 + 45*(-1))*10 = (-39)*10 = (-39)*10 = -390 |
-27,728 | -\cot\left(z\right)\cdot \csc(z) = \frac{\mathrm{d}}{\mathrm{d}z} \csc\left(z\right) |
44,327 | 191 = 2^6\cdot 3 + (-1) |
24,015 | \frac{9}{10}*\frac{9}{12} = \frac{1}{40} 27 = 0.675 |
36,383 | (2 + 3) \cdot (2 + 3) = 5^2 = 25 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.