id
int64
-30,985
55.9k
text
stringlengths
5
437k
27,094
y^4 = y^4 + (-1) + 1 = (y^2 + 1) \left(y^2 + (-1)\right) + 1
21,705
\frac16 \cdot 91 = \left(1 + 4 + 9 + 16 + 25 + 36\right)/6
-20,389
\dfrac{1}{5}\cdot 5\cdot \dfrac{1}{-x + 5\cdot \left(-1\right)}\cdot x = \frac{5\cdot x}{25\cdot (-1) - x\cdot 5}
24,824
2^2 \cdot 2 \cdot 7 = 56
19,148
-2\cdot e^{(i\cdot (-1)\cdot \pi)/3} = -2\cdot e^{(\pi\cdot (-1)\cdot i)/3}
13,316
\frac{l^3 + 3 \cdot (-1)}{l^2 + 7 \cdot \left(-1\right)} = \frac{1}{l^2 + 7 \cdot (-1)} \cdot (l \cdot 7 + 3 \cdot (-1)) + l
-13,319
10 + 3 = 10 + 3 = 13
-7,605
\frac{1}{17} \cdot (-14 + 5 \cdot i - 56 \cdot i + 20 \cdot \left(-1\right)) = \frac{1}{17} \cdot \left(-34 - 51 \cdot i\right) = -2 - 3 \cdot i
5,908
-n^2 + (8 + n) * (8 + n) = 16*(n + 4)
17,671
y^4 - 2 \cdot y \cdot y + 8 \cdot (-1) = (y^2 + (-1)) \cdot (y^2 + (-1)) + 9 \cdot (-1) = \left(y^2 + (-1) + 3 \cdot \left(-1\right)\right) \cdot (y^2 + (-1) + 3) = (y + 2 \cdot (-1)) \cdot (y + 2) \cdot \left(y^2 + 2\right)
-12,748
\dfrac{21}{28} = \frac{1}{4}\cdot 3
36,575
146 = 162 + 16\cdot (-1)
1,140
((-1) + l)^2 + l \cdot 4 = (l + 1)^2
22,927
8 + 5\cdot (-1) = 3 = 3
15,156
\left(3 + x \cdot 7 = -37 \implies -40 = x \cdot 7\right) \implies x = -40/7
31,755
|x^2 - 4x - -3| = |x + 3\left(-1\right)| |x + \left(-1\right)| \leq 3|x + (-1)|
10,101
z^{\frac{k}{l}} = (z^k)^{1/l} = \left(z^{\frac{1}{l}}\right)^k
-15,855
\frac{46}{10} = 8 \cdot \frac{8}{10} - 9 \cdot 2/10
-24,875
\frac{1}{18} = s/6*6 = s
-602
(e^{\pi \cdot i \cdot 17/12})^{20} = e^{20 \cdot \pi \cdot i \cdot 17/12}
13,381
(n + 1)\cdot (n + 2) = 2 + n^2 + 3\cdot n
17,997
6 (-1) + 7 = 1
-16,522
8 \cdot 25^{1/2} \cdot 11^{1/2} = 8 \cdot 5 \cdot 11^{1/2} = 40 \cdot 11^{1/2}
8,082
4zx = (x + z)^2 - (x - z)^2
15,639
(x + (-1))*(1 + x)*(1 + x^2) = \left(-1\right) + x^4
5,647
2 + x^4 - 4 \times x^2 = 2 \times (-1) + (2 \times (-1) + x^2)^2
-30,813
4(6 + z^2) = z^2\cdot 4 + 24
19,122
\sqrt{( x^2, z \cdot z \cdot z)} = \sqrt{x^2\cdot z^3} = \sqrt{x^2}\cdot \sqrt{z \cdot z \cdot z} = x\cdot z = [x,z]
39,283
18 = 3\times (12 + 6\times (-1))
12,468
\frac{720}{24}=30
36,502
1/2 + 1/3 + \tfrac{1}{9} + \frac{1}{18} = 1
3,566
24/(\sqrt{6}) = 12 \cdot 1/(\sqrt{3}) \cdot 2/(\sqrt{2})
37,907
350 = {7 \choose 3}\cdot {5 \choose 3}
-4,280
d/3 = \frac13 \cdot d
-20,371
\tfrac{2x}{14 x} = \frac{1}{x*2}*x*2/7
9,250
\frac{1}{z \cdot \frac1y} = \frac{y}{z}
-20,701
\frac{-7 k + 56}{k + 8 \left(-1\right)} = -7/1 \frac{k + 8 (-1)}{k + 8 (-1)}
-2,679
12^{\frac{1}{2}} + 75^{\frac{1}{2}} = (25\cdot 3)^{\dfrac{1}{2}} + (4\cdot 3)^{\frac{1}{2}}
-10,598
\tfrac{3 \cdot \left(-1\right) + 3 \cdot n}{n + 2 \cdot \left(-1\right)} \cdot \frac{4}{4} = \frac{12 \cdot \left(-1\right) + 12 \cdot n}{8 \cdot (-1) + 4 \cdot n}
675
-I\cdot x + I + Y = -I\cdot ((-1) + x) + Y
15,824
26^{1 / 2} + y \geq 0 \Rightarrow y \geq -26^{\frac{1}{2}}
7,050
x*g*\gamma_n = x*\gamma_n*g
22,080
4 \cdot 43 = 172
15,048
4 = \frac12\left(5 + 3\right)
28,857
A A A = A^3
5,315
\frac{11!}{5!\cdot 5!\cdot 1!} = 11!/(5!\cdot 5!) = 2772
-2,198
\tfrac{5}{19} = \dfrac{7}{19} - 2/19
-15,530
\frac{1}{\frac{1}{\frac{1}{x^3} \cdot t}} \cdot (t^3)^3 = \dfrac{t^9}{x^2 \cdot x \cdot \tfrac1t}
-27,664
\sin(\theta \cdot 2) = \cos(\theta) \cdot \sin(\theta) \cdot 2
-22,338
(x + 1) (x + 9 \left(-1\right)) = 9 (-1) + x^2 - 8 x
11,347
a_2 + a_3 + ... + a_k + a_{k + 1} = a_2 + a_3 + ... + a_k + a_{k + 1}
-1,697
\frac94 \pi = \pi \frac56 + \pi \frac{17}{12}
13,502
\dfrac{z}{z^3} = \dfrac{1}{z * z}
6,863
1 - \frac{1}{y + 1} \cdot y = \frac{1}{1 + y}
27,328
(-2) \cdot 4 = -(2 \cdot 2 + (-1)) \cdot (2 \cdot 2 + (-1)) + (2 \cdot 2 + 3 \cdot (-1))^2
24,071
0 = -g/2\cdot T^2 + T\cdot \sin(\theta)\cdot V\Longrightarrow 2\cdot \sin(\theta)\cdot V/g = T
35,783
s_{11}\cdot s_{21} = s_{22}\cdot s_{12}\Longrightarrow s_{21}\cdot s_{12}\cdot s_{11} = s_{12} \cdot s_{12}\cdot s_{22}
-10,908
12 = \frac{60}{5}
24,697
x - i = x - i*2 + i
-22,298
7\cdot (-1) + r^2 - r\cdot 6 = (1 + r)\cdot (r + 7\cdot \left(-1\right))
-18,778
2 = \dfrac{1}{7} \cdot 14
3,566
24/(\sqrt{6}) = 2\cdot \frac{1}{\sqrt{3}}/(\sqrt{2})\cdot 12
-20,692
10*a/\left(a*10\right)*\frac57 = \dfrac{a*50}{a*70}
2,021
(-1)^y = (e^{i\times \pi})^y = \cos{\pi\times y} + i\times \sin{\pi\times y}
-19,474
\dfrac{1}{\frac18\cdot 5\cdot 9} = 1/5\cdot 8/9
20,870
f*e = -e*f = e*f
25,763
\left(-2\right)*(-3)*(-4)*\left(-5\right) = 120
51,802
\frac{p}{p - i\cdot c} = \dfrac{1}{p^2 + c^2}\cdot (p^2 + i\cdot c\cdot p) = \frac{p^2}{p^2 + c^2} + i\cdot \frac{c\cdot p}{p \cdot p + c^2}\cdot 1
23,894
(x + 1)^{\dfrac{1}{2}} = \left(x + 1\right)^{1/2}
17
(z + x + y)^3 - (-x + y + z)^3 - (z + x - y)^3 - \left(-z + x + y\right)^3 = y \cdot z \cdot x \cdot 24
25,450
((-1) + r) \cdot \left(r + 1\right) \cdot \left(r \cdot r + 1\right) \cdot \left(r^4 + 1\right) = r^8 + (-1)
51,973
18 = 9*2
36,379
\sqrt{6}*\sqrt{10} = \sqrt{15}*2
16,619
2^k r*2^{k/2}*2^{-k} = 2^{k/2} r
25,780
\frac{1}{1 - x} = \frac{1}{1 - x + 3\cdot (-1) + 3\cdot (-1)} = \frac{1}{-2 - x + 3\cdot (-1)} = \frac{1}{1 + \frac12\cdot (x + 3)}\cdot (\left(-1\right)\cdot 1/2)
1,072
\frac{(a - x\cdot i)^{-1}\cdot (a - i\cdot x)}{x\cdot i + a} = (a + x\cdot i)^{-1}
-18,643
-\frac{9}{30} = -\frac{1}{10}\cdot 3
24,923
649352163073816339512038979194880 = \frac{1}{5!^6*(-5*6 + 48)!}*48!
34,447
4^{2\cdot r + 2} + 4 = 16\cdot \left(4^{2\cdot r} + 4\right) + 60\cdot (-1)
37,668
\tfrac{1}{m\cdot n} = \frac{1}{m\cdot n}
9,789
(x + 1)*(x * x + 1)*(1 + x^4)*\dotsm*(1 + x^{2^k}) = \frac{-x^{2^{k + 1}} + 1}{-x + 1}
11,391
(99999 + 10002*\left(-1\right))/3 + 1 = \frac13*\left(10002*(-1) + 99999\right) + 1
3,805
\sqrt{1 + x} = (x + 1)^{\frac{1}{2}}
20,367
1 < e^{\frac1x} < 3^{\frac1x} = (1 + 2)^{1/x} \lt 1 + \frac1x*2
20,234
v \cdot v = m^2 \Rightarrow v = m
37,392
1 - y^4 = \left(1 - y\right) \cdot (1 + y + y^2 + y^3)
13,677
0 = \tfrac{1}{2 \cdot x^2 + 7 \cdot x + 5} \cdot \left(13 + x \cdot 4\right) \Rightarrow 0 = 13 + 4 \cdot x
15,454
(7 \cdot 7 \cdot 7)^{1/3} = 7
33,163
2r\pi\cdot 2R\pi = \pi \cdot \pi Rr\cdot 4
19,590
\mathbb{E}[\sum_{i=1}^l T_i] = \mathbb{E}[\sum_{i=1}^l T_i]
-20,236
\frac{1}{-x\cdot 20 + 40\cdot (-1)}\cdot (12 + x\cdot 6) = -3/10\cdot \frac{-2\cdot x + 4\cdot (-1)}{4\cdot (-1) - 2\cdot x}
6,584
\left(z \cdot z - a \cdot z + (-1)\right) \cdot \left(z^2 + a \cdot z + \left(-1\right)\right) = \left(z^2 + (-1)\right)^2 - a^2 \cdot z^2 = z^4 - (2 + a^2) \cdot z \cdot z + 1
-20,117
\frac{2\cdot (-1) + 8\cdot s}{s\cdot 8 + 2\cdot (-1)}\cdot (-7/9) = \tfrac{-s\cdot 56 + 14}{18\cdot (-1) + s\cdot 72}
14,661
\sin^2(t) = x\Longrightarrow \cos(2t) = 1 - 2\sin^2\left(t\right) = 1 - 2x
-1,197
\frac{1}{(-1) \cdot 7 \cdot 1/8} \cdot (\left(-8\right) \cdot \frac15) = -\frac{8}{7} \cdot (-\dfrac15 \cdot 8)
13,859
{10 \choose 1}*{5 \choose 3} + {5 \choose 2}*{10 \choose 2}*{2 \choose 1} + {3 \choose 1}*{5 \choose 1}*{10 \choose 3} + {4 \choose 1}*{5 \choose 0}*{10 \choose 4} = 3640
13,477
n + n = n + n = \left(1 + 1\right) n = 2 n
7,458
\sin\left(-x + \tfrac12\cdot \pi\right) = \cos{x}
50,311
\sum_{n=1}^\infty \frac{4^n \cdot 1/n}{6^n \cdot \frac1n} = \sum_{n=1}^\infty \frac{4^n}{6^n} = \sum_{n=1}^\infty (\dfrac13 \cdot 2)^n
-20,200
\dfrac{9}{8} \times \dfrac{z + 9}{z + 9} = \dfrac{9z + 81}{8z + 72}