id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
30,623 | 1 + k\times x + x = 1 + (k + 1)\times x \leq (1 + x)^k |
27,765 | 8*y = 90 \Rightarrow y = \frac{45}{4} = 11.25 |
-23,016 | 110/44 = 22\cdot 5/(2\cdot 22) |
16,067 | (1^2 + 2^2) \cdot 5^2 = 5 5^2 |
25,722 | 10 \cdot (-1) + 2^6 = 54 |
-6,149 | \dfrac{t\times 2}{t^2 + t\times 10 + 9} = \dfrac{t\times 2}{\left(t + 1\right)\times \left(t + 9\right)} |
21,587 | \frac{1}{2} \cdot π = \sin^{-1}(1) |
23,505 | \frac{\sin{y\cdot 2}}{\cos{y\cdot 2}} = \tan{2\cdot y} |
-18,549 | \frac{10}{4} = \tfrac{1}{2}\cdot 5 |
26,786 | \frac{1}{3 + \left(-1\right)}\cdot (12^3 + (-1) + 9\cdot (-1)) = 859 |
-24,811 | 490 + \left(-1\right) = 489 |
-9,885 | \frac{18}{25} = 0.72 |
-26,496 | 12\times y = 2\times 6\times y |
10,869 | -H + y = \left(\sqrt{-H + y}\right)^2 |
-16,888 | -6 = -6\cdot (-5\cdot i) - -12 = 30\cdot i + 12 = 30\cdot i + 12 |
28,166 | u_1 + u_2 = ( {u_1}_1, {u_1}_2) + ( {u_2}_1, {u_2}_2) = \left( {u_1}_1 + {u_2}_1, {u_1}_2 + {u_2}_2\right) |
35,043 | 48\times 2 = 96 |
-10,758 | -\frac{1}{40 t^3}40 = 4/4 \left(-\frac{10}{t^3\cdot 10}\right) |
-29,721 | \frac{\mathrm{d}}{\mathrm{d}x} x^l = l\cdot x^{l + \left(-1\right)} |
25,907 | \left\lfloor{((-1) + a + b)/b}\right\rfloor = \left\lfloor{\tfrac{1}{b}*(b + (-1)) + \tfrac{a}{b}}\right\rfloor |
11,470 | 2/(2\cdot z) + \frac{z}{z\cdot 2} = \frac{1}{2\cdot z}\cdot (2 + z) |
12,003 | x = \sin^{-1}(q) = q + \frac{q^3}{2} \cdot 1/3 + \frac{1}{2 \cdot 4} \cdot 3 \cdot \frac{x^5}{5} |
15,632 | a*((-1) + b) - b = a*b - a - b |
27,767 | a*\dfrac{1}{x}/c = \frac{x*\frac{a}{x}}{x*c} = \frac{a}{x*c} |
11,811 | p + 1 = \frac{p * p + (-1)}{(-1) + p} |
48,017 | \frac{1}{(w-z)^2}=\frac{d}{dw}(\frac{1}{w-z}) = \frac{1}{z^2}+\frac{2w}{z^3}+\frac{3w^2}{z^4}+.. |
13,838 | 1 = 2 + E + B \Rightarrow B = -1 - E = -1 - -2 = 1 |
19,426 | \left(x + 3\right)^2 - x\cdot 6 = (3 + x)^2 - 6\cdot x |
1,310 | \frac{x^2 + (-1)}{x + (-1)} = \frac{1}{x + (-1)} \cdot (x + 1) \cdot (x + (-1)) = x + 1 |
17,528 | {5 \choose 0} + {5 \choose 1} + \ldots + {5 \choose 5} = 2^5 |
16,064 | \frac{k}{x} = \dfrac{k*1^{-1}}{x} |
-18,273 | \dfrac{1}{\left(y + 5\right)\cdot (y + 9)}\cdot (y + 9)\cdot y = \frac{y^2 + y\cdot 9}{y^2 + y\cdot 14 + 45} |
28,534 | \frac{t^k}{e^{-\beta t}} = t^k e^{\beta t} |
17,001 | 1/\left(ag\right) = \dfrac{1}{ag} |
1,130 | \frac{84!}{(3\cdot (-1) + 84)!\cdot 3!} = 95284 |
-26,139 | 10\cdot (e^{14} + (-1)) = 10\cdot e^{14} - 10\cdot e^0 |
-9,093 | 70.7\% = \dfrac{1}{100}*70.7 |
14,088 | t = \frac{\xi \cdot \frac1t}{z \cdot 1/t} \cdot \xi/t = \tfrac{\xi^2}{z \cdot t} |
-16,944 | -6 = -6*2*z - 30 = -12*z - 30 = -12*z + 30*(-1) |
46,202 | 1 + 2 \times 2 = 5 |
20,774 | 8 + 2 \cdot \left(-1\right) + 4 \cdot (-1) - (-1) = 3 \neq 0 |
-267 | \frac{10!}{\left(4(-1) + 10\right)!} = 10*9*8*7 |
24,044 | T^6 = 0 \Rightarrow T \cdot T^2 = 0 |
12,617 | \dfrac{1}{1 + z} = \dfrac{1}{z*\left(1/z + 1\right)} |
2,693 | -(g^2 + g\times 2 + 14\times (-1)) - g = -g \times g - g\times 3 + 14 |
16,595 | \sin{B} = \sin(π*2 + B) |
30,053 | j {n \choose j} = (n - j + 1) {n \choose j + (-1)} = n {n + (-1) \choose j + (-1)} |
34,276 | \left(-1\right)^2 \cdot \left(-1\right) + 1 + (-1) = -1 |
2,242 | 13/8 = 1 + 5/8 = 1 + \dfrac{1}{8*\frac15} = 1 + \frac{1}{1 + 3/5} |
-16,772 | 2 = 2\cdot 5\cdot f + 2\cdot 8 = 10\cdot f + 16 = 10\cdot f + 16 |
-20,997 | \dfrac{1}{q \cdot 8}(-4q + 12 (-1)) = 4/4 \dfrac{1}{2q}(-q + 3\left(-1\right)) |
-19,548 | \frac{1}{5}*4*9/7 = 4*9/(5*7) = 36/35 |
4,970 | (x \cdot 2 + y) \cdot (2 \cdot y + x) = 2 \cdot x^2 + x \cdot y \cdot 5 + 2 \cdot y^2 |
-2,603 | 6 \cdot \sqrt{7} = \sqrt{7} \cdot (5 + 4 + 3 \cdot \left(-1\right)) |
25,655 | 4^{100} - 3^{100} = 100\cdot g^{99} = \frac1g\cdot 100\cdot g^{100} |
-3,654 | \frac{64}{72 q^2}q^4 = \dfrac{1}{72}64 \frac{q^4}{q^2} |
11,867 | \frac{1}{y^2}*((-1)*(y'^2 + 1)^{\frac{1}{2}}) = \frac{\partial}{\partial x} (\frac{1}{(1 + y'^2)^{\frac{1}{2}}*y}*y') |
10,168 | 1/42 + 1/42 + 1/42 + 1/42 + \frac{1}{42} + \frac{1}{42} + 1/42 = 7/42 = \dfrac16 \approx 0.167 |
48,400 | \dfrac{1}{2^6} \cdot 12! = \binom{12}{2} \cdot \binom{8}{2} \cdot \binom{6}{2} \cdot \binom{2}{2} \cdot \binom{4}{2} \cdot \binom{10}{2} |
29,821 | 6!\cdot 4!\cdot 4315\cdot 5! = 8947584000 |
6,586 | 1 + 255 + 250\cdot (-1) = 6 |
10,504 | det\left(-W \times T + x\right) = det\left(x - T \times W\right) |
10,866 | E + Z + F = E + Z + F = E + Z + F |
-29,058 | x^5\times x^6 = x^{5 + 6} = x^{11} |
-13,395 | 1 + 2*\frac19*18 = 1 + 2*2 = 1 + 2*2 = 1 + 4 = 5 |
9,295 | 3^{3^k} \cdot 3^{3^k} = 3^{2 \cdot 3^k} = 9^{3^k} = (9^{3^{k + (-1)}})^2 \cdot 9^{3^{k + (-1)}} |
-6,018 | \frac{2}{50 + 5\times x} = \dfrac{1}{(x + 10)\times 5}\times 2 |
12,399 | x^4 + 5 \cdot x + 1 = (x \cdot x + 1) \cdot (x^2 + (-1)) + 5 \cdot x + 5 \cdot (-1) = (x + \left(-1\right)) \cdot (x^3 + x^2 + x + 6) |
25,472 | \frac{\pi^{\frac{1}{2}}}{\left(\frac{1}{2}\right)!} = 2 |
-430 | \left(e^{7 \cdot \pi \cdot i/6}\right)^{11} = e^{\frac{7}{6} \cdot \pi \cdot i \cdot 11} |
-21,521 | \frac{1}{8} \cdot 4 = \frac{2}{4} |
10,171 | \cos\left(-\arccos{t}\right) = \cos(\arccos{t}) = t |
35,177 | \frac{\frac{1}{3}}{2}\cdot 1 + 1/3\cdot 0 + 1/3/2 = \frac13 |
-452 | \frac{64}{3}\times \pi - 20\times \pi = \frac{4}{3}\times \pi |
-9,495 | -2 \cdot 3 \cdot 5 + q \cdot 3 \cdot 3 \cdot 5 = q \cdot 45 + 30 (-1) |
23,127 | (-1) + c^2 + c = 0 \implies \frac{1}{2}*(-1 \pm 5^{\frac{1}{2}}) = c |
23,377 | \frac{1}{15625}\times 25146 = 1.609344 |
17,504 | b^2 + bd = b^2 + bd |
46,721 | e^x:=\exp(x) |
-8,713 | \sqrt[3]{1715} = \sqrt[3]{7\times 7\times 7} \times \sqrt[3]{5} = 7 \sqrt[3]{5} |
27,172 | (\sin(h + f) + \sin(f - h))/2 = \cos{h}*\sin{f} |
-20,885 | \frac{1}{5} \cdot 4 \cdot \frac{-r \cdot 9 + 7}{-9 \cdot r + 7} = \frac{28 - r \cdot 36}{35 - r \cdot 45} |
3,858 | 1728 = (3^{1/2}\cdot 2)^6 |
5,697 | (1/2)! = \sqrt{\pi/4} |
-16,361 | 10*\sqrt{4}*\sqrt{7} = 10*2*\sqrt{7} = 20*\sqrt{7} |
-15,811 | -30/10 = 4/10\cdot 6 - 9\cdot 6/10 |
29 | 0 = BA + AB \implies -AB = BA |
9,331 | \frac{\partial}{\partial x} \left(x\cdot w\right) = w\cdot \frac{\text{d}x}{\text{d}x} + x\cdot \frac{\text{d}w}{\text{d}x} |
15,344 | x - \sqrt{26} \leq 0 \Rightarrow x \leq \sqrt{26} |
19,756 | 0 = 0 \cdot ( 1, 4, 0) + 0 \cdot \left( 2, 2, 2\right) |
-29,135 | 4 \cdot \left(-1\right) + 0 + 3 \cdot (-2) = -10 |
-26,647 | (2\cdot \left(-1\right) + 11\cdot c^2)^2 = 4 + c^4\cdot 121 - 44\cdot c \cdot c |
33,534 | -\cos{v} = \cos(\pi - v) |
45,082 | 5^2\cdot 37 = 925 |
3,979 | 3\left(z*2 + 2yy'\right) (y^2 + z^2)^2 = (2z - y' y*2) (z^2 - y * y)*2 |
15,253 | \frac{1}{x^2 + 1}*(2*x^2 + x*|x| + 2) = \frac{3*x^2 + 2}{x^2 + 1} = 3 - \frac{1}{x^2 + 1} |
14,830 | \left(2^6 + 8 \times 2^2 + 2 \times 2 \times 2^2 \times 3\right)/12 = 12 |
24,123 | d/dy e^{-2 \times y} = -2 \times e^{-2 \times y} |
3,138 | e \geq 2*\left(2 - n + e\right) \Rightarrow 2*n + 4*(-1) \geq e |
26,129 | (-z + d)/B = 1\Longrightarrow d = B + z |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.