id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
14,830 | (2^6 + 2 \cdot 2 \cdot 8 + 2^2 \cdot 2^2 \cdot 3)/12 = 12 |
2,120 | y \cdot y + z^2 = 25 rightarrow (25 - z \cdot z)^{1/2} = y |
14,169 | -7 = k + 4\cdot \left(-1\right)\Longrightarrow k = -3 |
-9,183 | -n\cdot 2\cdot 5\cdot 13\cdot n = -n^2\cdot 130 |
2,617 | q + q^2 + \dots + q^n = 1 + 2*q + 3*q * q + \dots + q^{n + (-1)}*n |
19,809 | \dfrac{1}{x} + 1/x - \dfrac{1}{x^2} = \tfrac1x \cdot 2 - \frac{1}{x^2} \lt 2/x |
-2,237 | \frac{1}{12}*2 = \frac{1}{12}*7 - \dfrac{5}{12} |
2,814 | 2*\sin{\frac{\theta}{2}}*\cos{\theta/2} = \sin{\theta} |
-24,985 | 2*2\pi = 4\pi |
29,131 | 1 + x^2 = 1 + x + x^2 - x |
16,714 | \frac{57}{26} = \frac{1}{1 - x} \cdot (1 - x \cdot x) \Rightarrow 26 \cdot x^2 - 57 \cdot x + 31 = 26 \cdot \left(x + (-1)\right) \cdot (x - \frac{31}{26}) = 0 |
2,939 | 5 = |7 \times \left(-1\right) + 2| |
1,299 | \cos{2 \cdot x} = 2 \cdot \cos^2{x} + (-1) = \dfrac{1 - \tan^2{x}}{1 + \tan^2{x}} |
16,766 | \sqrt{-x} \cdot \sqrt{-x} = \sqrt{-x \cdot (-x)} = \sqrt{x^2} |
522 | 5 - 0 \cdot 3 + 9/3 = 5 + 0 \cdot (-1) + \frac93 = 5 + 0 \cdot \left(-1\right) + 3 = 5 + 3 = 8 |
11,638 | 1^2 \cdot 1 + 4^3 = (1 + 4)\cdot (1^2 - 4 + 4^2) = 5\cdot 13 |
15,850 | \binom{r + (-1) + l + 2*(-1)}{2*(-1) + l} = \binom{3*(-1) + r + l}{2*\left(-1\right) + l} |
6,268 | \cos{z} = 1 - 2\cdot \sin^2{z/2} > 1 - \tfrac{z^2}{2} |
32,496 | 3 \cdot \left(-1\right) + 29 + 17 \cdot (-1) + 11 \cdot (-1) + 7 = 5 |
11,685 | \frac{1}{x^2 + 5} + 4 = \frac{1}{x^2 + 5}*(1 + 4*(x^2 + 5)) = \frac{1}{x^2 + 5}*(4*x^2 + 21) |
33,636 | 9990 - 21 \cdot 21^2 = 9990 + 9261 \cdot (-1) = 729 = 9^3 |
-6,011 | \frac{1}{3\cdot (1 + a)}\cdot 3 = \frac{3}{a\cdot 3 + 3} |
37,793 | 38 \cdot \left(-1\right) + 431 = 393 |
1,247 | y + (-1) = x \Rightarrow y = x + 1 |
24,630 | 0 = A \cdot G \Rightarrow A = 0\text{ or }G = 0 |
11,902 | h^{2^{m + 1}} + (-1) = \left(h^{2^m}\right)^2 + (-1) = (h^{2^m} + (-1)) (h^{2^m} + 1) |
12,265 | \frac14 = \tfrac32\cdot \dfrac16 |
50,152 | 0 \cdot 2 \cdot 3 + 2 + 3 = 5 |
22,112 | 2 \cos\left(x\right) = e^{i x} + e^{-i x} = e^{i x} + e^{-i x} = 2 \cosh\left(i x\right) |
23,500 | 3^{i + 1} = 3\cdot 3^i > 3\cdot i^2 = i^2 + i^2 + i^2 \geq i^2 + 2\cdot i + 1 |
29,796 | \sin{z} = \left(e^{i\cdot z} - e^{-i\cdot z}\right)/(2\cdot i) = -i\cdot \sinh{i\cdot z} |
9,403 | \dfrac{5}{9} = -12/27 + 1 |
-7,674 | \frac{1}{2 + i} (2 - i\cdot 9) \frac{1}{2 - i} (-i + 2) = \frac{1}{i + 2} (2 - i\cdot 9) |
10,500 | z + m\cdot z = (1 + m)\cdot z |
557 | \cot\left(\theta\right) = 1/\tan(\theta) = \cos(\theta)/\sin(\theta) |
-26,664 | (2*x + q*5)*(-q*5 + x*2) = x^2*4 - q^2*25 |
9,058 | \frac{2}{3} = \frac{1}{3} + 1/3 |
6,267 | \frac{\partial}{\partial x} \sqrt{x + z} = \frac{\frac{dz}{dx} + 1}{2 \cdot \sqrt{z + x}} |
8,089 | e^1 = \left(1 + 1/x\right)^x\cdot exp(0) = (1 + 1/x)^x |
30,914 | \cos{y} = -2 \cdot \sin^2{\frac{y}{2}} + 1 |
9,640 | \lim_{x \to 2} \frac{1}{x + 2} = \lim_{x \to 2} \frac{1}{x^2 + 4\cdot (-1)}\cdot (2\cdot (-1) + x) |
-5,718 | \frac{1}{7 + z^2 + 8\cdot z}\cdot (z\cdot 2 + z\cdot 4 + 4 + 4\cdot z + 28) = \frac{z\cdot 10 + 32}{z^2 + z\cdot 8 + 7} |
7,516 | \cos(\pi \cdot 2 - z_0) = \cos{z_0} |
4,874 | 2^{\frac13*(n + 1)} = 2^{1/3}*2^{n/3} > n*2^{\frac13} |
26,600 | B*A = x*B' \implies B' = \frac{B*A}{x} |
-7,393 | 8/21 = 6/7*\dfrac{1}{9}*4 |
-21,604 | \cos\left(\pi \cdot 3/2\right) = 0 |
3,927 | F*z = F*z^2 \Rightarrow z \in F |
-953 | 6 = \frac{3}{1}\cdot 2 |
-681 | (e^{i*\pi*4/3})^{13} = e^{\frac{4*i*\pi}{3}*13} |
39,948 | 3^{\dfrac1n} = 3^{1/n} |
17,484 | n^3 = 1 + (n + \left(-1\right))^3 + (n + (-1)) \cdot (n + (-1)) \cdot 3 + 3 \cdot (n + \left(-1\right)) |
10,740 | e^x = e^{x + (-1)}\times e |
19,117 | x b + b t + (x + b) (b + t) = x b + b t + x b + x t + b + b t = x t + b |
-23,159 | -2 = \dfrac{3}{2}\cdot \left(-4/3\right) |
3,586 | 0.0625 \times \left(0.0001 + ... + 0.1111\right) = 0.0625 \times 0.8888 |
28,649 | -s^2 + s = 1/4 - (-\dfrac{1}{2} + s)^2 |
31,128 | 10^2 + 10*26 + 26 * 26 = 28*(3^2 + 3*4 + 4^2) = 28*37 |
17,086 | \dfrac{1}{n \cdot (\left(\frac{x}{n}\right) \cdot \left(\frac{x}{n}\right) + 1)} = \dfrac{1}{n^2 + x^2} \cdot n |
-18,073 | 23 \times (-1) + 32 = 9 |
-26,552 | 2x^2 - 40 x + 200 = 2(x^2 - 20 x + 100) = 2\left(x + 10 \left(-1\right)\right)^2 |
31,105 | \tfrac{1}{1 + g \cdot g} = \frac{\mathrm{d}}{\mathrm{d}g} \arctan(g) |
18,601 | U_n = \left(U_n^2 + U_n\right)/2 + \left(-U_n \cdot U_n + U_n\right)/2 |
41,281 | 6*3^4 = 3^5*2 |
10,139 | \dfrac{1}{12}\times 5\times \pi = 75\times \frac{1}{180}\times \pi |
2,749 | 5 = n rightarrow -1 = (-1)^n |
11,395 | x + yx = x\cdot \left(y + 1\right) |
-18,702 | \left(-1\right)\times 0.1841 + 0.5793 = 0.3952 |
3,285 | (1/2)^{-2/3} + \left(-1\right) = 2^{\frac{1}{3}2} + (-1) = 4^{1/3} + (-1) |
-490 | \pi \cdot 27/2 - \pi \cdot 12 = 3/2 \cdot \pi |
13,613 | 1 = \sin(x) + 2.5\Longrightarrow \sin(x) = -1.5 |
-19,459 | \frac{5 / 3}{1/6} \cdot 1 = 5/3 \cdot \dfrac11 \cdot 6 |
52,085 | 1 + 5 + 5 = 2 + 3 + 6 |
29,311 | \frac{\mathrm{d}e}{\mathrm{d}x} \cdot \frac{\mathrm{d}e}{\mathrm{d}u} = \frac{\mathrm{d}e}{\mathrm{d}x} |
-2,344 | -\dfrac{2}{13} + \frac{1}{13}\cdot 3 = 1/13 |
50,121 | \left(1 + z \cdot z\right)\cdot (1 + z^4)\cdot (1 + z^8)\cdot ...\cdot (1 + z^{2^k})\cdot (1 + z^{2^{k + 1}}) = \frac{1 - z^{2^{k + 1}}}{1 - z^2}\cdot (1 + z^{2^{k + 1}}) = \frac{1}{1 - z \cdot z}\cdot (1 - z^{2^{k + 1 + 1}}) |
24,828 | \frac{q_1 q_2}{q_1+q_2}=\frac 1{\frac 1 {q_1}+\frac 1 {q_2}} |
18,364 | Z \times Y + X \times Y + Z \times X' = Z \times X' + X \times Y |
13,771 | 2^{\frac{1}{2}} \cdot 2^{1/2} = 2 |
15,082 | \frac{1}{1 + e^{b\cdot x}} = \frac{1}{e^{-x\cdot b} + 1}\cdot e^{-x\cdot b} |
28,764 | \frac{(-1) + y^2}{(-1) + y} = y + 1 |
1,904 | \sqrt{2} (b_2 + b_1) + g_1 + g_2 = g_2 + b_2 \sqrt{2} + g_1 + \sqrt{2} b_1 |
9,607 | x M/K = |x M| = \max{|x|,|M|} = \max{x/K,M/K} = x/K \frac1K M |
-26,514 | (8 \cdot z + 9 \cdot (-1)) \cdot (8 \cdot z + 9 \cdot (-1)) = (8 \cdot z)^2 - 2 \cdot z \cdot 8 \cdot 9 + 9^2 |
17,627 | A x^2 = x^2 A |
12,142 | l^{d_1 + d_2} = l^{d_1}\cdot l^{d_2} |
-22,316 | n^2 + 11\cdot n + 24 = (n + 8)\cdot (3 + n) |
19,803 | g - b = -(-g + b) |
21,893 | \left(y + 2(-1) + y*3 + 6(-1) = 0 \Rightarrow -8 = y*4\right) \Rightarrow y = -2 |
-17,890 | 44 \cdot (-1) + 82 = 38 |
30,222 | p^2 + (-1) = (p + (-1))\cdot (p + 1) |
31,949 | \frac{\pi}{2} + 2\cdot \pi = \frac{5\cdot \pi}{2} |
20,432 | \sin{s}\cdot \cos{s}\cdot 2 = \sin{2\cdot s} |
7,515 | U^2 + 36 U^2 = 37 U^2 = 37 U U |
-28,854 | 11 = 55*(-1) + 66 |
9,003 | -\dfrac{1}{5} + 1 = \frac15 \cdot 4 |
-19,283 | \frac{2}{9}*\frac89 = \frac{\dfrac{1}{9}}{9*\frac18} 2 |
-20,258 | \frac{1}{63}\cdot (9\cdot r + 36) = \frac99\cdot \frac{1}{7}\cdot (r + 4) |
24,655 | 7 + 4 = v + 8 \Rightarrow 3 = v |
13,555 | 8/216 = 2/36*\frac{1}{6}*4 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.