id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
37,488 | |x - g| = -(x - g) = g - x |
12,304 | (t - s) (t - s) = (-s + t) * (-s + t) |
5,419 | 50 (11 + 60)/2 = 1775 |
30,623 | 1 + n\cdot z + z = 1 + (n + 1)\cdot z \leq (1 + z)^n |
-155 | 9*8*7 = \frac{9!}{(9 + 3(-1))!} |
10,902 | ((3/4)^f + 1)*4^f = 3^f + 4^f |
15,257 | 1/15 = \frac{1}{3 \times 5} = 19 \times 16 = 16 \times 3 \times 6 + 16 = 6 + 16 = 22 |
33,911 | \frac{145}{3} = -7/3 + \frac13\cdot 152 |
10,644 | \dfrac{1}{c}(c + a + b) + (-1) = (b + a)/c |
32,587 | 675 = 3^3 \cdot 5 \cdot 5 |
23,778 | 16/9 = \tfrac{1920}{1080} |
-19,305 | 5/3\cdot 5/4 = \dfrac{5\cdot \dfrac14}{\dfrac15\cdot 3} |
8,448 | (1/2 + z)^2 = \left(1 + z \cdot 2\right) \cdot \left(1 + z \cdot 2\right)/4 |
12,219 | 1/4 = \frac{1}{H_1}*(x_1 - H_1) \Rightarrow H_1*5/4 = x_1 |
-9,758 | -1/5\cdot 9/20 = \left((-1)\cdot 9\right)/(5\cdot 20) = -\tfrac{1}{100}9 |
22,437 | (-1) + n = 2 + n + 3*(-1) |
19,510 | \frac{\mathrm{d}x}{\mathrm{d}s} = 1 + \left(s - x\right) \cdot \left(s - x\right) = 1 + (x - s)^2 |
24,346 | \overline{y_1} \cdot \overline{y_2} = \overline{y_1 \cdot y_2} |
-2,406 | \sqrt{6} \sqrt{4} + \sqrt{9} \sqrt{6} = 3\sqrt{6} + \sqrt{6} \cdot 2 |
19,988 | 24 - 7\cdot x = -2 \Rightarrow 26/7 = x |
-10,486 | -\dfrac{1}{q^2\cdot 60}\cdot (48\cdot q + 72) = 12/12\cdot (-\frac{1}{q \cdot q\cdot 5}\cdot (6 + 4\cdot q)) |
9,152 | Cov[W, Y] = \mathbb{E}[WY] - \mathbb{E}[W] \mathbb{E}[Y] = \mathbb{E}[WY] |
9,108 | xz - z\xi = z*(x - \xi) |
22,293 | X*x^{1/2} = X*x^{\frac{1}{2}} |
31,199 | 120 = 1 + 2 + 3\cdot \dots + 15 |
1,723 | (2\left(-1\right) + n) (1 + n) = n^2 - n + 2\left(-1\right) |
25,893 | n - 2*k = 2 \Rightarrow k = (n + 2*(-1))/2 |
-20,527 | \frac{56}{-48} = -7/6 \cdot (-8/(-8)) |
-16,700 | -3 = -3 \cdot \left(-2 \cdot y\right) - 21 = 6 \cdot y - 21 = 6 \cdot y + 21 \cdot (-1) |
19,803 | g - x = -(-g + x) |
-1,797 | -\pi \cdot \frac{7}{4} + \frac{1}{4} \cdot \pi = -\pi \cdot 3/2 |
-4,335 | \tfrac{y}{y^3}\cdot 60/50 = \frac{60\cdot y}{50\cdot y \cdot y \cdot y}\cdot 1 |
24,743 | (\xi + 1)\cdot n = \xi\cdot n + n |
3,743 | \frac{3}{4} \cdot 1 = \frac14 \cdot 3 |
32,809 | \min{\frac{1}{20}\cdot 120,\frac{1}{8}\cdot 80} = \min{6,10} = 6 |
-22,971 | 9\times 10/(10\times 5) = 90/50 |
10,650 | x = t^3 \Rightarrow t = x^{\frac{1}{3}} |
16,060 | (a + b)^3 = a * a * a + 3*a^2*b + 3*a*b^2 + b^3 = a * a^2 + 0*a^2*b + 0*a*b^2 + b^3 = a * a^2 + b^3 |
-27,485 | 22 \times x^3 = 11 \times 2 \times x \times x \times x |
-4,330 | q\cdot 5 = q\cdot 5 |
11,296 | u^2 + v \cdot v\cdot 3 = (u + v)^2 + \left(u + v\right)\cdot (-u + v) + (v - u)^2 |
28,368 | y^2 - 2 y + 1 \geq 0 \implies y^2 + 1 \geq y*2 |
17,497 | 1/2 = \frac{1}{100} + \frac{1}{99}*49*99/100 |
8,224 | \frac{1}{6^3}*(1 + 5/6 + 5/6) = \frac{1}{81} |
9,158 | 0 = a^4 \cdot t^2 \cdot 4 - 4 \cdot t^3 \cdot a^2 + 1 \Rightarrow \frac{1}{t \cdot 2} \cdot (t^2 \pm \sqrt{t^4 + (-1)}) = a^2 |
23,456 | \cos(\frac12\cdot \pi - z) = \sin{z} |
29,943 | \tan{x} = \frac{1}{\cos{x}} \times \sin{x} |
22,877 | \sin(y + x) = \sin{y} \cdot \cos{x} + \cos{y} \cdot \sin{x} |
2,111 | \dfrac{144}{2^{15}} = \frac{1}{2048} \cdot 9 \approx 0.0043945 |
42,268 | \frac{1}{2}\cdot \left(214\cdot \left(-1\right) + 360\right) = 73 |
18,161 | (d + g)/x = (g + x + d)/x + (-1) |
6,837 | \tanh{J} = \frac{1}{e^{2J} + 1}(e^{2J} + (-1)) = 1 - \frac{1}{e^{2J} + 1}2 |
42,354 | 32 \times 35 \times 36 = 40320 = 8! |
28,472 | |\varphi_1| = |\varphi_2| = p \implies |\varphi_2 \varphi_1| = p |
22,944 | (-1) + x^l = ((-1) + x) \cdot (-e^{\pi \cdot 2/l} + x) \cdot ... \cdot e^{2 \cdot ((-1) + l) \cdot \pi/l} |
36,477 | 47\cdot 257 - 66\cdot 183 = 12079 + 12078 (-1) = 1 |
26,716 | 16 z = z + 15 z |
-23,703 | 5/24 = \frac{1}{6}*5/4 |
27,717 | \left(6x + y \cdot 5 = 1 + x \cdot 7 + y \cdot 3\Longrightarrow 0 = x - 2y + 1\right)\Longrightarrow (-1) + y \cdot 2 = x |
19,150 | \left(k + z\right)\cdot (-k + z) = z^2 - k^2 |
-21,910 | -\frac{1}{12} \cdot 8 + 4/8 = -\tfrac{16}{12 \cdot 2} \cdot 1 + \frac{1}{8 \cdot 3} \cdot 12 = -16/24 + 12/24 = -\dfrac{1}{24} \cdot (16 + 12) = -\frac{4}{24} |
17,849 | z^{\frac{2}{6}} = z^{\frac13} |
31,442 | \dfrac14 (9 + 9 + 10 + 11) = 9.75 |
17,837 | (-\tfrac{1}{x^2 + x + 1}(x + 2) + \frac{1}{(-1) + x})/3 = \frac{1}{x^3 + \left(-1\right)} |
-30,253 | \tfrac{1}{x + 7}(x^2 + 49 (-1)) = \dfrac{1}{x + 7}(x + 7) (x + 7(-1)) = x + 7(-1) |
41,004 | 2*50 + 16*\left(-1\right) = 84 |
6,572 | (x - \beta)^2 = -x \cdot \beta \cdot 2 + x^2 + \beta^2 |
11,682 | y z - z_0 y + z_0 y - z_0 y_0 = -y_0 z_0 + y z |
17,079 | \overline{cd} = \bar{c} \bar{d} = -c \cdot (-d) = cd |
11,401 | 2/31 = \frac{1}{31} + \frac{30}{30} \cdot 1/31 |
-5,864 | \dfrac{s*2}{s^2 - 11*s + 18}*1 = \frac{s*2}{(s + 2*\left(-1\right))*(s + 9*(-1))} |
-7,873 | \frac{1}{-3 - i}\cdot (2 - i\cdot 16) = \frac{1}{-3 - i}\cdot (-16\cdot i + 2)\cdot \frac{i - 3}{i - 3} |
34,663 | \frac15*1 = 1/5 = \tfrac{1}{5} |
22,868 | \cos{x} = \left(-1\right) + \cos^2{\dfrac{x}{2}}*2 |
-12,015 | 4/5 = t/(8*\pi)*8*\pi = t |
35,459 | A_n/(Y_n) = A_n/(Y_n) |
39,283 | 18 = (6 \cdot (-1) + 12) \cdot 3 |
24,573 | 2z^2 = z \cdot z + z^2 |
20,185 | 2 U = U + U |
39,307 | B_0 = 0 \cup B_0 |
15,718 | \dfrac{1}{2!*2!}*5! = \frac{120}{4} = 30 |
20,363 | \|-(-e + f) + g - b\| = \|-(b - e) + g - f\| |
18,135 | (180 + y^2 + 20 \cdot y) \cdot \left(y^2 - 2 \cdot y + 18 \cdot \left(-1\right)\right) = y^4 + 18 \cdot y^3 + 122 \cdot y^2 - y \cdot 720 + 3240 \cdot (-1) |
32,863 | \binom{m}{i} = \frac{1}{i!\cdot (m - i)!}\cdot m! |
26,858 | y \cdot x = \frac12 \cdot (x \cdot y + x \cdot y) |
-26,426 | \frac{1}{3125\cdot 5^8} = 5^{-5 + 8\cdot (-1)} = \frac{1}{1220703125} |
17,305 | f^\gamma = d^y = (fd)^{\gamma y} |
-20,045 | \tfrac77 \cdot \dfrac{3 \cdot (-1) - x \cdot 9}{4 \cdot (-1) - x \cdot 5} = \frac{21 \cdot (-1) - x \cdot 63}{28 \cdot (-1) - 35 \cdot x} |
29,831 | c + z = y \cdot e^{-z^2} \Rightarrow e^{-z^2} \cdot c + e^{-z^2} \cdot z = y |
9,201 | z^{r_1 + r_2} = z^{r_2} z^{r_1} |
53,537 | \tfrac{x}{10 \cdot k + 3} = g \Rightarrow x = 10 \cdot k \cdot g + 3 \cdot g |
4,280 | \cos(f)*\cos\left(h\right) = \tfrac12*(\cos(h - f) + \cos(f + h)) |
27,499 | \dfrac{1601}{1138} = 1 + \frac{463}{1138} |
-23,155 | ((-3) \times \frac12)/2 = -3/4 |
-26,419 | \dfrac{1}{390625 \cdot 9765625} = 5^{-8 - 10} = 5^{-8 + 10 \cdot \left(-1\right)} = 1/3814697265625 |
27,688 | d/dz y^3 + \frac{\partial}{\partial z} (z^2*y) = -\frac{dy}{dz} + \frac{dz}{dz} |
9,942 | ((-1) + z) (z^2 + z + 1) = (-1) + z^3 |
-23,000 | 26/39 = \dfrac{1}{3*13}26 |
10,166 | 10^3*4 + 10^2*5 + 10^1*7 + 6*10^0 = 4576 |
11,181 | \frac{d}{dz} (z\cdot |z|) = |z| + \tfrac{z}{|z|}\cdot z = \frac{2\cdot z^2}{|z|} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.