id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-7,786 | \frac{1}{32}(16 - 144 i - 16 i + 144 (-1)) = \left(-128 - 160 i\right)/32 = -4 - 5i |
21,028 | \sin(Z*2) = \sin\left(Z\right) \cos(Z)*2 |
12,312 | F^2\times q\times x = q\times F^2\times x |
13,862 | (1 + z)^{n + 1} = (1 + z)\cdot (1 + z)^n \geq (1 + z)\cdot (1 + n\cdot z) = 1 + (n + 1)\cdot z + n\cdot z^2 \geq 1 + \left(n + 1\right)\cdot z |
32,727 | \left(2\cdot c + 2\cdot c + c\cdot 4 + 8\cdot c + 14\cdot c = 1 \Rightarrow 1 = 30\cdot c\right) \Rightarrow c = \dfrac{1}{30} |
21,849 | f\cdot g\cdot t = f\cdot \sqrt{\sin^2{t} + \cos^2{t}}\cdot g\cdot t |
20,267 | \left(a^4 \cdot h = a \cdot h \implies h = a^6 \cdot h = a^2 \cdot h \cdot a\right) \implies a \cdot h = a \cdot a \cdot a \cdot h \cdot a = h \cdot a |
30,191 | w^3 = 3 \cdot \left(x + y\right) \cdot (z - x) \cdot (z - y) = 3 \cdot (z + w) \cdot (y - w) \cdot (x - w) |
28,935 | \sqrt{3 \cdot 3 + 4 \cdot 4} = 5 |
-12,772 | \frac{2}{3} = 18/27 |
3,839 | g = \lim_{k \to \infty} g_k \Rightarrow \lim_{k \to \infty} |g_k| = |g| |
4,038 | \cos(5 \cdot y) = \cos(2 \cdot y + 3 \cdot y) |
-20,511 | 8/8*\frac{7}{10 (-1) + p} = \dfrac{56}{80 (-1) + 8p} |
-2,740 | -\sqrt{4}*\sqrt{6} + \sqrt{25}*\sqrt{6} = -2*\sqrt{6} + 5*\sqrt{6} |
47,975 | 18 + 20 + 20 + 18 + 14 = 90 |
11,240 | J \cdot C/C = A \Rightarrow \dfrac{1}{A} = C \cdot \frac1J/C |
12,509 | 1 - y + y^2/2 - ... = e^{-y} |
-22,937 | \dfrac{9 \cdot 9}{5 \cdot 9} = 81/45 |
35,035 | 5 = |-2 \cdot t + 16| \Rightarrow t = 5.5, 10.5 |
-11,797 | (\frac{3}{2})^3 = \frac{27}{8} |
-20,240 | \frac{-5\times x + 7}{-5\times x + 7}\times (-7/1) = \frac{1}{-x\times 5 + 7}\times (49\times (-1) + 35\times x) |
35,678 | \left((-1)*\pi\right)/4 = -\frac{\pi}{4} |
-16,491 | \sqrt{50}\cdot 3 = \sqrt{25\cdot 2}\cdot 3 |
14,097 | \overline{A} x_1 + \cdots + \overline{r_n} x_z = x_1 A + \cdots + r_n x_z |
-19,423 | \dfrac{7}{8}\cdot \tfrac19 = \dfrac{1}{9/7\cdot 8} |
607 | 1/(A/C C) = C*1/(AC) |
36,691 | E = \frac{1}{1/E} |
1,490 | \left(z^2 - V^2 - 4z + 4 = 0 \implies -V^2 + (z + 2(-1))^2 = 0\right) \implies 0 = (z + 2(-1) - V) (z + 2(-1) + V) |
5,326 | u\frac{dw}{dx} + w\frac{du}{dx} = \frac{\partial}{\partial x} (uw) |
-660 | (e^{3 \cdot \pi \cdot i/2})^{11} = e^{\dfrac12 \cdot i \cdot \pi \cdot 3 \cdot 11} |
20,590 | a + b - x = -2\cdot x + a + b + x |
16,158 | (3 \cdot 5 \cdot 19)^2 \cdot 17 = 1380825 |
5,795 | n \cdot 2^{n + (-1)} = (\sum_{k=0}^n \binom{n}{k}) \cdot k = (\sum_{k=1}^n \binom{n}{k}) \cdot k |
-504 | (e^{13\times i\times π/12})^{16} = e^{\frac{13}{12}\times π\times i\times 16} |
-21,493 | 10/10\times 3/10 = \frac{30}{100} |
10,102 | \sin(\frac{1}{2} \cdot \pi - t) = \cos{t} |
-2,876 | \sqrt{13} \times (2 \times (-1) + 4) = \sqrt{13} \times 2 |
26,190 | 0 + 0 + 3\cdot \dfrac{s}{3} = s |
9,198 | 1/f = f^{\tfrac{g}{y}}*f^{y/g} = f^{\frac{g}{y}}*f^y |
40,412 | (2 \cdot k + 1) \cdot (2 \cdot k + 1) + 8 = 4 \cdot k^2 + 4 \cdot k + 1 + 8 = 2 \cdot \left(2 \cdot k^2 + 2 \cdot k + 4\right) + 1 |
-17,549 | 29\cdot (-1) + 82 = 53 |
-9,239 | -11 \times 2 \times 2 \times 2 - 3 \times 11 \times p = 88 \times (-1) - p \times 33 |
4,941 | F\cdot A - F\cdot A = A\Longrightarrow A\cdot F\cdot A - A \cdot A\cdot F = A^2 |
10,515 | \left((-1) + X\right)\times (X^2 + X + 1) = (-1) + X^3 |
6,214 | (b + f'') z = (b + f'') \left(z - \pi/4\right) \sqrt{2} |
29,838 | x \cdot x + 1 = x \cdot x + xy + yz + xz = (x + y) \left(x + z\right) |
-20,774 | \frac{1}{12*\left(-1\right) + 3*m}*\left(20 - 5*m\right) = -\frac{1}{3}*5*\frac{m + 4*\left(-1\right)}{m + 4*(-1)} |
-5,785 | \frac{1}{4 (z + 5)} 2 = \frac{1}{z*4 + 20} 2 |
29,801 | 25 = 5^2 + 2*0^2 |
13,945 | h^y = (\frac{1}{h})^{-y} = (\frac1h)^{-y} |
-14,380 | 1 + (10 - 9 \cdot 10) \cdot 5 = 1 + (10 + 90 \cdot (-1)) \cdot 5 = 1 - 400 = 1 + 400 \cdot \left(-1\right) = -399 |
25,661 | 0 = \alpha - \beta + x\Longrightarrow x + \alpha = \beta |
37,049 | |b - c| = |c - b| |
-29,339 | \left(2x + 5\right) (2x + 5(-1)) = (2x) \cdot (2x) - 5 \cdot 5 = 4x \cdot x + 25 (-1) |
-20,246 | \tfrac{q*8}{6*q + 8}*1*5/5 = \frac{40*q}{30*q + 40} |
13,554 | 12 = -2 \times 84 + (144 - 84) \times 3 |
40,020 | G^m*G = G^{1 + m} |
30,112 | 2\cdot \sin{\frac{\pi}{18}} = 2\cdot \cos{\frac{4}{9}\cdot \pi} |
14,635 | ( f_1, g_1) + \left( f_2, g_2\right) = ( f_1 + f_2, g_1 + g_2) = ( f_2, g_2) + ( f_1, g_1) |
30,693 | c^x c^y = c^{x + y} |
20,986 | d \times d + d \times 2 + 1 = \left(d + 1\right)^2 |
49,336 | 1 \times 2 \times 6 = 12 |
2,643 | 1 = x + y + z \Rightarrow z = 1 - y + x |
-30,596 | -(7 \cdot (-1) + z^2) \cdot 4 = -z^2 \cdot 4 + 28 |
13,852 | 1/(\dfrac{1}{j}) = j |
47,183 | z \cdot 2 = z + z |
3,726 | 7^2 \cdot 7 - 4 \cdot 7 + 9 = 18^2 |
-20,628 | 4/4 \cdot \frac{r \cdot 2}{3 \cdot (-1) - r} \cdot 1 = \frac{8 \cdot r}{-r \cdot 4 + 12 \cdot (-1)} |
26,217 | \frac{800}{1} \times \frac{1}{10} \times 800 = 80 \times 800 |
-10,538 | -\frac{1}{16 \cdot r} \cdot 12 = 2/2 \cdot (-\frac{1}{r \cdot 8} \cdot 6) |
-6,479 | \frac{1}{(z + 2(-1)) (z + 5)}4*5/5 = \frac{20}{5(z + 5) (2\left(-1\right) + z)} |
26,281 | {26 \choose 3} = {-13\cdot 2 + 52 \choose 3} |
-21,076 | \tfrac14 \cdot 3 = 6/8 |
14,814 | \dfrac{1}{36} \cdot 6 = 1/6 |
14,055 | \dfrac{r_1}{r_2} = 1 = r_2/(r_1) |
-11,564 | -i*7 - 9 = -i*7 - 6 + 3(-1) |
-16,527 | 5 \cdot 16^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} = 5 \cdot 4 \cdot 2^{\frac{1}{2}} = 20 \cdot 2^{1 / 2} |
31,956 | 1 + x^6 = (1 + 3^{\dfrac{1}{2}}\times x + x^2)\times (1 - x\times 3^{1/2} + x^2)\times (1 + x \times x) |
51 | (x + 1)^2 \left(x + 2\left(-1\right)\right) = 2\left(-1\right) + x^3 - 3x |
18,413 | j + \left(-1\right) = m\Longrightarrow j = m + 1 |
-5,823 | \dfrac{4}{\left(q + 6\right)\cdot \left(q + 5\right)} = \frac{4}{30 + q^2 + 11\cdot q} |
-28,895 | \frac{1}{2} = \dfrac{3}{2 + 3 + 1} |
9,129 | -\sin^2{y/2}\cdot 2 + 1 = \cos{y} |
29,083 | \frac{20}{2\lambda} = \frac{10}{\lambda} |
-29,559 | \dfrac{6}{x} \cdot x^5 = 6 \cdot x^4 |
24,336 | \left(-1\right) + z + 1 = z |
35,731 | 4 \cdot 5 + 2\left(-1\right) = 18 |
-8,091 | \frac{1}{i - 5} (-5 + i) \dfrac{-23 - i*15}{-i - 5} = \frac{1}{-5 - i} \left(-23 - i*15\right) |
-20,551 | 8/8 \frac{a}{2(-1) - a}3 = \frac{a\cdot 24}{16 (-1) - 8a}1 |
-21,041 | 3/3*\frac{1}{4}*3 = \frac{1}{12}*9 |
6,984 | \frac{1}{4^n} = \dfrac{1}{4^n} \cdot 1^n = (\frac14)^n |
26,208 | \frac{m}{(2 \cdot m)!} = \dfrac{m}{2 \cdot m \cdot \left(2 \cdot m + (-1)\right)!} = \frac{1}{2 \cdot (2 \cdot m + (-1))!} |
17,228 | w_q - w_{z \cdot z} \cdot b^2 = 0 \Rightarrow w_q \cdot w = b \cdot b \cdot w_{z \cdot z} \cdot w |
35,957 | x = -(-1) \cdot x |
-20,523 | \frac{1}{(-50)*x}*(45 - x*40) = \frac{1}{x*\left(-10\right)}*(-8*x + 9)*5/5 |
18,921 | 30 = 3\cdot 6 + 2\cdot 6 |
27,745 | (1 + y)^4 = 1 + y^4 + 4 \cdot y^3 + 6 \cdot y \cdot y + 4 \cdot y |
-22,284 | (8*\left(-1\right) + p)*(p + 5*(-1)) = 40 + p^2 - 13*p |
-12,996 | 9 = 14 + 5 \cdot (-1) |
4,698 | \left(x + 1\right)^{2n} = (1 + x)^n\cdot (1 + x)^n |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.