id
int64
-30,985
55.9k
text
stringlengths
5
437k
-7,786
\frac{1}{32}(16 - 144 i - 16 i + 144 (-1)) = \left(-128 - 160 i\right)/32 = -4 - 5i
21,028
\sin(Z*2) = \sin\left(Z\right) \cos(Z)*2
12,312
F^2\times q\times x = q\times F^2\times x
13,862
(1 + z)^{n + 1} = (1 + z)\cdot (1 + z)^n \geq (1 + z)\cdot (1 + n\cdot z) = 1 + (n + 1)\cdot z + n\cdot z^2 \geq 1 + \left(n + 1\right)\cdot z
32,727
\left(2\cdot c + 2\cdot c + c\cdot 4 + 8\cdot c + 14\cdot c = 1 \Rightarrow 1 = 30\cdot c\right) \Rightarrow c = \dfrac{1}{30}
21,849
f\cdot g\cdot t = f\cdot \sqrt{\sin^2{t} + \cos^2{t}}\cdot g\cdot t
20,267
\left(a^4 \cdot h = a \cdot h \implies h = a^6 \cdot h = a^2 \cdot h \cdot a\right) \implies a \cdot h = a \cdot a \cdot a \cdot h \cdot a = h \cdot a
30,191
w^3 = 3 \cdot \left(x + y\right) \cdot (z - x) \cdot (z - y) = 3 \cdot (z + w) \cdot (y - w) \cdot (x - w)
28,935
\sqrt{3 \cdot 3 + 4 \cdot 4} = 5
-12,772
\frac{2}{3} = 18/27
3,839
g = \lim_{k \to \infty} g_k \Rightarrow \lim_{k \to \infty} |g_k| = |g|
4,038
\cos(5 \cdot y) = \cos(2 \cdot y + 3 \cdot y)
-20,511
8/8*\frac{7}{10 (-1) + p} = \dfrac{56}{80 (-1) + 8p}
-2,740
-\sqrt{4}*\sqrt{6} + \sqrt{25}*\sqrt{6} = -2*\sqrt{6} + 5*\sqrt{6}
47,975
18 + 20 + 20 + 18 + 14 = 90
11,240
J \cdot C/C = A \Rightarrow \dfrac{1}{A} = C \cdot \frac1J/C
12,509
1 - y + y^2/2 - ... = e^{-y}
-22,937
\dfrac{9 \cdot 9}{5 \cdot 9} = 81/45
35,035
5 = |-2 \cdot t + 16| \Rightarrow t = 5.5, 10.5
-11,797
(\frac{3}{2})^3 = \frac{27}{8}
-20,240
\frac{-5\times x + 7}{-5\times x + 7}\times (-7/1) = \frac{1}{-x\times 5 + 7}\times (49\times (-1) + 35\times x)
35,678
\left((-1)*\pi\right)/4 = -\frac{\pi}{4}
-16,491
\sqrt{50}\cdot 3 = \sqrt{25\cdot 2}\cdot 3
14,097
\overline{A} x_1 + \cdots + \overline{r_n} x_z = x_1 A + \cdots + r_n x_z
-19,423
\dfrac{7}{8}\cdot \tfrac19 = \dfrac{1}{9/7\cdot 8}
607
1/(A/C C) = C*1/(AC)
36,691
E = \frac{1}{1/E}
1,490
\left(z^2 - V^2 - 4z + 4 = 0 \implies -V^2 + (z + 2(-1))^2 = 0\right) \implies 0 = (z + 2(-1) - V) (z + 2(-1) + V)
5,326
u\frac{dw}{dx} + w\frac{du}{dx} = \frac{\partial}{\partial x} (uw)
-660
(e^{3 \cdot \pi \cdot i/2})^{11} = e^{\dfrac12 \cdot i \cdot \pi \cdot 3 \cdot 11}
20,590
a + b - x = -2\cdot x + a + b + x
16,158
(3 \cdot 5 \cdot 19)^2 \cdot 17 = 1380825
5,795
n \cdot 2^{n + (-1)} = (\sum_{k=0}^n \binom{n}{k}) \cdot k = (\sum_{k=1}^n \binom{n}{k}) \cdot k
-504
(e^{13\times i\times π/12})^{16} = e^{\frac{13}{12}\times π\times i\times 16}
-21,493
10/10\times 3/10 = \frac{30}{100}
10,102
\sin(\frac{1}{2} \cdot \pi - t) = \cos{t}
-2,876
\sqrt{13} \times (2 \times (-1) + 4) = \sqrt{13} \times 2
26,190
0 + 0 + 3\cdot \dfrac{s}{3} = s
9,198
1/f = f^{\tfrac{g}{y}}*f^{y/g} = f^{\frac{g}{y}}*f^y
40,412
(2 \cdot k + 1) \cdot (2 \cdot k + 1) + 8 = 4 \cdot k^2 + 4 \cdot k + 1 + 8 = 2 \cdot \left(2 \cdot k^2 + 2 \cdot k + 4\right) + 1
-17,549
29\cdot (-1) + 82 = 53
-9,239
-11 \times 2 \times 2 \times 2 - 3 \times 11 \times p = 88 \times (-1) - p \times 33
4,941
F\cdot A - F\cdot A = A\Longrightarrow A\cdot F\cdot A - A \cdot A\cdot F = A^2
10,515
\left((-1) + X\right)\times (X^2 + X + 1) = (-1) + X^3
6,214
(b + f'') z = (b + f'') \left(z - \pi/4\right) \sqrt{2}
29,838
x \cdot x + 1 = x \cdot x + xy + yz + xz = (x + y) \left(x + z\right)
-20,774
\frac{1}{12*\left(-1\right) + 3*m}*\left(20 - 5*m\right) = -\frac{1}{3}*5*\frac{m + 4*\left(-1\right)}{m + 4*(-1)}
-5,785
\frac{1}{4 (z + 5)} 2 = \frac{1}{z*4 + 20} 2
29,801
25 = 5^2 + 2*0^2
13,945
h^y = (\frac{1}{h})^{-y} = (\frac1h)^{-y}
-14,380
1 + (10 - 9 \cdot 10) \cdot 5 = 1 + (10 + 90 \cdot (-1)) \cdot 5 = 1 - 400 = 1 + 400 \cdot \left(-1\right) = -399
25,661
0 = \alpha - \beta + x\Longrightarrow x + \alpha = \beta
37,049
|b - c| = |c - b|
-29,339
\left(2x + 5\right) (2x + 5(-1)) = (2x) \cdot (2x) - 5 \cdot 5 = 4x \cdot x + 25 (-1)
-20,246
\tfrac{q*8}{6*q + 8}*1*5/5 = \frac{40*q}{30*q + 40}
13,554
12 = -2 \times 84 + (144 - 84) \times 3
40,020
G^m*G = G^{1 + m}
30,112
2\cdot \sin{\frac{\pi}{18}} = 2\cdot \cos{\frac{4}{9}\cdot \pi}
14,635
( f_1, g_1) + \left( f_2, g_2\right) = ( f_1 + f_2, g_1 + g_2) = ( f_2, g_2) + ( f_1, g_1)
30,693
c^x c^y = c^{x + y}
20,986
d \times d + d \times 2 + 1 = \left(d + 1\right)^2
49,336
1 \times 2 \times 6 = 12
2,643
1 = x + y + z \Rightarrow z = 1 - y + x
-30,596
-(7 \cdot (-1) + z^2) \cdot 4 = -z^2 \cdot 4 + 28
13,852
1/(\dfrac{1}{j}) = j
47,183
z \cdot 2 = z + z
3,726
7^2 \cdot 7 - 4 \cdot 7 + 9 = 18^2
-20,628
4/4 \cdot \frac{r \cdot 2}{3 \cdot (-1) - r} \cdot 1 = \frac{8 \cdot r}{-r \cdot 4 + 12 \cdot (-1)}
26,217
\frac{800}{1} \times \frac{1}{10} \times 800 = 80 \times 800
-10,538
-\frac{1}{16 \cdot r} \cdot 12 = 2/2 \cdot (-\frac{1}{r \cdot 8} \cdot 6)
-6,479
\frac{1}{(z + 2(-1)) (z + 5)}4*5/5 = \frac{20}{5(z + 5) (2\left(-1\right) + z)}
26,281
{26 \choose 3} = {-13\cdot 2 + 52 \choose 3}
-21,076
\tfrac14 \cdot 3 = 6/8
14,814
\dfrac{1}{36} \cdot 6 = 1/6
14,055
\dfrac{r_1}{r_2} = 1 = r_2/(r_1)
-11,564
-i*7 - 9 = -i*7 - 6 + 3(-1)
-16,527
5 \cdot 16^{\frac{1}{2}} \cdot 2^{\frac{1}{2}} = 5 \cdot 4 \cdot 2^{\frac{1}{2}} = 20 \cdot 2^{1 / 2}
31,956
1 + x^6 = (1 + 3^{\dfrac{1}{2}}\times x + x^2)\times (1 - x\times 3^{1/2} + x^2)\times (1 + x \times x)
51
(x + 1)^2 \left(x + 2\left(-1\right)\right) = 2\left(-1\right) + x^3 - 3x
18,413
j + \left(-1\right) = m\Longrightarrow j = m + 1
-5,823
\dfrac{4}{\left(q + 6\right)\cdot \left(q + 5\right)} = \frac{4}{30 + q^2 + 11\cdot q}
-28,895
\frac{1}{2} = \dfrac{3}{2 + 3 + 1}
9,129
-\sin^2{y/2}\cdot 2 + 1 = \cos{y}
29,083
\frac{20}{2\lambda} = \frac{10}{\lambda}
-29,559
\dfrac{6}{x} \cdot x^5 = 6 \cdot x^4
24,336
\left(-1\right) + z + 1 = z
35,731
4 \cdot 5 + 2\left(-1\right) = 18
-8,091
\frac{1}{i - 5} (-5 + i) \dfrac{-23 - i*15}{-i - 5} = \frac{1}{-5 - i} \left(-23 - i*15\right)
-20,551
8/8 \frac{a}{2(-1) - a}3 = \frac{a\cdot 24}{16 (-1) - 8a}1
-21,041
3/3*\frac{1}{4}*3 = \frac{1}{12}*9
6,984
\frac{1}{4^n} = \dfrac{1}{4^n} \cdot 1^n = (\frac14)^n
26,208
\frac{m}{(2 \cdot m)!} = \dfrac{m}{2 \cdot m \cdot \left(2 \cdot m + (-1)\right)!} = \frac{1}{2 \cdot (2 \cdot m + (-1))!}
17,228
w_q - w_{z \cdot z} \cdot b^2 = 0 \Rightarrow w_q \cdot w = b \cdot b \cdot w_{z \cdot z} \cdot w
35,957
x = -(-1) \cdot x
-20,523
\frac{1}{(-50)*x}*(45 - x*40) = \frac{1}{x*\left(-10\right)}*(-8*x + 9)*5/5
18,921
30 = 3\cdot 6 + 2\cdot 6
27,745
(1 + y)^4 = 1 + y^4 + 4 \cdot y^3 + 6 \cdot y \cdot y + 4 \cdot y
-22,284
(8*\left(-1\right) + p)*(p + 5*(-1)) = 40 + p^2 - 13*p
-12,996
9 = 14 + 5 \cdot (-1)
4,698
\left(x + 1\right)^{2n} = (1 + x)^n\cdot (1 + x)^n