id
int64
-30,985
55.9k
text
stringlengths
5
437k
-20,704
\frac{-72\cdot x + 81}{9 - x\cdot 8} = \dfrac{9 - x\cdot 8}{9 - x\cdot 8}\cdot 9/1
2,494
c \cdot (x + \tfrac{f}{c}) = c \cdot x + f
35,754
x^2 - 2\times i = x^2 - (1 + i) \times (1 + i) = (x + (-1) - i)\times \left(x + 1 + i\right)
5,176
3 = (1 + 2(1 + 3(1 + 4(1 + 5(1 + (1 + 7)^{1/2}*6)^{1/2} \ldots)^{1/2})^{1/2})^{1/2})^{1/2}
4,132
x^3 = -x^2 - 2x = -x + 2
17,431
(1 - 1)\cdot \xi = 0\cdot \xi
-7,955
\frac{1}{2 - 4i}(2 - i \cdot 4) \frac{1}{i \cdot 4 + 2}\left(-i \cdot 24 + 8\right) = \frac{1}{2 + 4i}(8 - 24 i)
39,439
\dfrac{1}{G^2 * G} = \frac{1}{G^3}
5,999
4\left(-1\right) + y^4 - 3y^2 = (y^2 + 4\left(-1\right)) (1 + y * y)
10,493
\dfrac{1}{3 \cdot 9} + \frac{1/3}{36} \cdot 2 = 1/18
-14,102
3 - 7\cdot 4 + 9/3 = 3 - 7\cdot 4 + 3 = 3 + 28\cdot (-1) + 3 = -25 + 3 = -22
27,745
\left(1 + x\right)^4 = x^4 + x^3*4 + x^2*6 + x*4 + 1
25,744
g \cdot g + h\cdot g + h^2 = \frac12\cdot ((g + h)^2 + g^2 + h^2)
19,129
\sin{z}\cdot 3\cdot \sin(\cos{z}) = 3\cdot \sin(\cos{z})\cdot \sin{z}
-718
\frac{187}{12}\cdot \pi - 14\cdot \pi = 19/12\cdot \pi
-2,000
\frac16 \cdot \pi = \pi \cdot \frac{5}{4} - \tfrac{1}{12} \cdot 13 \cdot \pi
5,604
\int \tfrac{x + 1}{2\cdot \sqrt{1 + x}}\,dx = \int \frac{1 + x}{(x + 1)^{1/2}\cdot 2}\,dx
1,015
( -z(t)*x\left(t\right), -z(t)*y\left(t\right), 1 - z^2(t)) = \left( \frac{\mathrm{d}}{\mathrm{d}t} x(t), \frac{\mathrm{d}}{\mathrm{d}t} y\left(t\right), \frac{\mathrm{d}}{\mathrm{d}t} z\left(t\right)\right)
9,013
92852^4 - 3428^4 = 3818 \times (13083^4 - 9957^4)
2,053
-\sin^{-1}\left(e\right) = \sin^{-1}(-e)
21,852
\alpha |A|^2 + \beta |A^2| = \alpha |A|^2 + \beta |A|^2 = (\alpha + \beta) |A|^2
-20,625
4/4\cdot \frac{(-7)\cdot p}{7 - p\cdot 5} = \dfrac{1}{-20\cdot p + 28}\cdot (p\cdot (-28))
27,222
2j = 2^1 + 2^2 + \ldots + 2^{n + 1} = j - 2^0 + 2^{n + 1}
3,052
F_t=F_t^+
8,208
\cos\left(\arcsin(t)\right) = \left(\cos^2(\arcsin\left(t\right))\right)^{1/2} = (1 - \sin^2(\arcsin(t)))^{1/2} = (1 - t^2)^{1/2}
-20,048
\frac{1}{x\cdot 9 + 9\cdot (-1)}\cdot \left(-x\cdot 5 + 5\right) = -\frac59\cdot \frac{1}{x + (-1)}\cdot (x + (-1))
17,903
89 + 1\cdot 23 + 4\cdot \left(-1\right) + 5 + 6\cdot (-1) + 7\cdot (-1) = 100
42,484
4181 = 19\cdot (-1) + 4200
13,950
\left(k + 1\right)^2 - k^2 = 1 + 2 \cdot k
-7,786
\dfrac{1}{32} \cdot (16 - 144 \cdot i - 16 \cdot i + 144 \cdot (-1)) = \tfrac{1}{32} \cdot (-128 - 160 \cdot i) = -4 - 5 \cdot i
21,633
1/10 = 2\cdot \dfrac{1}{5}/4
-18,947
\frac{41}{45} = C_t/(25 π)*25 π = C_t
-11,706
16^{-\frac12} = (\frac{1}{16})^{1/2} = 1/4
5,042
\left(z^4 + 1\right) \cdot ((-1) + z^4) = (-1) + z^8
1,928
|x^2 - y^2| = |x + y| |x - y| \leq \left(|x| + |y|\right) |x - y|
34,707
\alpha^{1/2} = \left(-(-1) \cdot \alpha\right)^{1/2} = i \cdot (-\alpha)^{1/2}
-1,492
\dfrac{45}{12} = \frac{45 \cdot 1/3}{12 \cdot 1/3} = \dfrac{15}{4}
30,368
-1 = \left(p + (-1)\right) \cdot (1 + p + p^2 + \dots) = p + (-1) + \left(p + (-1)\right) \cdot p + \left(p + (-1)\right) \cdot p^2 + \dots
21
3 \cdot \left(-1\right) + 37 + 31 \cdot \left(-1\right) + 21 + 19 \cdot \left(-1\right) + 17 \cdot \left(-1\right) + 13 + 11 + 7 \cdot (-1) + 5 = 10
9,041
xh/x = xh/x
16,415
-\frac18 \cdot \pi + \pi/2 = \dfrac{\pi}{8} \cdot 3
-18,957
\tfrac{14}{15} = \dfrac{A_t}{25 \times \pi} \times 25 \times \pi = A_t
3,037
\frac{\sin{z^5}}{z^5} z^4 = \sin{z^5}/z
18,321
\left(a + b\right)^2 = b^2 + a^2 + ba \cdot 2
-22,930
\frac{1}{45} \cdot 40 = \tfrac{40}{5 \cdot 9} \cdot 1
19,436
( a'^2\cdot 4 + b'^2\cdot 8 + 10, 20) = ( 5 + 2\cdot a'^2 + b' \cdot b'\cdot 4, 10)\cdot 2
-3,426
\sqrt{3} \cdot ((-1) + 4) = \sqrt{3} \cdot 3
-5,774
\frac{1}{4\cdot y + 24}\cdot 5 = \frac{5}{\left(y + 6\right)\cdot 4}
17,040
e^{Q*Y/Q} = \frac{e^Y*Q}{Q}
17,377
0=32A+12B+4=4A+3B+2
26,089
z_l*z_\mu = z_\mu*z_l
-22,264
t \times t + 14\times t + 48 = (t + 6)\times (8 + t)
23,529
24 x = (2 + (-1))\cdot 2^{l + (-1)} \Rightarrow 2^{l + \left(-1\right) + 3(-1)}/3 = x
9,297
f_1 = f_1 = f_1 \cdot (51781 \cdot f_2 + 4655 \cdot e) = 51781 \cdot f_1 \cdot f_2 + 4655 \cdot f_1 \cdot e
18,412
-5^{1/2}/2 + \frac{1}{2} = \frac{1}{2}*(-5^{1/2} + 1)
-8,878
-2^5 = (-2) \times (-2) \times \left(-2\right) \times (-2) \times (-2)
24,269
a \cdot a - b^2 = (a + b) (a - b)
21,559
1 = \frac{1}{13^4}\cdot 13^4
-11,855
7.427 \cdot 0.1 = 7.427/10
29,690
(\left(-1\right) + 12) \cdot (\left(-1\right) + 12) = 121
6,248
(a - b)*(b^2 + a^2 + b*a) = -b^3 + a^3
-16,062
8*7*6*5 = \dfrac{8!}{(8 + 4 (-1))!} = 1680
29,030
\csc(x) = \frac{1}{\sin(x)} = \frac{1}{\sqrt{1 - \cos^2(x)}}
23,685
(z + i y) (z + i y) (z - i y)^2 = \left((z + i y) (z - i y)\right)^2 = (z^2 + y^2)^2
-4,058
\frac{1}{p^3}\cdot 4 = \dfrac{4}{p^3}
23,500
3^{k + 1} = 3\cdot 3^k > 3\cdot k^2 = k^2 + k^2 + k \cdot k \geq k \cdot k + 2\cdot k + 1
45,172
21 = 3*10 + (-9)
6,241
\dfrac13 = \frac{1}{10 + 5}\cdot 5 = 5/10 = \frac{1}{2}
-12,251
31/36 = \frac{q}{18 \cdot \pi} \cdot 18 \cdot \pi = q
-11,327
(y + f)^2 = (y + f)*(y + f) = y * y + 2*f*y + f^2
17,393
5^2 = x^2 + y^2 \Rightarrow y = \sqrt{25 - x^2}
6,400
x \cdot Y + X \cdot x = (X + Y) \cdot x
40,619
294 = \left(6 + 15\right)*14
-18,564
\frac{50}{20} = \frac{1}{2}5
21,895
2 \cdot b + 1 = 4 \cdot b \implies 1/2 = b
-27,067
\sum_{l=1}^\infty \tfrac{\left(0 + 2\right)^l}{(l + 1) (-2)^l} = \sum_{l=1}^\infty 1*\frac{2^l}{(l + 1) \left(-2\right)^l} = \sum_{l=1}^\infty \frac{(-1)^l*2^l}{\left(l + 1\right)*2^l}1 = \sum_{l=1}^\infty \frac{(-1)^l}{l + 1}
24,927
9 + 247^2 \cdot 247 + 273 (-1) = 5y^2 \Rightarrow y^2 = 3013797
12,754
71.4 = y \cdot 1.1 + y\Longrightarrow y = 34
-1,261
-\frac{2}{9}\cdot 8/9 = \frac{\frac{1}{9}\cdot (-2)}{9\cdot 1/8}
53,274
11\cdot 19 = 209
258
\binom{n + r + \left(-1\right)}{r} = \binom{r + n + (-1)}{r}
-24,134
6\cdot (6 + 8) = 6\cdot 14 = 84
-11,501
-5 + 25 (-1) - i*20 = -30 - 20 i
-22,762
\frac{60}{108} = \frac{5\cdot 12}{9\cdot 12}
35,779
(k + 1)\cdot 2 = 2k + 2
19,981
\left(-A_t^2 + (X_t + A_t)^2 - X_t^2\right)/2 = A_t X_t
1,709
y^2 + y + 1 = y^2 - 2 y + 1 = (y + (-1))^2 = (y + 2)^2
-16,407
6*\sqrt{9*11} = \sqrt{99}*6
-6,392
\tfrac{1}{(k + 9) \cdot (6 + k)} \cdot k = \frac{1}{54 + k \cdot k + k \cdot 15} \cdot k
13,883
-z^6 - z^{180} + z^{90} + z^{48} = -\left(z^6\right)^{30} + (z^6)^{15} + (z^6)^8 - z^6
12,987
x^{nm} \Lambda_n^\sigma \Lambda_m^i = \Lambda_m^i \Lambda_n^\sigma x^{nm}
29,414
5^{c_1} \cdot 5^{c_2} = 5^{c_1 + c_2}
-30,567
\frac{1}{t + 3\cdot (-1)}\cdot (t^2 + 5\cdot t + 24\cdot (-1)) = \frac{(t + 8)\cdot \left(t + 3\cdot (-1)\right)}{t + 3\cdot (-1)} = t + 8
-3,853
\frac14*5 = 5/4
-18,417
\frac{(l + 2) (2\left(-1\right) + l)}{(l + 5(-1)) (2(-1) + l)} = \frac{1}{l^2 - 7l + 10}\left(4(-1) + l * l\right)
32,239
502 = \frac{1}{4}*\left(2009 + (-1)\right)
9,125
d^2\times y = d^2\times y
30,720
{14 \choose 3}*{16 \choose 2} = 43680
-26,135
(-\frac{1}{e^{14}} + e^7) \cdot 7 = 7 \cdot e^7 - \frac{7}{e^{14}}
738
(n + (-1))! = ((-1) + n) (n + 2(-1)) \left(n + 3(-1)\right) ...\cdot 2\cdot 3