id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
36,277 | \left(z_1 + z_2\right) \cdot \left(z_1 + z_2\right) = z_2^2 + z_1^2 + z_2\cdot z_1\cdot 2 |
1,767 | yx z = zy x |
7,000 | 2^{k+1}=2\cdot 2^k |
24,593 | (x + 6\cdot (-1))\cdot (x + 3\cdot \left(-1\right)) = 18 + x \cdot x - 9\cdot x |
34,921 | J + x = E \Rightarrow E = x^{1 / 2} + J^{1 / 2} |
26,533 | (1/4)^i = (\frac{1}{2})^{i*2} |
-20,342 | \frac{(-1) \cdot 2 l}{-l \cdot 3 + 3(-1)} \cdot 3/3 = \tfrac{(-6) l}{-9l + 9(-1)} |
-4,772 | \frac{1}{4 + x^2 + 5 \cdot x} \cdot (11 \cdot (-1) - x \cdot 2) = -\frac{1}{1 + x} \cdot 3 + \dfrac{1}{4 + x} |
-21,611 | \sin{-2 \cdot π} = 0 |
21,558 | (-1)^{2(-1) + l} = (-1)^l |
26,928 | \arcsin(\sin(π + 2 \cdot \left(-1\right))) = \arcsin(\sin(2)) |
29,981 | 3 \cdot (-1) + z_2 - z_1 = 0 \Rightarrow z_1 = 3 \cdot (-1) + z_2 |
30,176 | \cos(y) = \sin(\dfrac{\pi}{2} - y) |
22,641 | \left(a + f + h\right)\cdot (-f\cdot h + a \cdot a + f^2 + h^2 - a\cdot f - a\cdot h) = -3\cdot a\cdot h\cdot f + a^3 + f^3 + h^3 |
20,581 | e + b = -1 \implies e - b = -16 |
-23,081 | -\frac{1}{64} \cdot 81 = \dfrac{3}{4} \cdot (-27/16) |
14,629 | x/y = \frac{x\cdot 2}{y\cdot 2} |
-20,031 | \frac{1}{-4 \cdot q + 16 \cdot (-1)} \cdot 12 = 2/2 \cdot \frac{6}{-q \cdot 2 + 8 \cdot (-1)} |
20,194 | y*(1 + x + \bar{z}) = xy + y\bar{z} + y |
-24,829 | 879\cdot 6 = 5274 |
18,321 | (c + b) \cdot (c + b) = c^2 + 2 \cdot b \cdot c + b^2 |
9,834 | (-b + a) (b + a) = a \cdot a - b \cdot b |
26,692 | 5! - 3!\cdot 8 = 72 |
-18,989 | 5/8 = \frac{A_x}{36 \cdot \pi} \cdot 36 \cdot \pi = A_x |
39,661 | y^2 = l \implies y = \sqrt{l} |
1,434 | \cos\left(999 z + z\right) = \cos(1000 z) |
1,335 | \frac{1}{y^t} = y^{-t} |
14,257 | \cot(3\pi/2 - y) = \cot\left(\pi - y - \pi/2\right) = -\cot(y - \pi/2) = \cot(\dfrac{\pi}{2} - y) = \tan{y} |
24,374 | -y*x = x*(-y) |
-20,976 | \dfrac{y*12}{y*(-8)}*1 = -\frac32*\dfrac{(-4)*y}{y*(-4)} |
13,137 | Z + V\cdot t = V\cdot Z^{-\frac12 + \frac{1}{2}}\cdot t + Z^{1/2 + \dfrac{1}{2}} |
-1,952 | \pi \frac{13}{12} = \pi \cdot 37/12 - \pi \cdot 2 |
6,595 | (f + (-1))\cdot (f^2 + f + 1) = f^2 \cdot f + (-1) |
29,863 | \arcsin\left(\sin{y}\right) = \arcsin\left(\sin(\pi - y)\right) = \pi - y |
-10,778 | 5/5*\dfrac{1}{p + 4*(-1)}*7 = \tfrac{35}{20*(-1) + p*5} |
20,044 | (3!)! = \left(3! + (-1)\right)\cdot 3!\cdot \ldots\cdot 2 |
40,963 | {6 \choose 4} = {2 + 5 + (-1) \choose 5 + (-1)} |
-22,366 | \left(k + 6*(-1)\right)*(k + 3) = k * k - 3*k + 18*(-1) |
8,691 | 3 \cdot 8^3 + 8^2 \cdot 7 + 3 \cdot 8^1 + 8 \cdot 8^0 = 2016 |
-1,504 | \frac{36}{72} = \frac{1}{72 \times \frac{1}{36}} \times 1 = 1/2 |
25,998 | \left(x + (-1)\right)^4 + 3\cdot (x + (-1))^2 + 2 = (\left(-1\right) + x)^4 + 3\cdot x^2 - x\cdot 6 + 5 |
-11,910 | 1.575\cdot 0.1 = \tfrac{1.575}{10} |
17,431 | 0\cdot x = \left(-1 + 1\right)\cdot x |
35,124 | \frac{1 \cdot 2 \cdot 2 \cdot \ldots \cdot 2}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot n \cdot 2} < \frac{3 \cdot 5 \cdot \ldots \cdot (2 \cdot n + (-1))}{2 \cdot 4 \cdot 6 \cdot \ldots \cdot n \cdot 2} |
40,568 | -\sqrt{1 - \cos^2{x}} = -\sqrt{\sin^2{x}} = -|\sin{x}| |
22,776 | \varphi\cdot y\cdot z = \varphi\cdot y\cdot z |
9,811 | \frac{1}{4 \cdot 5} = -\frac{1}{5} + \frac{1}{4} |
-17,206 | \frac{1}{\sec^2\left(\theta\right)}\cdot \sec^2(\theta) = \frac{1}{\sec^2(\theta)}\cdot (\tan^2(\theta) + 1) |
-6,528 | \frac{3}{\left(a + 7\right)*2} = \frac{3}{2*a + 14} |
-4,904 | 1.5 \cdot 10^{\left(-5\right) \cdot (-1) - 5} = 1.5 \cdot 10^0 |
6,381 | \sum_{i=1}^\infty \int |f_i| \cdot a \cdot m\,dx \leq \int \sum_{i=1}^\infty |f_i| \cdot m \cdot a\,dx |
18,982 | 42 = M + S \implies S = 42 - M |
11,406 | g \cdot b + e \cdot g = (e + b) \cdot g |
46,243 | 10^6\times 4.5 = 4500000 |
-18,318 | \tfrac{(t + 7) \cdot (t + 8 \cdot (-1))}{(t + (-1)) \cdot (t + 8 \cdot (-1))} = \dfrac{56 \cdot (-1) + t^2 - t}{t^2 - 9 \cdot t + 8} |
51,691 | \left(d = \frac{1}{\sqrt{x}} + \sqrt{x} \Rightarrow 1 + x = \sqrt{x}\times d\right) \Rightarrow (1 + x)^2 = d^2\times x |
-22,381 | (x + 6)\cdot (4\cdot (-1) + x) = 24\cdot \left(-1\right) + x \cdot x + 2\cdot x |
32,967 | 169/1326 = \frac{1}{102} \cdot 13 |
-10,442 | \frac{36}{24 + x\cdot 60} = 4/4\cdot \frac{1}{6 + 15\cdot x}\cdot 9 |
12,244 | \tfrac{1}{2} = \frac{\frac13}{1 - \frac{1}{3}} |
-3,183 | (1 + 2)\cdot 6^{1 / 2} = 6^{\frac{1}{2}}\cdot 3 |
-29,331 | -2i + 1 + 8 = 9 - 2i |
12,645 | \frac{6}{5} = 1 + 1/5 |
17,181 | 6 \cdot q + 1 = 1 + 2 \cdot q \cdot 3 |
22,284 | 18 + y \cdot y - 9y = \left(3(-1) + y\right) (y + 6\left(-1\right)) |
31,951 | d*h = \frac{1}{2}*(-d^2 + (d + h)^2 - h^2) |
45,983 | 452 = 364\cdot (-1) + 816 |
-20,521 | \frac{n + 7}{14 + n \cdot 2} = \frac{1}{2} \cdot 1 |
34,536 | \sum_{n=0}^\infty \frac{\left(-1\right)^n}{3^n} = \sum_{n=0}^\infty \frac{1}{9^n} - \left(\sum_{n=0}^\infty \frac{1}{9^n}\right)/3 = \frac23*\sum_{n=0}^\infty \frac{1}{9^n} |
-10,684 | -\frac{1}{4x^2}8 = -\frac{1}{x * x*2}4*2/2 |
7,174 | \frac{1}{2}(10 + 2(-1)) + (-1) = 3 |
12,013 | (c + h)*(c + h) = c + c*h + h*c + h = c + h |
-20,148 | \frac{28 - k\cdot 42}{-21\cdot k + 49} = \frac{1}{-3\cdot k + 7}\cdot \left(-6\cdot k + 4\right)\cdot \frac77 |
14,234 | b c = \frac{b}{c} = c^2 b |
22,117 | (n + 1) \cdot (n + 1) + (2 + n) \cdot n = 1 + n^2 \cdot 2 + 4 \cdot n |
9,333 | 6 = \tfrac{1}{\frac{2}{3}*\frac14} |
37,874 | |-e^{π} + 1 + 4| = |-e^{π} + 5| |
12,984 | \frac12(3^{(-1) + n} + 1) = \frac16(3^n + 3\left(-1\right)) + 1 |
-15,788 | -47/10 = -6\cdot \frac{9}{10} + \frac{1}{10}\cdot 7 |
3,356 | \left(3 \cdot (-1) + k^2 - k \cdot 6 = q^2 \Rightarrow 12 \cdot (-1) + (3 \cdot \left(-1\right) + k)^2 = q \cdot q\right) \Rightarrow (3 \cdot \left(-1\right) + k + q) \cdot (k - q + 3 \cdot (-1)) = 12 |
33,297 | \left((p + p)^2 = p + p \Rightarrow p + p = p + p + p + p\right) \Rightarrow p + p = 0 |
-21,606 | \cos{4/3\cdot \pi} = -0.5 |
-26,159 | -9 \cdot \cos(6 \cdot π) - -9 \cdot \cos(11 \cdot π/2) = -9 + 0 \cdot \left(-1\right) = -9 |
-10,590 | -4/(q\cdot 60) = -\frac{1}{15\cdot q}\cdot 4/4 |
12,590 | \sin^5{z} = \sin^4(z\cdot \sin{z}) = (1 - \cos^2{z})^2\cdot \sin{z} |
12,837 | \dfrac{2 \cdot z_j}{z_d \cdot 2} = \frac{z_j}{z_d} |
-10,708 | \frac{1}{s*4}*(32*\left(-1\right) + s*4) = 4/4*(s + 8*(-1))/s |
13,743 | \frac{z}{z + 4 \times (-1)} = \frac{1}{z + 4 \times (-1)} \times (z + 4 \times (-1) + 4) = 1 + \frac{4}{z + 4 \times (-1)} |
17,256 | e + b + c + d = e + b + c + d |
-1,781 | π\dfrac56 = \frac12π + π/3 |
8,412 | 0 = x^{\dfrac13} + 1 rightarrow x = -1 |
24,881 | \frac12 = 0.0111 \cdot ... = 0.1 |
1,031 | -y \cdot 3 + 15 \cdot y = 12 \cdot y |
9,823 | 0 = 1 + 4\times 3^{9/8}\times x - 4\times x\times 3^{\dfrac18} \implies 3^{\frac{1}{8}}\times x\times 8 = -1 |
4,064 | \mathbb{Var}(x - Y) + \mathbb{E}(x - Y) \cdot \mathbb{E}(x - Y) = \mathbb{E}((-Y + x)^2) |
-2,575 | (2\cdot (-1) + 3)\cdot \sqrt{5} = \sqrt{5} |
15,668 | \dfrac14*4/4/4*\frac14/4 = \frac{4}{4^5} |
40,934 | 4! = \dfrac{5!}{5} |
20,875 | -l \cdot 13 + 95 = 4 - 13 \cdot (l + 7 \cdot \left(-1\right)) |
29,094 | z^3 + (-1) = (z + (-1))*(z^2 + z + 2*(-1)) + z*3 + 3*(-1) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.