modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
glasses/dummy
2021-04-21T18:24:15.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
17
transformers
# ResNet Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/eca_resnet101d
2021-04-25T07:55:15.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
glasses/eca_resnet26t
2021-04-24T10:53:05.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
glasses/eca_resnet50d
2021-04-25T07:54:33.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
glasses/eca_resnet50t
2021-04-24T10:53:17.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
glasses/efficientnet_b0
2021-04-22T17:59:42.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
13
transformers
# efficientnet_b0 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_b1
2021-04-22T17:59:47.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# efficientnet_b1 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_b2
2021-04-22T17:59:53.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# efficientnet_b2 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_b3
2021-04-22T17:59:59.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
48
transformers
# efficientnet_b3 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_b5
2021-04-22T18:00:08.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
11
transformers
# efficientnet_b5 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_b6
2021-04-22T18:00:19.000Z
[ "pytorch", "arxiv:1905.11946", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# efficientnet_b6 Implementation of EfficientNet proposed in [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNet.png?raw=true) The basic architecture is similar to MobileNetV2 as was computed by using [Progressive Neural Architecture Search](https://arxiv.org/abs/1905.11946) . The following table shows the basic architecture (EfficientNet-efficientnet\_b0): ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetModelsTable.jpeg?raw=true) Then, the architecture is scaled up from [-efficientnet\_b0]{.title-ref} to [-efficientnet\_b7]{.title-ref} using compound scaling. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/EfficientNetScaling.jpg?raw=true) ``` python EfficientNet.efficientnet_b0() EfficientNet.efficientnet_b1() EfficientNet.efficientnet_b2() EfficientNet.efficientnet_b3() EfficientNet.efficientnet_b4() EfficientNet.efficientnet_b5() EfficientNet.efficientnet_b6() EfficientNet.efficientnet_b7() EfficientNet.efficientnet_b8() EfficientNet.efficientnet_l2() ``` Examples: ``` python EfficientNet.efficientnet_b0(activation = nn.SELU) # change number of classes (default is 1000 ) EfficientNet.efficientnet_b0(n_classes=100) # pass a different block EfficientNet.efficientnet_b0(block=...) # store each feature x = torch.rand((1, 3, 224, 224)) model = EfficientNet.efficientnet_b0() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) # [torch.Size([1, 32, 112, 112]), torch.Size([1, 24, 56, 56]), torch.Size([1, 40, 28, 28]), torch.Size([1, 80, 14, 14])] ```
glasses/efficientnet_lite0
2021-04-25T13:49:00.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
12
transformers
glasses/regnetx_002
2021-04-21T19:07:29.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
# regnetx_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_004
2021-04-21T19:07:34.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
11
transformers
# regnetx_004 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_006
2021-04-21T19:07:40.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
# regnetx_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_008
2021-04-21T19:07:45.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# regnetx_008 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_016
2021-04-21T19:07:51.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# regnetx_016 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_032
2021-04-21T19:07:57.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# regnetx_032 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnetx_040
2021-04-24T10:54:15.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
glasses/regnetx_064
2021-04-25T07:57:31.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
glasses/regnety_002
2021-04-21T19:08:02.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
11
transformers
# regnety_002 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_004
2021-04-21T19:08:07.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# regnety_004 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_006
2021-04-21T19:08:12.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# regnety_006 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_008
2021-04-21T19:08:18.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# regnety_008 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_016
2021-04-21T19:08:24.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# regnety_016 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_032
2021-04-21T19:08:31.000Z
[ "pytorch", "arxiv:2003.13678", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# regnety_032 Implementation of RegNet proposed in [Designing Network Design Spaces](https://arxiv.org/abs/2003.13678) The main idea is to start with a high dimensional search space and iteratively reduce the search space by empirically apply constrains based on the best performing models sampled by the current search space. The resulting models are light, accurate, and faster than EfficientNets (up to 5x times!) For example, to go from $AnyNet_A$ to $AnyNet_B$ they fixed the bottleneck ratio $b_i$ for all stage $i$. The following table shows all the restrictions applied from one search space to the next one. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/RegNetDesignSpaceTable.png?raw=true) The paper is really well written and very interesting, I highly recommended read it. ``` python ResNet.regnetx_002() ResNet.regnetx_004() ResNet.regnetx_006() ResNet.regnetx_008() ResNet.regnetx_016() ResNet.regnetx_040() ResNet.regnetx_064() ResNet.regnetx_080() ResNet.regnetx_120() ResNet.regnetx_160() ResNet.regnetx_320() # Y variants (with SE) ResNet.regnety_002() # ... ResNet.regnetx_320() You can easily customize your model ``` Examples: ``` python # change activation RegNet.regnetx_004(activation = nn.SELU) # change number of classes (default is 1000 ) RegNet.regnetx_004(n_classes=100) # pass a different block RegNet.regnetx_004(block=RegNetYBotteneckBlock) # change the steam model = RegNet.regnetx_004(stem=ResNetStemC) change shortcut model = RegNet.regnetx_004(block=partial(RegNetYBotteneckBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = RegNet.regnetx_004() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 32, 112, 112]), torch.Size([1, 32, 56, 56]), torch.Size([1, 64, 28, 28]), torch.Size([1, 160, 14, 14])] ```
glasses/regnety_040
2021-04-25T07:58:31.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
glasses/regnety_064
2021-04-25T07:58:47.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
glasses/resnet101
2021-04-24T10:50:15.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
12
transformers
# resnet101 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet152
2021-04-24T10:50:39.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
# resnet152 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet18
2021-04-24T10:48:45.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", ".org.chromium.Chromium.DyPFg4", "README.md", "config-err-Edzi90", "config.json", "pytorch_model.bin", "vscode-ipc", "VSFeedbackVSRTCLogs/20210409_083938_16179575780260_VSCode.log", "VSFeedbackVSRTCLogs/20210409_083938_Agent.log", "VSFeedbackVSRTCLogs/20210409_103612_16179645728160_VSCode.log", "VSFeedbackVSRTCLogs/20210409_103613_Agent.log", "VSFeedbackVSRTCLogs/20210409_110958_16179665980940_VSCode.log", "remote-file-71752ccfe2464e99/1d68001ef112fa197e0de1f2cbc5ab57ebf464a5ae676667c4e51b82762627a7/0178b70fdabe-0x8D8F230C59F9D48", "remote-file-71752ccfe2464e99/1d68001ef112fa197e0de1f2cbc5ab57ebf464a5ae676667c4e51b82762627a7/0178b77db7fd-0x8D8F230C59F9D48", "resnet18/config.json", "resnet18/pytorch_model.bin" ]
glasses
25
transformers
# resnet18 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet26
2021-04-24T10:48:55.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
# resnet26 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet26d
2021-04-24T10:49:05.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# resnet26d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet34
2021-04-24T10:49:20.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
# resnet34 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet34d
2021-04-24T10:49:30.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# resnet34d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet50
2021-04-24T10:49:43.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
12
transformers
# resnet50 Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnet50d
2021-04-24T10:49:57.000Z
[ "pytorch", "arxiv:1512.03385", "arxiv:1812.01187", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
10
transformers
# resnet50d Implementation of ResNet proposed in [Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385) ``` python ResNet.resnet18() ResNet.resnet26() ResNet.resnet34() ResNet.resnet50() ResNet.resnet101() ResNet.resnet152() ResNet.resnet200() Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_ ResNet.resnet26d() ResNet.resnet34d() ResNet.resnet50d() # You can construct your own one by chaning `stem` and `block` resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD)) ``` Examples: ``` python # change activation ResNet.resnet18(activation = nn.SELU) # change number of classes (default is 1000 ) ResNet.resnet18(n_classes=100) # pass a different block ResNet.resnet18(block=SENetBasicBlock) # change the steam model = ResNet.resnet18(stem=ResNetStemC) change shortcut model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD)) # store each feature x = torch.rand((1, 3, 224, 224)) # get features model = ResNet.resnet18() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnext101_32x8d
2021-04-24T10:51:37.000Z
[ "pytorch", "arxiv:1611.05431", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# resnext101_32x8d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/resnext50_32x4d
2021-04-24T10:51:12.000Z
[ "pytorch", "arxiv:1611.05431", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
13
transformers
# resnext50_32x4d Implementation of ResNetXt proposed in [\"Aggregated Residual Transformation for Deep Neural Networks\"](https://arxiv.org/pdf/1611.05431.pdf) Create a default model ``` python ResNetXt.resnext50_32x4d() ResNetXt.resnext101_32x8d() # create a resnetxt18_32x4d ResNetXt.resnet18(block=ResNetXtBottleNeckBlock, groups=32, base_width=4) ``` Examples: : ``` python # change activation ResNetXt.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) ResNetXt.resnext50_32x4d(n_classes=100) # pass a different block ResNetXt.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = ResNetXt.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = ResNetXt.resnext50_32x4d() # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])] ```
glasses/vgg11
2021-04-21T19:10:34.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
# vgg11 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg11_bn
2021-04-22T17:58:21.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# vgg11_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg13
2021-04-21T19:10:58.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
14
transformers
# vgg13 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg13_bn
2021-04-22T17:58:45.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
# vgg13_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg16
2021-04-21T19:11:22.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# vgg16 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg16_bn
2021-04-22T17:59:10.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
8
transformers
# vgg16_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg19
2021-04-22T17:58:01.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
12
transformers
# vgg19 Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vgg19_bn
2021-04-22T17:59:37.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# vgg19_bn Implementation of VGG proposed in [Very Deep Convolutional Networks For Large-Scale Image Recognition](https://arxiv.org/pdf/1409.1556.pdf) ``` python VGG.vgg11() VGG.vgg13() VGG.vgg16() VGG.vgg19() VGG.vgg11_bn() VGG.vgg13_bn() VGG.vgg16_bn() VGG.vgg19_bn() ``` Please be aware that the [bn]{.title-ref} models uses BatchNorm but they are very old and people back then don\'t know the bias is superfluous in a conv followed by a batchnorm. Examples: ``` python # change activation VGG.vgg11(activation = nn.SELU) # change number of classes (default is 1000 ) VGG.vgg11(n_classes=100) # pass a different block from nn.models.classification.senet import SENetBasicBlock VGG.vgg11(block=SENetBasicBlock) # store the features tensor after every block ```
glasses/vit_base_patch16_224
2021-04-22T18:37:04.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
28
transformers
# vit_base_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_base_patch16_384
2021-04-22T18:35:04.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
12
transformers
# vit_base_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_base_patch32_384
2021-04-22T18:37:21.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# vit_base_patch32_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_huge_patch16_224
2021-04-22T18:39:36.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# vit_huge_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_huge_patch32_384
2021-04-22T18:41:37.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
11
transformers
# vit_huge_patch32_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_large_patch16_224
2021-04-22T18:42:35.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
7
transformers
# vit_large_patch16_224 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_large_patch16_384
2021-04-22T18:43:25.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# vit_large_patch16_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/vit_large_patch32_384
2021-04-22T18:44:12.000Z
[ "pytorch", "arxiv:2010.11929", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# vit_large_patch32_384 Implementation of Vision Transformer (ViT) proposed in [An Image Is Worth 16x16 Words: Transformers For Image Recognition At Scale](https://arxiv.org/pdf/2010.11929.pdf) The following image from the authors shows the architecture. ![image](https://github.com/FrancescoSaverioZuppichini/glasses/blob/develop/docs/_static/images/ViT.png?raw=true) ``` python ViT.vit_small_patch16_224() ViT.vit_base_patch16_224() ViT.vit_base_patch16_384() ViT.vit_base_patch32_384() ViT.vit_huge_patch16_224() ViT.vit_huge_patch32_384() ViT.vit_large_patch16_224() ViT.vit_large_patch16_384() ViT.vit_large_patch32_384() ``` Examples: ``` python # change activation ViT.vit_base_patch16_224(activation = nn.SELU) # change number of classes (default is 1000 ) ViT.vit_base_patch16_224(n_classes=100) # pass a different block, default is TransformerEncoderBlock ViT.vit_base_patch16_224(block=MyCoolTransformerBlock) # get features model = ViT.vit_base_patch16_224 # first call .features, this will activate the forward hooks and tells the model you'll like to get the features model.encoder.features model(torch.randn((1,3,224,224))) # get the features from the encoder features = model.encoder.features print([x.shape for x in features]) #[[torch.Size([1, 197, 768]), torch.Size([1, 197, 768]), ...] # change the tokens, you have to subclass ViTTokens class MyTokens(ViTTokens): def __init__(self, emb_size: int): super().__init__(emb_size) self.my_new_token = nn.Parameter(torch.randn(1, 1, emb_size)) ViT(tokens=MyTokens) ```
glasses/wide_resnet101_2
2021-04-24T10:52:37.000Z
[ "pytorch", "arxiv:1605.07146", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
9
transformers
# wide_resnet101_2 Implementation of Wide ResNet proposed in [\"Wide Residual Networks\"](https://arxiv.org/pdf/1605.07146.pdf) Create a default model ``` python WideResNet.wide_resnet50_2() WideResNet.wide_resnet101_2() # create a wide_resnet18_4 WideResNet.resnet18(block=WideResNetBottleNeckBlock, width_factor=4) ``` Examples: ``` python # change activation WideResNet.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) WideResNet.resnext50_32x4d(n_classes=100) # pass a different block WideResNet.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = WideResNet.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = WideResNet.wide_resnet50_2() features = [] x = model.encoder.gate(x) for block in model.encoder.layers: x = block(x) features.append(x) print([x.shape for x in features]) # [torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7])] ```
glasses/wide_resnet50_2
2021-04-24T10:52:04.000Z
[ "pytorch", "arxiv:1605.07146", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin" ]
glasses
6
transformers
# wide_resnet50_2 Implementation of Wide ResNet proposed in [\"Wide Residual Networks\"](https://arxiv.org/pdf/1605.07146.pdf) Create a default model ``` python WideResNet.wide_resnet50_2() WideResNet.wide_resnet101_2() # create a wide_resnet18_4 WideResNet.resnet18(block=WideResNetBottleNeckBlock, width_factor=4) ``` Examples: ``` python # change activation WideResNet.resnext50_32x4d(activation = nn.SELU) # change number of classes (default is 1000 ) WideResNet.resnext50_32x4d(n_classes=100) # pass a different block WideResNet.resnext50_32x4d(block=SENetBasicBlock) # change the initial convolution model = WideResNet.resnext50_32x4d model.encoder.gate.conv1 = nn.Conv2d(3, 64, kernel_size=3) # store each feature x = torch.rand((1, 3, 224, 224)) model = WideResNet.wide_resnet50_2() features = [] x = model.encoder.gate(x) for block in model.encoder.layers: x = block(x) features.append(x) print([x.shape for x in features]) # [torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14]), torch.Size([1, 512, 7, 7])] ```
gmihaila/distilbert-base-uncased
2020-11-05T02:26:13.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
gmihaila
15
transformers
gmihaila/wav2vec2-large-xlsr-53-romanian
2021-03-23T06:15:19.000Z
[ "pytorch", "wav2vec2", "ro", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
gmihaila
121
transformers
--- language: ro datasets: - common_voice tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Romanian by George Mihaila results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ro type: common_voice args: ro metrics: - name: Test WER type: wer value: 28.4 --- # Wav2Vec2-Large-XLSR-53-Romanian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Romanian using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ro", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ro", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian") model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\twith torch.no_grad(): \\\\t\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) \\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 28.43 % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/github/gmihaila/ml_things/blob/master/notebooks/pytorch/RO_Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_🤗_Transformers.ipynb)
gogamza/kobart-summarization
2021-05-20T06:35:05.000Z
[ "pytorch", "bart", "seq2seq", "ko", "transformers", "license:mit", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "summ.png", "tokenizer.json" ]
gogamza
193
transformers
--- language: ko tags: - bart license: MIT --- # Korean News Summarization Model ## How to use ```python import torch from transformers import PreTrainedTokenizerFast from transformers import BartForConditionalGeneration tokenizer = PreTrainedTokenizerFast.from_pretrained( 'gogamza/kobart-summarization', bos_token='<s>', eos_token='</s>', unk_token='<unk>', pad_token='<pad>', mask_token='<mask>') model = BartForConditionalGeneration.from_pretrained('gogamza/kobart-summarization') text = "과거를 떠올려보자. 방송을 보던 우리의 모습을..." raw_input_ids = tokenizer.encode(text) input_ids = [tokenizer.bos_token_id] + \\ raw_input_ids + [tokenizer.eos_token_id] summary_ids = model.generate(torch.tensor([input_ids]), max_length=150, early_stopping=False, num_beams=5, repetition_penalty=1.0, eos_token_id=tokenizer.eos_token_id) summ_text = tokenizer.batch_decode(summary_ids.tolist(), skip_special_tokens=True)[0] ```
gogamza/kogpt2
2021-04-30T00:08:22.000Z
[]
[ ".gitattributes" ]
gogamza
0
gonced8/pegasus-qa
2021-05-17T15:46:42.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
gonced8
28
transformers
google/bert2bert_L-24_wmt_de_en
2020-12-11T21:41:14.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "en", "de", "dataset:wmt14", "arxiv:1907.12461", "transformers", "license:apache-2.0", "translation", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
google
264
transformers
--- language: - en - de license: apache-2.0 datasets: - wmt14 tags: - translation --- # bert2bert_L-24_wmt_de_en EncoderDecoder model The model was introduced in [this paper](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn and first released in [this repository](https://tfhub.dev/google/bertseq2seq/bert24_de_en/1). The model is an encoder-decoder model that was initialized on the `bert-large` checkpoints for both the encoder and decoder and fine-tuned on German to English translation on the WMT dataset, which is linked above. Disclaimer: The model card has been written by the Hugging Face team. ## How to use You can use this model for translation, *e.g.* ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("google/bert2bert_L-24_wmt_de_en", pad_token="<pad>", eos_token="</s>", bos_token="<s>") model = AutoModelForSeq2SeqLM.from_pretrained("google/bert2bert_L-24_wmt_de_en") sentence = "Willst du einen Kaffee trinken gehen mit mir?" input_ids = tokenizer(sentence, return_tensors="pt", add_special_tokens=False).input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) # should output # Want to drink a kaffee go with me? . ```
google/bert2bert_L-24_wmt_en_de
2020-12-11T21:41:17.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "en", "de", "dataset:wmt14", "arxiv:1907.12461", "transformers", "license:apache-2.0", "translation", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "vocab.txt" ]
google
96
transformers
--- language: - en - de license: apache-2.0 datasets: - wmt14 tags: - translation --- # bert2bert_L-24_wmt_en_de EncoderDecoder model The model was introduced in [this paper](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn and first released in [this repository](https://tfhub.dev/google/bertseq2seq/bert24_en_de/1). The model is an encoder-decoder model that was initialized on the `bert-large` checkpoints for both the encoder and decoder and fine-tuned on English to German translation on the WMT dataset, which is linked above. Disclaimer: The model card has been written by the Hugging Face team. ## How to use You can use this model for translation, *e.g.* ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("google/bert2bert_L-24_wmt_en_de", pad_token="<pad>", eos_token="</s>", bos_token="<s>") model = AutoModelForSeq2SeqLM.from_pretrained("google/bert2bert_L-24_wmt_en_de") sentence = "Would you like to grab a coffee with me this week?" input_ids = tokenizer(sentence, return_tensors="pt", add_special_tokens=False).input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) # should output # Möchten Sie diese Woche einen Kaffee mit mir schnappen?
google/bert_for_seq_generation_L-24_bbc_encoder
2020-09-11T07:57:22.000Z
[ "pytorch", "bert-generation", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "spiece.model" ]
google
616
transformers
google/bert_uncased_L-10_H-128_A-2
2021-05-19T17:23:15.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
31
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-10_H-256_A-4
2021-05-19T17:23:44.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
116
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-10_H-512_A-8
2021-05-19T17:24:16.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
33
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-10_H-768_A-12
2021-05-19T17:24:59.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
19
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-128_A-2
2021-05-19T17:26:01.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
1,582
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-256_A-4
2021-05-19T17:26:24.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
544
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-512_A-8
2021-05-19T17:26:55.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
846,108
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-12_H-768_A-12
2021-05-19T17:27:43.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
3,149
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-2_H-128_A-2
2021-05-19T17:28:12.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
55,317
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-2_H-256_A-4
2021-05-19T17:28:46.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
181
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-2_H-512_A-8
2021-05-19T17:29:08.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
161
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-2_H-768_A-12
2021-05-19T17:29:34.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
48
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-128_A-2
2021-05-19T17:30:08.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
40
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-256_A-4
2021-05-19T17:30:27.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
14,941
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-512_A-8
2021-05-19T17:30:51.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
13,808
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-4_H-768_A-12
2021-05-19T17:31:28.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
38
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-128_A-2
2021-05-19T17:33:17.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
21
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-256_A-4
2021-05-19T17:33:36.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
20
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-512_A-8
2021-05-19T17:34:01.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
98
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-6_H-768_A-12
2021-05-19T17:34:36.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
637
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-8_H-128_A-2
2021-05-19T17:35:05.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
18
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-8_H-256_A-4
2021-05-19T17:35:25.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
35
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-8_H-512_A-8
2021-05-19T17:35:53.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
10,748
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bert_uncased_L-8_H-768_A-12
2021-05-19T17:36:32.000Z
[ "pytorch", "jax", "bert", "arxiv:1908.08962", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "bert_model.ckpt.data-00000-of-00001", "bert_model.ckpt.index", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt" ]
google
230
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
google/bigbird-base-trivia-itc
2021-06-02T14:53:34.000Z
[ "pytorch", "jax", "big_bird", "question-answering", "en", "dataset:trivia_qa", "arxiv:2007.14062", "transformers", "license:apache-2.0" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
google
3,471
transformers
--- language: en license: apache-2.0 datasets: - trivia_qa --- # BigBird base trivia-itc This model is a fine-tune checkpoint of `bigbird-roberta-base`, fine-tuned on `trivia_qa` with `BigBirdForQuestionAnsweringHead` on its top. Check out [this](https://colab.research.google.com/drive/1DVOm1VHjW0eKCayFq1N2GpY6GR9M4tJP?usp=sharing) to see how well `google/bigbird-base-trivia-itc` performs on question answering. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdForQuestionAnswering # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc") # you can change `attention_type` to full attention like this: model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdForQuestionAnswering.from_pretrained("google/bigbird-base-trivia-itc", block_size=16, num_random_blocks=2) question = "Replace me by any text you'd like." context = "Put some context for answering" encoded_input = tokenizer(question, context, return_tensors='pt') output = model(**encoded_input) ``` # Fine-tuning config & hyper-parameters - No. of global token = 128 - Window length = 192 - No. of random token = 192 - Max. sequence length = 4096 - No. of heads = 12 - No. of hidden layers = 12 - Hidden layer size = 768 - Batch size = 32 - Loss = cross-entropy noisy spans ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/bigbird-pegasus-large-arxiv
2021-06-03T18:26:02.000Z
[ "pytorch", "bigbird_pegasus", "seq2seq", "en", "dataset:scientific_papers", "arxiv:2007.14062", "transformers", "license:apache-2.0", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
google
1,596
transformers
--- language: en license: apache-2.0 datasets: - scientific_papers tags: - summarization --- # BigBirdPegasus model (large) BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv") # by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64 model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv") # decoder attention type can't be changed & will be "original_full" # you can change `attention_type` (encoder only) to full attention like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." inputs = tokenizer(text, return_tensors='pt') prediction = model.generate(**inputs) prediction = tokenizer.batch_decode(prediction) ``` ## Training Procedure This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on **arxiv dataset** from [scientific_papers](https://huggingface.co/datasets/scientific_papers). ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/bigbird-pegasus-large-bigpatent
2021-06-03T18:26:21.000Z
[ "pytorch", "bigbird_pegasus", "seq2seq", "en", "dataset:big_patent", "arxiv:2007.14062", "transformers", "license:apache-2.0", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
google
1,012
transformers
--- language: en license: apache-2.0 datasets: - big_patent tags: - summarization --- # BigBirdPegasus model (large) BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-bigpatent") # by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64 model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent") # decoder attention type can't be changed & will be "original_full" # you can change `attention_type` (encoder only) to full attention like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-bigpatent", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." inputs = tokenizer(text, return_tensors='pt') prediction = model.generate(**inputs) prediction = tokenizer.batch_decode(prediction) ``` ## Training Procedure This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on [big_patent](https://huggingface.co/datasets/big_patent) dataset. ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/bigbird-pegasus-large-pubmed
2021-06-03T18:25:30.000Z
[ "pytorch", "bigbird_pegasus", "seq2seq", "en", "dataset:scientific_papers", "arxiv:2007.14062", "transformers", "license:apache-2.0", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer.json", "tokenizer_config.json" ]
google
1,554
transformers
--- language: en license: apache-2.0 datasets: - scientific_papers tags: - summarization --- # BigBirdPegasus model (large) BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. BigBird was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-pubmed") # by default encoder-attention is `block_sparse` with num_random_blocks=3, block_size=64 model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed") # decoder attention type can't be changed & will be "original_full" # you can change `attention_type` (encoder only) to full attention like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-pubmed", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." inputs = tokenizer(text, return_tensors='pt') prediction = model.generate(**inputs) prediction = tokenizer.batch_decode(prediction) ``` ## Training Procedure This checkpoint is obtained after fine-tuning `BigBirdPegasusForConditionalGeneration` for **summarization** on **pubmed dataset** from [scientific_papers](https://huggingface.co/datasets/scientific_papers). ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/bigbird-roberta-base
2021-06-02T14:30:54.000Z
[ "pytorch", "jax", "big_bird", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:cc_news", "arxiv:2007.14062", "transformers", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
google
66,150
transformers
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia - cc_news --- # BigBird base model BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdModel # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdModel.from_pretrained("google/bigbird-roberta-base") # you can change `attention_type` to full attention like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-base", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-base", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training Data This model is pre-trained on four publicly available datasets: **Books**, **CC-News**, **Stories** and **Wikipedia**. It used same sentencepiece vocabulary as RoBERTa (which is in turn borrowed from GPT2). ## Training Procedure Document longer than 4096 were split into multiple documents and documents that were much smaller than 4096 were joined. Following the original BERT training, 15% of tokens were masked and model is trained to predict the mask. Model is warm started from RoBERTa’s checkpoint. ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/bigbird-roberta-large
2021-06-02T14:49:29.000Z
[ "pytorch", "jax", "big_bird", "masked-lm", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:cc_news", "arxiv:2007.14062", "transformers", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
google
1,138
transformers
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia - cc_news --- # BigBird large model BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdModel # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdModel.from_pretrained("google/bigbird-roberta-large") # you can change `attention_type` to full attention like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-large", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-large", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training Data This model is pre-trained on four publicly available datasets: **Books**, **CC-News**, **Stories** and **Wikipedia**. It used same sentencepiece vocabulary as RoBERTa (which is in turn borrowed from GPT2). ## Training Procedure Document longer than 4096 were split into multiple documents and documents that were much smaller than 4096 were joined. Following the original BERT training, 15% of tokens were masked and model is trained to predict the mask. Model is warm started from RoBERTa’s checkpoint. ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
google/byt5-base
2021-06-01T17:48:30.000Z
[ "pytorch", "tf", "t5", "seq2seq", "multilingual", "dataset:mc4", "arxiv:1907.06292", "arxiv:1910.10683", "transformers", "license:apache-2.0", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
google
955
transformers
--- language: multilingual datasets: - mc4 license: apache-2.0 --- # ByT5 - Base ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-base). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-base` significantly outperforms [mt5-base](https://huggingface.co/google/mt5-base) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Example Inference ByT5 works on raw UTF-8 bytes and can be used without a tokenizer: ```python from transformers import T5ForConditionalGeneration import torch model = T5ForConditionalGeneration.from_pretrained('google/byt5-base') input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3 # add 3 for special tokens labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3 # add 3 for special tokens loss = model(input_ids, labels=labels).loss # forward pass ``` For batched inference & training it is however recommended using a tokenizer class for padding: ```python from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('google/byt5-base') tokenizer = AutoTokenizer.from_pretrained('google/byt5-base') model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt") labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels).loss # forward pass ``` ## Abstract Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)
google/byt5-large
2021-06-01T17:51:17.000Z
[ "pytorch", "tf", "t5", "seq2seq", "multilingual", "dataset:mc4", "arxiv:1907.06292", "arxiv:1910.10683", "transformers", "license:apache-2.0", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
google
291
transformers
--- language: multilingual datasets: - mc4 license: apache-2.0 --- # ByT5 - large ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-large). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-large` significantly outperforms [mt5-large](https://huggingface.co/google/mt5-large) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Example Inference ByT5 works on raw UTF-8 bytes and can be used without a tokenizer: ```python from transformers import T5ForConditionalGeneration import torch model = T5ForConditionalGeneration.from_pretrained('google/byt5-large') input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3 # add 3 for special tokens labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3 # add 3 for special tokens loss = model(input_ids, labels=labels).loss # forward pass ``` For batched inference & training it is however recommended using a tokenizer class for padding: ```python from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('google/byt5-large') tokenizer = AutoTokenizer.from_pretrained('google/byt5-large') model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt") labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels).loss # forward pass ``` ## Abstract Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)
google/byt5-small
2021-06-01T17:50:58.000Z
[ "pytorch", "tf", "t5", "seq2seq", "multilingual", "dataset:mc4", "arxiv:1907.06292", "arxiv:1910.10683", "transformers", "license:apache-2.0", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
google
2,308
transformers
--- language: multilingual datasets: - mc4 license: apache-2.0 --- # ByT5 - Small ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-small). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-small` significantly outperforms [mt5-small](https://huggingface.co/google/mt5-small) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Example Inference ByT5 works on raw UTF-8 bytes and can be used without a tokenizer: ```python from transformers import T5ForConditionalGeneration import torch model = T5ForConditionalGeneration.from_pretrained('google/byt5-small') input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3 # add 3 for special tokens labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3 # add 3 for special tokens loss = model(input_ids, labels=labels).loss # forward pass ``` For batched inference & training it is however recommended using a tokenizer class for padding: ```python from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('google/byt5-small') tokenizer = AutoTokenizer.from_pretrained('google/byt5-small') model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt") labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels).loss # forward pass ``` ## Abstract Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)
google/byt5-xl
2021-06-14T19:45:15.000Z
[ "pytorch", "tf", "t5", "seq2seq", "multilingual", "dataset:mc4", "arxiv:1907.06292", "arxiv:1910.10683", "transformers", "license:apache-2.0", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
google
306
transformers
--- language: multilingual datasets: - mc4 license: apache-2.0 --- # ByT5 - xl ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-xl). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-xl` significantly outperforms [mt5-xl](https://huggingface.co/google/mt5-xl) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Example Inference ByT5 works on raw UTF-8 bytes and can be used without a tokenizer: ```python from transformers import T5ForConditionalGeneration import torch model = T5ForConditionalGeneration.from_pretrained('google/byt5-xl') input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3 # add 3 for special tokens labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3 # add 3 for special tokens loss = model(input_ids, labels=labels).loss # forward pass ``` For batched inference & training it is however recommended using a tokenizer class for padding: ```python from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('google/byt5-xl') tokenizer = AutoTokenizer.from_pretrained('google/byt5-xl') model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt") labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels).loss # forward pass ``` ## Abstract Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)
google/byt5-xxl
2021-06-15T12:11:58.000Z
[ "pytorch", "tf", "t5", "seq2seq", "multilingual", "dataset:mc4", "arxiv:1907.06292", "arxiv:1910.10683", "transformers", "license:apache-2.0", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json" ]
google
56
transformers
--- language: multilingual datasets: - mc4 license: apache-2.0 --- # ByT5 - xxl ByT5 is a tokenizer-free version of [Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) and generally follows the architecture of [MT5](https://huggingface.co/google/mt5-xxl). ByT5 was only pre-trained on [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) excluding any supervised training with an average span-mask of 20 UTF-8 characters. Therefore, this model has to be fine-tuned before it is useable on a downstream task. ByT5 works especially well on noisy text data,*e.g.*, `google/byt5-xxl` significantly outperforms [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [TweetQA](https://arxiv.org/abs/1907.06292). Paper: [ByT5: Towards a token-free future with pre-trained byte-to-byte models](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel* ## Example Inference ByT5 works on raw UTF-8 bytes and can be used without a tokenizer: ```python from transformers import T5ForConditionalGeneration import torch model = T5ForConditionalGeneration.from_pretrained('google/byt5-xxl') input_ids = torch.tensor([list("Life is like a box of chocolates.".encode("utf-8"))]) + 3 # add 3 for special tokens labels = torch.tensor([list("La vie est comme une boîte de chocolat.".encode("utf-8"))]) + 3 # add 3 for special tokens loss = model(input_ids, labels=labels).loss # forward pass ``` For batched inference & training it is however recommended using a tokenizer class for padding: ```python from transformers import T5ForConditionalGeneration, AutoTokenizer model = T5ForConditionalGeneration.from_pretrained('google/byt5-xxl') tokenizer = AutoTokenizer.from_pretrained('google/byt5-xxl') model_inputs = tokenizer(["Life is like a box of chocolates.", "Today is Monday."], padding="longest", return_tensors="pt") labels = tokenizer(["La vie est comme une boîte de chocolat.", "Aujourd'hui c'est lundi."], padding="longest", return_tensors="pt").input_ids loss = model(**model_inputs, labels=labels).loss # forward pass ``` ## Abstract Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. Encoding text as a sequence of tokens requires a tokenizer, which is typically created as an independent artifact from the model. Token-free models that instead operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We carefully characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/ByT5.png)