title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Efficient Sampling for Selecting Important Nodes in Random Network
We consider the problem of selecting important nodes in a random network, where the nodes connect to each other randomly with certain transition probabilities. The node importance is characterized by the stationary probabilities of the corresponding nodes in a Markov chain defined over the network, as in Google's PageRank. Unlike deterministic network, the transition probabilities in random network are unknown but can be estimated by sampling. Under a Bayesian learning framework, we apply the first-order Taylor expansion and normal approximation to provide a computationally efficient posterior approximation of the stationary probabilities. In order to maximize the probability of correct selection, we propose a dynamic sampling procedure which uses not only posterior means and variances of certain interaction parameters between different nodes, but also the sensitivities of the stationary probabilities with respect to each interaction parameter. Numerical experiment results demonstrate the superiority of the proposed sampling procedure.
stat
Hidden Markov models as recurrent neural networks: An application to Alzheimer's disease
Hidden Markov models (HMMs) are commonly used for disease progression modeling when the true patient health state is not fully known. Since HMMs may have multiple local optima, performance can be improved by incorporating additional patient covariates to inform estimation. To allow for this, we develop hidden Markov recurrent neural networks (HMRNNs), a special case of recurrent neural networks with the same likelihood function as a corresponding discrete-observation HMM. The HMRNN can be combined with any other predictive neural networks that take patient information as input, with all parameters estimated simultaneously via gradient descent. Using a dataset of Alzheimer's disease patients, we demonstrate how combining the HMRNN with other predictive neural networks improves disease forecasting performance and offers a novel clinical interpretation compared with a standard HMM trained via expectation-maximization.
stat
Bayesian Inference of Local Projections with Roughness Penalty Priors
A local projection is a statistical framework that accounts for the relationship between an exogenous variable and an endogenous variable, measured at different time points. Local projections are often applied in impulse response analyses and direct forecasting. While local projections are becoming increasingly popular because of their robustness to misspecification and their flexibility, they are less statistically efficient than standard methods, such as vector autoregression. In this study, we seek to improve the statistical efficiency of local projections by developing a fully Bayesian approach that can be used to estimate local projections using roughness penalty priors. By incorporating such prior-induced smoothness, we can use information contained in successive observations to enhance the statistical efficiency of an inference. We apply the proposed approach to an analysis of monetary policy in the United States, showing that the roughness penalty priors successfully estimate the impulse response functions and improve the predictive accuracy of local projections.
stat
Estimation and false discovery control for the analysis of environmental mixtures
The analysis of environmental mixtures is of growing importance in environmental epidemiology, and one of the key goals in such analyses is to identify exposures and their interactions that are associated with adverse health outcomes. Typical approaches utilize flexible regression models combined with variable selection to identify important exposures and estimate a potentially nonlinear relationship with the outcome of interest. Despite this surge in interest, no approaches to date can identify exposures and interactions while controlling any form of error rates with respect to exposure selection. We propose two novel approaches to estimating the health effects of environmental mixtures that simultaneously 1) Estimate and provide valid inference for the overall mixture effect, and 2) identify important exposures and interactions while controlling the false discovery rate. We show that this can lead to substantial power gains to detect weak effects of environmental exposures. We apply our approaches to a study of persistent organic pollutants and find that our approach is able to identify more interactions than existing approaches.
stat
Interpretable, similarity-driven multi-view embeddings from high-dimensional biomedical data
Similarity-driven multi-view linear reconstruction (SiMLR) is an algorithm that exploits inter-modality relationships to transform large scientific datasets into smaller, more well-powered and interpretable low-dimensional spaces. SiMLR contributes a novel objective function for identifying joint signal, regularization based on sparse matrices representing prior within-modality relationships and an implementation that permits application to joint reduction of large data matrices, each of which may have millions of entries. We demonstrate that SiMLR outperforms closely related methods on supervised learning problems in simulation data, a multi-omics cancer survival prediction dataset and multiple modality neuroimaging datasets. Taken together, this collection of results shows that SiMLR may be applied with default parameters to joint signal estimation from disparate modalities and may yield practically useful results in a variety of application domains.
stat
Random Tessellation Forests
Space partitioning methods such as random forests and the Mondrian process are powerful machine learning methods for multi-dimensional and relational data, and are based on recursively cutting a domain. The flexibility of these methods is often limited by the requirement that the cuts be axis aligned. The Ostomachion process and the self-consistent binary space partitioning-tree process were recently introduced as generalizations of the Mondrian process for space partitioning with non-axis aligned cuts in the two dimensional plane. Motivated by the need for a multi-dimensional partitioning tree with non-axis aligned cuts, we propose the Random Tessellation Process (RTP), a framework that includes the Mondrian process and the binary space partitioning-tree process as special cases. We derive a sequential Monte Carlo algorithm for inference, and provide random forest methods. Our process is self-consistent and can relax axis-aligned constraints, allowing complex inter-dimensional dependence to be captured. We present a simulation study, and analyse gene expression data of brain tissue, showing improved accuracies over other methods.
stat
Simple and Honest Confidence Intervals in Nonparametric Regression
We consider the problem of constructing honest confidence intervals (CIs) for a scalar parameter of interest, such as the regression discontinuity parameter, in nonparametric regression based on kernel or local polynomial estimators. To ensure that our CIs are honest, we use critical values that take into account the possible bias of the estimator upon which the CIs are based. We show that this approach leads to CIs that are more efficient than conventional CIs that achieve coverage by undersmoothing or subtracting an estimate of the bias. We give sharp efficiency bounds of using different kernels, and derive the optimal bandwidth for constructing honest CIs. We show that using the bandwidth that minimizes the maximum mean-squared error results in CIs that are nearly efficient and that in this case, the critical value depends only on the rate of convergence. For the common case in which the rate of convergence is $n^{-2/5}$, the appropriate critical value for 95% CIs is 2.18, rather than the usual 1.96 critical value. We illustrate our results in a Monte Carlo analysis and an empirical application.
stat
Generalization Bounds for Convolutional Neural Networks
Convolutional neural networks (CNNs) have achieved breakthrough performances in a wide range of applications including image classification, semantic segmentation, and object detection. Previous research on characterizing the generalization ability of neural networks mostly focuses on fully connected neural networks (FNNs), regarding CNNs as a special case of FNNs without taking into account the special structure of convolutional layers. In this work, we propose a tighter generalization bound for CNNs by exploiting the sparse and permutation structure of its weight matrices. As the generalization bound relies on the spectral norm of weight matrices, we further study spectral norms of three commonly used convolution operations including standard convolution, depthwise convolution, and pointwise convolution. Theoretical and experimental results both demonstrate that our bounds for CNNs are tighter than existing bounds.
stat
On Regret with Multiple Best Arms
We study a regret minimization problem with the existence of multiple best/near-optimal arms in the multi-armed bandit setting. We consider the case when the number of arms/actions is comparable or much larger than the time horizon, and make no assumptions about the structure of the bandit instance. Our goal is to design algorithms that can automatically adapt to the unknown hardness of the problem, i.e., the number of best arms. Our setting captures many modern applications of bandit algorithms where the action space is enormous and the information about the underlying instance/structure is unavailable. We first propose an adaptive algorithm that is agnostic to the hardness level and theoretically derive its regret bound. We then prove a lower bound for our problem setting, which indicates: (1) no algorithm can be minimax optimal simultaneously over all hardness levels; and (2) our algorithm achieves a rate function that is Pareto optimal. With additional knowledge of the expected reward of the best arm, we propose another adaptive algorithm that is minimax optimal, up to polylog factors, over all hardness levels. Experimental results confirm our theoretical guarantees and show advantages of our algorithms over the previous state-of-the-art.
stat
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
In this paper, we study random subsampling of Gaussian process regression, one of the simplest approximation baselines, from a theoretical perspective. Although subsampling discards a large part of training data, we show provable guarantees on the accuracy of the predictive mean/variance and its generalization ability. For analysis, we consider embedding kernel matrices into graphons, which encapsulate the difference of the sample size and enables us to evaluate the approximation and generalization errors in a unified manner. The experimental results show that the subsampling approximation achieves a better trade-off regarding accuracy and runtime than the Nystr\"{o}m and random Fourier expansion methods.
stat
Using machine learning to correct model error in data assimilation and forecast applications
The idea of using machine learning (ML) methods to reconstruct the dynamics of a system is the topic of recent studies in the geosciences, in which the key output is a surrogate model meant to emulate the dynamical model. In order to treat sparse and noisy observations in a rigorous way, ML can be combined to data assimilation (DA). This yields a class of iterative methods in which, at each iteration a DA step assimilates the observations, and alternates with a ML step to learn the underlying dynamics of the DA analysis. In this article, we propose to use this method to correct the error of an existent, knowledge-based model. In practice, the resulting surrogate model is an hybrid model between the original (knowledge-based) model and the ML model. We demonstrate numerically the feasibility of the method using a two-layer, two-dimensional quasi-geostrophic channel model. Model error is introduced by the means of perturbed parameters. The DA step is performed using the strong-constraint 4D-Var algorithm, while the ML step is performed using deep learning tools. The ML models are able to learn a substantial part of the model error and the resulting hybrid surrogate models produce better short- to mid-range forecasts. Furthermore, using the hybrid surrogate models for DA yields a significantly better analysis than using the original model.
stat
Selection of Regression Models under Linear Restrictions for Fixed and Random Designs
Many important modeling tasks in linear regression, including variable selection (in which slopes of some predictors are set equal to zero) and simplified models based on sums or differences of predictors (in which slopes of those predictors are set equal to each other, or the negative of each other, respectively), can be viewed as being based on imposing linear restrictions on regression parameters. In this paper, we discuss how such models can be compared using information criteria designed to estimate predictive measures like squared error and Kullback-Leibler (KL) discrepancy, in the presence of either deterministic predictors (fixed-X) or random predictors (random-X). We extend the justifications for existing fixed-X criteria Cp, FPE and AICc, and random-X criteria Sp and RCp, to general linear restrictions. We further propose and justify a KL-based criterion, RAICc, under random-X for variable selection and general linear restrictions. We show in simulations that the use of the KL-based criteria AICc and RAICc results in better predictive performance and sparser solutions than the use of squared error-based criteria, including cross-validation.
stat
Identification and Model Testing in Linear Structural Equation Models using Auxiliary Variables
We developed a novel approach to identification and model testing in linear structural equation models (SEMs) based on auxiliary variables (AVs), which generalizes a widely-used family of methods known as instrumental variables. The identification problem is concerned with the conditions under which causal parameters can be uniquely estimated from an observational, non-causal covariance matrix. In this paper, we provide an algorithm for the identification of causal parameters in linear structural models that subsumes previous state-of-the-art methods. In other words, our algorithm identifies strictly more coefficients and models than methods previously known in the literature. Our algorithm builds on a graph-theoretic characterization of conditional independence relations between auxiliary and model variables, which is developed in this paper. Further, we leverage this new characterization for allowing identification when limited experimental data or new substantive knowledge about the domain is available. Lastly, we develop a new procedure for model testing using AVs.
stat
Score-Based Parameter Estimation for a Class of Continuous-Time State Space Models
We consider the problem of parameter estimation for a class of continuous-time state space models. In particular, we explore the case of a partially observed diffusion, with data also arriving according to a diffusion process. Based upon a standard identity of the score function, we consider two particle filter based methodologies to estimate the score function. Both methods rely on an online estimation algorithm for the score function of $\mathcal{O}(N^2)$ cost, with $N\in\mathbb{N}$ the number of particles. The first approach employs a simple Euler discretization and standard particle smoothers and is of cost $\mathcal{O}(N^2 + N\Delta_l^{-1})$ per unit time, where $\Delta_l=2^{-l}$, $l\in\mathbb{N}_0$, is the time-discretization step. The second approach is new and based upon a novel diffusion bridge construction. It yields a new backward type Feynman-Kac formula in continuous-time for the score function and is presented along with a particle method for its approximation. Considering a time-discretization, the cost is $\mathcal{O}(N^2\Delta_l^{-1})$ per unit time. To improve computational costs, we then consider multilevel methodologies for the score function. We illustrate our parameter estimation method via stochastic gradient approaches in several numerical examples.
stat
Dyadic Reciprocity as a Function of Covariates
Reciprocity in dyadic interactions is common and a topic of interest across disciplines. In some cases, reciprocity may be expected to be more or less prevalent among certain kinds of dyads. In response to interest among researchers in estimating dyadic reciprocity as a function of covariates, this paper proposes an extension to the multilevel Social Relations Model. The outcome variable is assumed to be a binomial proportion, as is commonly encountered in observational and archival research. The approach draws on principles of multilevel modeling to implement random intercepts and slopes that vary among dyads. The corresponding variance function permits the computation of a dyadic reciprocity correlation. The modeling approach can potentially be integrated with other statistical models in the field of social network analysis.
stat
matrixdist: An R Package for Inhomogeneous Phase-Type Distributions
Inhomogeneous phase-type distributions (IPH) are a broad class of laws which arise from the absorption times of Markov jump processes. In the time-homogeneous particular case, we recover phase-type (PH) distributions. In matrix notation, various functionals corresponding to their distributional properties are explicitly available and succinctly described. As the number of parameters increases, IPH distributions may converge weakly to any probability measure on the positive real line, making them particularly attractive candidates for statistical modelling purposes. Contrary to PH distributions, the IPH class allows for a wide range of tail behaviours, which often leads to adequate estimation with a moderate number of parameters. One of the main difficulties in estimating PH and IPH distributions is their large number of matrix parameters. This drawback is best handled through the expectation-maximisation (EM) algorithm, exploiting the underlying and unobserved Markov structure. The matrixdist package presents tools for IPH distributions to efficiently evaluate functionals, simulate, and carry out maximum likelihood estimation through a three-step EM algorithm. Aggregated and right-censored data are supported by the fitting routines, and in particular, one may estimate time-to-event data, histograms, or discretised theoretical distributions.
stat
Estimation and Validation of Ratio-based Conditional Average Treatment Effects Using Observational Data
While sample sizes in randomized clinical trials are large enough to estimate the average treatment effect well, they are often insufficient for estimation of treatment-covariate interactions critical to studying data-driven precision medicine. Observational data from real world practice may play an important role in alleviating this problem. One common approach in trials is to predict the outcome of interest with separate regression models in each treatment arm, and estimate the treatment effect based on the contrast of the predictions. Unfortunately, this simple approach may induce spurious treatment-covariate interaction in observational studies when the regression model is misspecified. Motivated by the need of modeling the number of relapses in multiple sclerosis patients, where the ratio of relapse rates is a natural choice of the treatment effect, we propose to estimate the conditional average treatment effect (CATE) as the ratio of expected potential outcomes, and derive a doubly robust estimator of this CATE in a semiparametric model of treatment-covariate interactions. We also provide a validation procedure to check the quality of the estimator on an independent sample. We conduct simulations to demonstrate the finite sample performance of the proposed methods, and illustrate their advantages on real data by examining the treatment effect of dimethyl fumarate compared to teriflunomide in multiple sclerosis patients.
stat
Covariance-based sample selection for heterogeneous data: Applications to gene expression and autism risk gene detection
Risk for autism can be influenced by genetic mutations in hundreds of genes. Based on findings showing that genes with highly correlated gene expressions are functionally interrelated, "guilt by association" methods such as DAWN have been developed to identify these autism risk genes. Previous research analyzes the BrainSpan dataset, which contains gene expression of brain tissues from varying regions and developmental periods. Since the spatiotemporal properties of brain tissue is known to affect the gene expression's covariance, previous research have focused only on a specific subset of samples to avoid the issue of heterogeneity. This leads to a potential loss of power when detecting risk genes. In this article, we develop a new method called COBS (COvariance-Based sample Selection) to find a larger and more homogeneous subset of samples that share the same population covariance matrix for the downstream DAWN analysis. To demonstrate COBS's effectiveness, we utilize genetic risk scores from two sequential data freezes obtained in 2014 and 2019. We show COBS improves DAWN's ability to predict risk genes detected in the newer data freeze when utilizing the risk scores of the older data freeze as input.
stat
Exact Inference for Disease Prevalence Based on a Test with Unknown Specificity and Sensitivity
To make informative public policy decisions in battling the ongoing COVID-19 pandemic, it is important to know the disease prevalence in a population. There are two intertwined difficulties in estimating this prevalence based on testing results from a group of subjects. First, the test is prone to measurement error with unknown sensitivity and specificity. Second, the prevalence tends to be low at the initial stage of the pandemic and we may not be able to determine if a positive test result is a false positive due to the imperfect specificity of the test. The statistical inference based on large sample approximation or conventional bootstrap may not be sufficiently reliable and yield confidence intervals that do not cover the true prevalence at the nominal level. In this paper, we have proposed a set of 95% confidence intervals, whose validity is guaranteed and doesn't depend on the sample size in the unweighted setting. For the weighted setting, the proposed inference is equivalent to a class of hybrid bootstrap methods, whose performance is also more robust to the sample size than those based on asymptotic approximations. The methods are used to reanalyze data from a study investigating the antibody prevalence in Santa Clara county, California, which was the motivating example of this research, in addition to several other seroprevalence studies where authors had tried to correct their estimates for test performance. Extensive simulation studies have been conducted to examine the finite-sample performance of the proposed confidence intervals.
stat
Functional Principal Component Analysis for Extrapolating Multi-stream Longitudinal Data
The advance of modern sensor technologies enables collection of multi-stream longitudinal data where multiple signals from different units are collected in real-time. In this article, we present a non-parametric approach to predict the evolution of multi-stream longitudinal data for an in-service unit through borrowing strength from other historical units. Our approach first decomposes each stream into a linear combination of eigenfunctions and their corresponding functional principal component (FPC) scores. A Gaussian process prior for the FPC scores is then established based on a functional semi-metric that measures similarities between streams of historical units and the in-service unit. Finally, an empirical Bayesian updating strategy is derived to update the established prior using real-time stream data obtained from the in-service unit. Experiments on synthetic and real world data show that the proposed framework outperforms state-of-the-art approaches and can effectively account for heterogeneity as well as achieve high predictive accuracy.
stat
Disentangling Disentanglement in Variational Autoencoders
We develop a generalisation of disentanglement in VAEs---decomposition of the latent representation---characterising it as the fulfilment of two factors: a) the latent encodings of the data having an appropriate level of overlap, and b) the aggregate encoding of the data conforming to a desired structure, represented through the prior. Decomposition permits disentanglement, i.e. explicit independence between latents, as a special case, but also allows for a much richer class of properties to be imposed on the learnt representation, such as sparsity, clustering, independent subspaces, or even intricate hierarchical dependency relationships. We show that the $\beta$-VAE varies from the standard VAE predominantly in its control of latent overlap and that for the standard choice of an isotropic Gaussian prior, its objective is invariant to rotations of the latent representation. Viewed from the decomposition perspective, breaking this invariance with simple manipulations of the prior can yield better disentanglement with little or no detriment to reconstructions. We further demonstrate how other choices of prior can assist in producing different decompositions and introduce an alternative training objective that allows the control of both decomposition factors in a principled manner.
stat
Generalised Boosted Forests
This paper extends recent work on boosting random forests to model non-Gaussian responses. Given an exponential family $\mathbb{E}[Y|X] = g^{-1}(f(X))$ our goal is to obtain an estimate for $f$. We start with an MLE-type estimate in the link space and then define generalised residuals from it. We use these residuals and some corresponding weights to fit a base random forest and then repeat the same to obtain a boost random forest. We call the sum of these three estimators a \textit{generalised boosted forest}. We show with simulated and real data that both the random forest steps reduces test-set log-likelihood, which we treat as our primary metric. We also provide a variance estimator, which we can obtain with the same computational cost as the original estimate itself. Empirical experiments on real-world data and simulations demonstrate that the methods can effectively reduce bias, and that confidence interval coverage is conservative in the bulk of the covariate distribution.
stat
The survival-incorporated median versus the median in the survivors or in the always-survivors: What are we measuring? And why?
Many clinical studies evaluate the benefit of treatment based on both survival and other clinical outcomes. In these clinical studies, there are situations that the clinical outcomes are truncated by death, where subjects die before their clinical outcome is measured. Treating outcomes as "missing" or "censored" due to death can be misleading for treatment effect evaluation. We show that if we use the median in the survivors or in the always-survivors to summarize clinical outcomes, we may conclude a trade-off exists between the probability of survival and good clinical outcomes, even in settings where both the probability of survival and the probability of any good clinical outcome are better for one treatment. Therefore, we advocate not always treating death as a mechanism through which clinical outcomes are missing, but rather as part of the outcome measure. To account for the survival status, we describe the survival-incorporated median as an alternative summary measure for outcomes in the presence of death. The survival-incorporated median is the threshold such that 50% of the population is alive with an outcome above that threshold. We use conceptual examples to show that the survival-incorporated median provides a simple and useful summary measure to inform clinical practice.
stat
Adaptive Quantile Low-Rank Matrix Factorization
Low-rank matrix factorization (LRMF) has received much popularity owing to its successful applications in both computer vision and data mining. By assuming noise to come from a Gaussian, Laplace or mixture of Gaussian distributions, significant efforts have been made on optimizing the (weighted) $L_1$ or $L_2$-norm loss between an observed matrix and its bilinear factorization. However, the type of noise distribution is generally unknown in real applications and inappropriate assumptions will inevitably deteriorate the behavior of LRMF. On the other hand, real data are often corrupted by skew rather than symmetric noise. To tackle this problem, this paper presents a novel LRMF model called AQ-LRMF by modeling noise with a mixture of asymmetric Laplace distributions. An efficient algorithm based on the expectation-maximization (EM) algorithm is also offered to estimate the parameters involved in AQ-LRMF. The AQ-LRMF model possesses the advantage that it can approximate noise well no matter whether the real noise is symmetric or skew. The core idea of AQ-LRMF lies in solving a weighted $L_1$ problem with weights being learned from data. The experiments conducted on synthetic and real datasets show that AQ-LRMF outperforms several state-of-the-art techniques. Furthermore, AQ-LRMF also has the superiority over the other algorithms in terms of capturing local structural information contained in real images.
stat
Degrees of Freedom and Model Selection for k-means Clustering
This paper investigates the model degrees of freedom in k-means clustering. An extension of Stein's lemma provides an expression for the effective degrees of freedom in the k-means model. Approximating the degrees of freedom in practice requires simplifications of this expression, however empirical studies evince the appropriateness of our proposed approach. The practical relevance of this new degrees of freedom formulation for k-means is demonstrated through model selection using the Bayesian Information Criterion. The reliability of this method is validated through experiments on simulated data as well as on a large collection of publicly available benchmark data sets from diverse application areas. Comparisons with popular existing techniques indicate that this approach is extremely competitive for selecting high quality clustering solutions. Code to implement the proposed approach is available in the form of an R package from https://github.com/DavidHofmeyr/edfkmeans.
stat
A new sample-based algorithms to compute the total sensitivity index
Variance-based sensitivity indices have established themselves as a reference among practitioners of sensitivity analysis of model output. It is not unusual to consider a variance-based sensitivity analysis as informative if it produces at least the first order sensitivity indices S_j and the so-called total-effect sensitivity indices T_j for all the uncertain factors of the mathematical model under analysis. Computational economy is critical in sensitivity analysis. It depends mostly upon the number of model evaluations needed to obtain stable values of the estimates. While efficient estimation procedures independent from the number of factors under analysis are available for the first order indices, this is less the case for the total sensitivity indices. When estimating T_j, one can either use a sample-based approach, whose computational cost depends fromon the number of factors, or approaches based on meta-modelling/emulators, e.g. based on Gaussian processes. The present work focuses on sample-based estimation procedures for T_j and tries different avenues to achieve an algorithmic improvement over the designs proposed in the existing best practices. We conclude that some proposed sample-based improvements found in the literature do not work as claimed, and that improving on the existing best practice is indeed fraught with difficulties. We motivate our conclusions introducing the concepts of explorativity and efficiency of the design.
stat
Comparison of Clinical Episode Outcomes between Bundled Payments for Care Improvement (BPCI) Initiative Participants and Non-Participants
Objective: To evaluate differences in major outcomes between Bundled Payments for Care Improvement (BPCI) participating providers and non-participating providers for both Major Joint Replacement of the Lower Extremity (MJRLE) and Acute Myocardial Infarction (AMI) episodes. Methods: A difference-in-differences approach estimated the differential change in outcomes for Medicare beneficiaries who had an MJRLE or AMI at a BPCI participating hospital between the baseline (January 2011 through September 2013) and intervention (October 2013 through December 2016) periods and beneficiaries with the same episode (MJRLE or AMI) at a matched comparison hospital. Main Outcomes and Measures: Medicare payments, LOS, and readmissions during the episode, which includes the anchor hospitalization and the 90-day post discharge period. Results: Mean total Medicare payments for an MJRLE episode and the 90-day post discharge period declined $444 more (p < 0.0001) for Medicare beneficiaries with episodes initiated in a BPCI-participating provider than for the beneficiaries in a comparison provider. This reduction was mainly due to reduced institutional post-acute care (PAC) payments. Slight reductions in carrier payments and LOS were estimated. Readmission rates were not statistically different between the BPCI and the comparison populations. These findings suggest that PAC use can be reduced without adverse effects on recovery from MJRLE. The lack of statistically significant differences in effects for AMI could be explained by a smaller sample size or more heterogenous recovery paths in AMI. Conclusions: Our findings suggest that, as currently designed, bundled payments can be effective in reducing payments for MJRLE episodes of care, but not necessarily for AMI. Most savings came from the declines in PAC. These findings are consistent with the results reported in the BPCI model evaluation for CMS.
stat
Binary Classification from Positive Data with Skewed Confidence
Positive-confidence (Pconf) classification [Ishida et al., 2018] is a promising weakly-supervised learning method which trains a binary classifier only from positive data equipped with confidence. However, in practice, the confidence may be skewed by bias arising in an annotation process. The Pconf classifier cannot be properly learned with skewed confidence, and consequently, the classification performance might be deteriorated. In this paper, we introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyperparameter which cancels out the negative impact of skewed confidence under the assumption that we have the misclassification rate of positive samples as a prior knowledge. We demonstrate the effectiveness of the proposed method through a synthetic experiment with simple linear models and benchmark problems with neural network models. We also apply our method to drivers' drowsiness prediction to show that it works well with a real-world problem where confidence is obtained based on manual annotation.
stat
Robust Estimation under Linear Mixed Models: The Minimum Density Power Divergence Approach
Many real-life data sets can be analyzed using Linear Mixed Models (LMMs). Since these are ordinarily based on normality assumptions, under small deviations from the model the inference can be highly unstable when the associated parameters are estimated by classical methods. On the other hand, the density power divergence (DPD) family, which measures the discrepancy between two probability density functions, has been successfully used to build robust estimators with high stability associated with minimal loss in efficiency. Here, we develop the minimum DPD estimator (MDPDE) for independent but non identically distributed observations in LMMs. We prove the theoretical properties, including consistency and asymptotic normality. The influence function and sensitivity measures are studied to explore the robustness properties. As a data based choice of the MDPDE tuning parameter $\alpha$ is very important, we propose two candidates as "optimal" choices, where optimality is in the sense of choosing the strongest downweighting that is necessary for the particular data set. We conduct a simulation study comparing the proposed MDPDE, for different values of $\alpha$, with the S-estimators, M-estimators and the classical maximum likelihood estimator, considering different levels of contamination. Finally, we illustrate the performance of our proposal on a real-data example.
stat
Sampling Algorithms, from Survey Sampling to Monte Carlo Methods: Tutorial and Literature Review
This paper is a tutorial and literature review on sampling algorithms. We have two main types of sampling in statistics. The first type is survey sampling which draws samples from a set or population. The second type is sampling from probability distribution where we have a probability density or mass function. In this paper, we cover both types of sampling. First, we review some required background on mean squared error, variance, bias, maximum likelihood estimation, Bernoulli, Binomial, and Hypergeometric distributions, the Horvitz-Thompson estimator, and the Markov property. Then, we explain the theory of simple random sampling, bootstrapping, stratified sampling, and cluster sampling. We also briefly introduce multistage sampling, network sampling, and snowball sampling. Afterwards, we switch to sampling from distribution. We explain sampling from cumulative distribution function, Monte Carlo approximation, simple Monte Carlo methods, and Markov Chain Monte Carlo (MCMC) methods. For simple Monte Carlo methods, whose iterations are independent, we cover importance sampling and rejection sampling. For MCMC methods, we cover Metropolis algorithm, Metropolis-Hastings algorithm, Gibbs sampling, and slice sampling. Then, we explain the random walk behaviour of Monte Carlo methods and more efficient Monte Carlo methods, including Hamiltonian (or hybrid) Monte Carlo, Adler's overrelaxation, and ordered overrelaxation. Finally, we summarize the characteristics, pros, and cons of sampling methods compared to each other. This paper can be useful for different fields of statistics, machine learning, reinforcement learning, and computational physics.
stat
Very Short Term Time-Series Forecasting of Solar Irradiance Without Exogenous Inputs
This paper compares different forecasting methods and models to predict average values of solar irradiance with a sampling time of 15 min over a prediction horizon of up to 3 h. The methods considered only require historic solar irradiance values, the current time and geographical location, i.e., no exogenous inputs are used. Nearest neighbor regression (NNR) and autoregressive integrated moving average (ARIMA) models are tested using different hyperparameters, e.g., the number of lags, or the size of the training data set, and data from different locations and seasons. The hyperparameters and their effect on the forecast quality are analyzed to identify properties which are likely to lead to good forecasts. Using these properties, a reduced search space is derived to identify good forecasting models much faster.
stat
Hierarchical space-time modeling of exceedances with an application to rainfall data
The statistical modeling of space-time extremes in environmental applications is key to understanding complex dependence structures in original event data and to generating realistic scenarios for impact models. In this context of high-dimensional data, we propose a novel hierarchical model for high threshold exceedances defined over continuous space and time by embedding a space-time Gamma process convolution for the rate of an exponential variable, leading to asymptotic independence in space and time. Its physically motivated anisotropic dependence structure is based on geometric objects moving through space-time according to a velocity vector. We demonstrate that inference based on weighted pairwise likelihood is fast and accurate. The usefulness of our model is illustrated by an application to hourly precipitation data from a study region in Southern France, where it clearly improves on an alternative censored Gaussian space-time random field model. While classical limit models based on threshold-stability fail to appropriately capture relatively fast joint tail decay rates between asymptotic dependence and classical independence, strong empirical evidence from our application and other recent case studies motivates the use of more realistic asymptotic independence models such as ours.
stat
Chance-Constrained Active Inference
Active Inference (ActInf) is an emerging theory that explains perception and action in biological agents, in terms of minimizing a free energy bound on Bayesian surprise. Goal-directed behavior is elicited by introducing prior beliefs on the underlying generative model. In contrast to prior beliefs, which constrain all realizations of a random variable, we propose an alternative approach through chance constraints, which allow for a (typically small) probability of constraint violation, and demonstrate how such constraints can be used as intrinsic drivers for goal-directed behavior in ActInf. We illustrate how chance-constrained ActInf weights all imposed (prior) constraints on the generative model, allowing e.g., for a trade-off between robust control and empirical chance constraint violation. Secondly, we interpret the proposed solution within a message passing framework. Interestingly, the message passing interpretation is not only relevant to the context of ActInf, but also provides a general purpose approach that can account for chance constraints on graphical models. The chance constraint message updates can then be readily combined with other pre-derived message update rules, without the need for custom derivations. The proposed chance-constrained message passing framework thus accelerates the search for workable models in general, and can be used to complement message-passing formulations on generative neural models.
stat
A Simple and Fast Algorithm for L1-norm Kernel PCA
We present an algorithm for L1-norm kernel PCA and provide a convergence analysis for it. While an optimal solution of L2-norm kernel PCA can be obtained through matrix decomposition, finding that of L1-norm kernel PCA is not trivial due to its non-convexity and non-smoothness. We provide a novel reformulation through which an equivalent, geometrically interpretable problem is obtained. Based on the geometric interpretation of the reformulated problem, we present a fixed-point type algorithm that iteratively computes a binary weight for each observation. As the algorithm requires only inner products of data vectors, it is computationally efficient and the kernel trick is applicable. In the convergence analysis, we show that the algorithm converges to a local optimal solution in a finite number of steps. Moreover, we provide a rate of convergence analysis, which has been never done for any L1-norm PCA algorithm, proving that the sequence of objective values converges at a linear rate. In numerical experiments, we show that the algorithm is robust in the presence of entry-wise perturbations and computationally scalable, especially in a large-scale setting. Lastly, we introduce an application to outlier detection where the model based on the proposed algorithm outperforms the benchmark algorithms.
stat
Bayesian model averaging for mortality forecasting using leave-future-out validation
Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Various stochastic frameworks have been developed to model mortality patterns taking into account the main stylized facts driving these patterns. However, relying on the prediction of one specific model can be too restrictive and lead to some well documented drawbacks including model misspecification, parameter uncertainty and overfitting. To address these issues we first consider mortality modelling in a Bayesian Negative-Binomial framework to account for overdispersion and the uncertainty about the parameter estimates in a natural and coherent way. Model averaging techniques, which consists in combining the predictions of several models, are then considered as a response to model misspecifications. In this paper, we propose two methods based on leave-future-out validation which are compared to the standard Bayesian model averaging (BMA) based on marginal likelihood. Using out-of-sample errors is a well-known workaround for overfitting issues. We show that it also produces better forecasts. An intensive numerical study is carried out over a large range of simulation setups to compare the performances of the proposed methodologies. An illustration is then proposed on real-life mortality datasets which includes a sensitivity analysis to a Covid-type scenario. Overall, we found that both methods based on out-of-sample criterion outperform the standard BMA approach in terms of prediction performance and robustness.
stat
Expert-Augmented Machine Learning
Machine Learning is proving invaluable across disciplines. However, its success is often limited by the quality and quantity of available data, while its adoption by the level of trust that models afford users. Human vs. machine performance is commonly compared empirically to decide whether a certain task should be performed by a computer or an expert. In reality, the optimal learning strategy may involve combining the complementary strengths of man and machine. Here we present Expert-Augmented Machine Learning (EAML), an automated method that guides the extraction of expert knowledge and its integration into machine-learned models. We use a large dataset of intensive care patient data to predict mortality and show that we can extract expert knowledge using an online platform, help reveal hidden confounders, improve generalizability on a different population and learn using less data. EAML presents a novel framework for high performance and dependable machine learning in critical applications.
stat
Quantile Surfaces -- Generalizing Quantile Regression to Multivariate Targets
In this article, we present a novel approach to multivariate probabilistic forecasting. Our approach is based on an extension of single-output quantile regression (QR) to multivariate-targets, called quantile surfaces (QS). QS uses a simple yet compelling idea of indexing observations of a probabilistic forecast through direction and vector length to estimate a central tendency. We extend the single-output QR technique to multivariate probabilistic targets. QS efficiently models dependencies in multivariate target variables and represents probability distributions through discrete quantile levels. Therefore, we present a novel two-stage process. In the first stage, we perform a deterministic point forecast (i.e., central tendency estimation). Subsequently, we model the prediction uncertainty using QS involving neural networks called quantile surface regression neural networks (QSNN). Additionally, we introduce new methods for efficient and straightforward evaluation of the reliability and sharpness of the issued probabilistic QS predictions. We complement this by the directional extension of the Continuous Ranked Probability Score (CRPS) score. Finally, we evaluate our novel approach on synthetic data and two currently researched real-world challenges in two different domains: First, probabilistic forecasting for renewable energy power generation, second, short-term cyclists trajectory forecasting for autonomously driving vehicles. Especially for the latter, our empirical results show that even a simple one-layer QSNN outperforms traditional parametric multivariate forecasting techniques, thus improving the state-of-the-art performance.
stat
Detecting and Classifying Outliers in Big Functional Data
We propose two new outlier detection methods, for identifying and classifying different types of outliers in (big) functional data sets. The proposed methods are based on an existing method called Massive Unsupervised Outlier Detection (MUOD). MUOD detects and classifies outliers by computing for each curve, three indices, all based on the concept of linear regression and correlation, which measure outlyingness in terms of shape, magnitude and amplitude, relative to the other curves in the data. 'Semifast-MUOD', the first method, uses a sample of the observations in computing the indices, while 'Fast-MUOD', the second method, uses the point-wise or L1 median in computing the indices. The classical boxplot is used to separate the indices of the outliers from those of the typical observations. Performance evaluation of the proposed methods using simulated data show significant improvements compared to MUOD, both in outlier detection and computational time. We show that Fast-MUOD is especially well suited to handling big and dense functional datasets with very small computational time compared to other methods. Further comparisons with some recent outlier detection methods for functional data also show superior or comparable outlier detection accuracy of the proposed methods. We apply the proposed methods on weather, population growth, and video data.
stat
Statistical Evaluation of Spectral Methods for Anomaly Detection in Networks
Monitoring of networks for anomaly detection has attracted a lot of attention in recent years especially with the rise of connected devices and social networks. This is of importance as anomaly detection could span a wide range of application, from detecting terrorist cells in counter-terrorism efforts to phishing attacks in social network circles. For this reason, numerous techniques for anomaly detection have been introduced. However, application of these techniques to more complex network models is hindered by various challenges such as the size of the network being investigated, how much apriori information is needed, the size of the anomalous graph, among others. A recent technique introduced by Miller et al, which relies on a spectral framework for anomaly detection, has the potential to address many of these challenges. In their discussion of the spectral framework, three algorithms were proposed that relied on the eigenvalues and eigenvectors of the residual matrix of a binary network. The authors demonstrated the ability to detect anomalous subgraphs that were less than 1% of the network size. However, to date, there is little work that has been done to evaluate the statistical performance of these algorithms. This study investigates the statistical properties of the spectral methods, specifically the Chi-square and L1 norm algorithm proposed by Miller. We will analyze the performance of the algorithm using simulated networks and also extend the method's application to count networks. Finally we will make some methodological improvements and recommendations to both algorithms.
stat
Exploring Maximum Entropy Distributions with Evolutionary Algorithms
This paper shows how to evolve numerically the maximum entropy probability distributions for a given set of constraints, which is a variational calculus problem. An evolutionary algorithm can obtain approximations to some well-known analytical results, but is even more flexible and can find distributions for which a closed formula cannot be readily stated. The numerical approach handles distributions over finite intervals. We show that there are two ways of conducting the procedure: by direct optimization of the Lagrangian of the constrained problem, or by optimizing the entropy among the subset of distributions which fulfill the constraints. An incremental evolutionary strategy easily obtains the uniform, the exponential, the Gaussian, the log-normal, the Laplace, among other distributions, once the constrained problem is solved with any of the two methods. Solutions for mixed ("chimera") distributions can be also found. We explain why many of the distributions are symmetrical and continuous, but some are not.
stat
Regularized Estimation of High-dimensional Factor-Augmented Vector Autoregressive (FAVAR) Models
A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables $X$ and latent factors $F$, and a calibration equation that relates another set of observed variables $Y$ with $F$ and $X$. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators.
stat
Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks
Mathematical models in epidemiology strive to describe the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and interventional measures during an ongoing outbreak. Since high-fidelity models are often quite complex and analytically intractable, their applicability to real data depends on powerful estimation algorithms. Moreover, uncertainty quantification in such models is far from trivial, and different types of uncertainty are often confounded. With this work, we introduce a novel coupling between epidemiological models and specialized neural network architectures. This coupling results in a powerful Bayesian inference framework capable of principled uncertainty quantification and efficient amortized inference once the networks have been trained on simulations from an arbitrarily complex model. We illustrate the utility of our framework by applying it to real Covid-19 cases from entire Germany and German federal states.
stat
Galton-Watson process and bayesian inference: A turnkey method for the viability study of small populations
1 Sharp prediction of extinction times is needed in biodiversity monitoring and conservation management. 2 The Galton-Watson process is a classical stochastic model for describing population dynamics. Its evolution is like the matrix population model where offspring numbers are random. Extinction probability, extinction time, abundance are well known and given by explicit formulas. In contrast with the deterministic model, it can be applied to small populations. 3 Parameters of this model can be estimated through the Bayesian inference framework. This enables to consider non-arbitrary scenarios. 4 We show how coupling Bayesian inference with the Galton-Watson model provides several features: i) a flexible modelling approach with easily understandable parameters ii) compatibility with the classical matrix population model (Leslie type model) iii) A non-computational approach which then leads to more information with less computing iv) a non-arbitrary choice for scenarios, parameters... It can be seen to go one step further than the classical matrix population model for the viability problem. 5 To illustrate these features, we provide analysis details for two examples whose one of which is a real life example.
stat
Bayesian Sparse Mediation Analysis with Targeted Penalization of Natural Indirect Effects
Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.
stat
PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures
Persistence diagrams, the most common descriptors of Topological Data Analysis, encode topological properties of data and have already proved pivotal in many different applications of data science. However, since the (metric) space of persistence diagrams is not Hilbert, they end up being difficult inputs for most Machine Learning techniques. To address this concern, several vectorization methods have been put forward that embed persistence diagrams into either finite-dimensional Euclidean space or (implicit) infinite dimensional Hilbert space with kernels. In this work, we focus on persistence diagrams built on top of graphs. Relying on extended persistence theory and the so-called heat kernel signature, we show how graphs can be encoded by (extended) persistence diagrams in a provably stable way. We then propose a general and versatile framework for learning vectorizations of persistence diagrams, which encompasses most of the vectorization techniques used in the literature. We finally showcase the experimental strength of our setup by achieving competitive scores on classification tasks on real-life graph datasets.
stat
Bayesian Estimation of Two-Part Joint Models for a Longitudinal Semicontinuous Biomarker and a Terminal Event with R-INLA: Interests for Cancer Clinical Trial Evaluation
Two-part joint models for a longitudinal semicontinuous biomarker and a terminal event have been recently introduced based on frequentist estimation. The biomarker distribution is decomposed into a probability of positive value and the expected value among positive values. Shared random effects can represent the association structure between the biomarker and the terminal event. The computational burden increases compared to standard joint models with a single regression model for the biomarker. In this context, the frequentist estimation implemented in the R package frailtypack can be challenging for complex models (i.e., large number of parameters and dimension of the random effects). As an alternative, we propose a Bayesian estimation of two-part joint models based on the Integrated Nested Laplace Approximation (INLA) algorithm to alleviate the computational burden and fit more complex models. Our simulation studies show that R-INLA reduces the computation time substantially as well as the variability of the parameter estimates and improves the model convergence compared to frailtypack. We contrast the Bayesian and frequentist approaches in the analysis of two randomized cancer clinical trials (GERCOR and PRIME studies), where R-INLA suggests a stronger association between the biomarker and the risk of event. Moreover, the Bayesian approach was able to characterize subgroups of patients associated with different responses to treatment in the PRIME study while frailtypack had convergence issues. Our study suggests that the Bayesian approach using R-INLA algorithm enables broader applications of the two-part joint model to clinical applications.
stat
The design and statistical aspects of VIETNARMS: a strategic post-licensing trial of multiple oral direct acting antiviral Hepatitis C treatment strategies in Vietnam
Background Achieving hepatitis C elimination is hampered by the costs of treatment and the need to treat hard-to-reach populations. Treatment access could be widened by shortening treatment, but limited research means it is unclear which strategies could achieve sufficiently high cure rates to be acceptable. We present the statistical aspects of a multi-arm trial designed to test multiple strategies simultaneously with a monitoring mechanism to detect and stop those with unacceptably low cure rates quickly. Methods The VIETNARMS trial will factorially randomise patients to three randomisations. We will use Bayesian monitoring at interim analyses to detect and stop recruitment into unsuccessful strategies, defined as a >0.95 posterior probability of the true cure rate being <90%. Here, we tested the operating characteristics of the stopping guideline, planned the timing of the interim analyses and explored power at the final analysis. Results A beta(4.5, 0.5) prior for the true cure rate produces <0.05 probability of incorrectly stopping a group with true cure rate >90%. Groups with very low cure rates (<60%) are very likely (>0.9 probability) to stop after ~25% patients are recruited. Groups with moderately low cure rates (80%) are likely to stop (0.7 probability) before the end of recruitment. Interim analyses 7, 10, 13 and 18 months after recruitment commences provide good probabilities of stopping inferior groups. For an overall true cure rate of 95%, power is >90% to detect non-inferiority in the regimen and strategy comparisons using 5% and 10% margins respectively, regardless of the control cure rate, and to detect a 5% absolute difference in the ribavirin comparison. Conclusions The operating characteristics of the stopping guideline are appropriate and interim analyses can be timed to detect failing groups at various stages.
stat
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Multi-channel sparse blind deconvolution, or convolutional sparse coding, refers to the problem of learning an unknown filter by observing its circulant convolutions with multiple input signals that are sparse. This problem finds numerous applications in signal processing, computer vision, and inverse problems. However, it is challenging to learn the filter efficiently due to the bilinear structure of the observations with the respect to the unknown filter and inputs, as well as the sparsity constraint. In this paper, we propose a novel approach based on nonconvex optimization over the sphere manifold by minimizing a smooth surrogate of the sparsity-promoting loss function. It is demonstrated that manifold gradient descent with random initializations will provably recover the filter, up to scaling and shift ambiguity, as soon as the number of observations is sufficiently large under an appropriate random data model. Numerical experiments are provided to illustrate the performance of the proposed method with comparisons to existing ones.
stat
Universally Quantized Neural Compression
A popular approach to learning encoders for lossy compression is to use additive uniform noise during training as a differentiable approximation to test-time quantization. We demonstrate that a uniform noise channel can also be implemented at test time using universal quantization (Ziv, 1985). This allows us to eliminate the mismatch between training and test phases while maintaining a completely differentiable loss function. Implementing the uniform noise channel is a special case of the more general problem of communicating a sample, which we prove is computationally hard if we do not make assumptions about its distribution. However, the uniform special case is efficient as well as easy to implement and thus of great interest from a practical point of view. Finally, we show that quantization can be obtained as a limiting case of a soft quantizer applied to the uniform noise channel, bridging compression with and without quantization.
stat
Transportation Interventions Reshaping NYC Commute: the Probabilistic Simulation Framework Assessing the Impacts of Ridesharing and Manhattan Congestion Surcharge
Understanding holistic impact of planned transportation solutions and interventions on urban systems is challenged by their complexity but critical for decision making. The cornerstone for such impact assessments is estimating the transportation mode-shift resulting from the intervention. And while transportation planning has well-established models for the mode-choice assessment such as the nested multinomial logit model, an individual choice simulation could be better suited for addressing the mode-shift allowing to consistently account for individual preferences. In addition, no model perfectly represents the reality while the available ground truth data on the actual transportation choices needed to infer the model is often incomplete or inconsistent. The present paper addresses those challenges by offering an individual mode-choice and mode-shift simulation model and the Bayesian inference framework. It accounts for uncertainties in the data as well as the model estimate and translates them into uncertainties of the resulting mode-shift and the impacts. The framework is evaluated on the two intervention cases: introducing ride-sharing for-hire-vehicles in NYC as well the recent introduction of the Manhattan Congestion Surcharge. Being successfully evaluated on the cases above, the framework can be used for assessing mode-shift and resulting economic, social and environmental implications for any future urban transportation solutions and policies being considered by decision-makers or transportation companies.
stat
A primer on statistically validated networks
In this contribution we discuss some approaches of network analysis providing information about single links or single nodes with respect to a null hypothesis taking into account the heterogeneity of the system empirically observed. With this approach, a selection of nodes and links is feasible when the null hypothesis is statistically rejected. We focus our discussion on approaches using (i) the so-called disparity filter and (ii) statistically validated network in bipartite networks. For both methods we discuss the importance of using multiple hypothesis test correction. Specific applications of statistically validated networks are discussed. We also discuss how statistically validated networks can be used to (i) pre-process large sets of data and (ii) detect cores of communities that are forming the most close-knit and stable subsets of clusters of nodes present in a complex system.
stat
Adaptive Multi-View ICA: Estimation of noise levels for optimal inference
We consider a multi-view learning problem known as group independent component analysis (group ICA), where the goal is to recover shared independent sources from many views. The statistical modeling of this problem requires to take noise into account. When the model includes additive noise on the observations, the likelihood is intractable. By contrast, we propose Adaptive multiView ICA (AVICA), a noisy ICA model where each view is a linear mixture of shared independent sources with additive noise on the sources. In this setting, the likelihood has a tractable expression, which enables either direct optimization of the log-likelihood using a quasi-Newton method, or generalized EM. Importantly, we consider that the noise levels are also parameters that are learned from the data. This enables sources estimation with a closed-form Minimum Mean Squared Error (MMSE) estimator which weights each view according to its relative noise level. On synthetic data, AVICA yields better sources estimates than other group ICA methods thanks to its explicit MMSE estimator. On real magnetoencephalograpy (MEG) data, we provide evidence that the decomposition is less sensitive to sampling noise and that the noise variance estimates are biologically plausible. Lastly, on functional magnetic resonance imaging (fMRI) data, AVICA exhibits best performance in transferring information across views.
stat
Online Robust and Adaptive Learning from Data Streams
In online learning from non-stationary data streams, it is both necessary to learn robustly to outliers and to adapt to changes of underlying data generating mechanism quickly. In this paper, we refer to the former nature of online learning algorithms as robustness and the latter as adaptivity. There is an obvious tradeoff between them. It is a fundamental issue to quantify and evaluate the tradeoff because it provides important information on the data generating mechanism. However, no previous work has considered the tradeoff quantitatively. We propose a novel algorithm called the Stochastic approximation-based Robustness-Adaptivity algorithm (SRA) to evaluate the tradeoff. The key idea of SRA is to update parameters of distribution or sufficient statistics with the biased stochastic approximation scheme, while dropping data points with large values of the stochastic update. We address the relation between two parameters, one of which is the step size of the stochastic approximation, and the other is the threshold parameter of the norm of the stochastic update. The former controls the adaptivity and the latter does the robustness. We give a theoretical analysis for the non-asymptotic convergence of SRA in the presence of outliers, which depends on both the step size and the threshold parameter. Since SRA is formulated on the majorization-minimization principle, it is a general algorithm including many algorithms, such as the online EM algorithm and stochastic gradient descent. Empirical experiments for both synthetic and real datasets demonstrated that SRA was superior to previous methods.
stat
Population-aware Hierarchical Bayesian Domain Adaptation via Multiple-component Invariant Learning
While machine learning is rapidly being developed and deployed in health settings such as influenza prediction, there are critical challenges in using data from one environment in another due to variability in features; even within disease labels there can be differences (e.g. "fever" may mean something different reported in a doctor's office versus in an online app). Moreover, models are often built on passive, observational data which contain different distributions of population subgroups (e.g. men or women). Thus, there are two forms of instability between environments in this observational transport problem. We first harness knowledge from health to conceptualize the underlying causal structure of this problem in a health outcome prediction task. Based on sources of stability in the model, we posit that for human-sourced data and health prediction tasks we can combine environment and population information in a novel population-aware hierarchical Bayesian domain adaptation framework that harnesses multiple invariant components through population attributes when needed. We study the conditions under which invariant learning fails, leading to reliance on the environment-specific attributes. Experimental results for an influenza prediction task on four datasets gathered from different contexts show the model can improve prediction in the case of largely unlabelled target data from a new environment and different constituent population, by harnessing both environment and population invariant information. This work represents a novel, principled way to address a critical challenge by blending domain (health) knowledge and algorithmic innovation. The proposed approach will have a significant impact in many social settings wherein who and where the data comes from matters.
stat
Curve Fitting from Probabilistic Emissions and Applications to Dynamic Item Response Theory
Item response theory (IRT) models are widely used in psychometrics and educational measurement, being deployed in many high stakes tests such as the GRE aptitude test. IRT has largely focused on estimation of a single latent trait (e.g. ability) that remains static through the collection of item responses. However, in contemporary settings where item responses are being continuously collected, such as Massive Open Online Courses (MOOCs), interest will naturally be on the dynamics of ability, thus complicating usage of traditional IRT models. We propose DynAEsti, an augmentation of the traditional IRT Expectation Maximization algorithm that allows ability to be a continuously varying curve over time. In the process, we develop CurvFiFE, a novel non-parametric continuous-time technique that handles the curve-fitting/regression problem extended to address more general probabilistic emissions (as opposed to simply noisy data points). Furthermore, to accomplish this, we develop a novel technique called grafting, which can successfully approximate distributions represented by graphical models when other popular techniques like Loopy Belief Propogation (LBP) and Variational Inference (VI) fail. The performance of DynAEsti is evaluated through simulation, where we achieve results comparable to the optimal of what is observed in the static ability scenario. Finally, DynAEsti is applied to a longitudinal performance dataset (80-years of competitive golf at the 18-hole Masters Tournament) to demonstrate its ability to recover key properties of human performance and the heterogeneous characteristics of the different holes. Python code for CurvFiFE and DynAEsti is publicly available at github.com/chausies/DynAEstiAndCurvFiFE. This is the full version of our ICDM 2019 paper.
stat
Feedback Coding for Active Learning
The iterative selection of examples for labeling in active machine learning is conceptually similar to feedback channel coding in information theory: in both tasks, the objective is to seek a minimal sequence of actions to encode information in the presence of noise. While this high-level overlap has been previously noted, there remain open questions on how to best formulate active learning as a communications system to leverage existing analysis and algorithms in feedback coding. In this work, we formally identify and leverage the structural commonalities between the two problems, including the characterization of encoder and noisy channel components, to design a new algorithm. Specifically, we develop an optimal transport-based feedback coding scheme called Approximate Posterior Matching (APM) for the task of active example selection and explore its application to Bayesian logistic regression, a popular model in active learning. We evaluate APM on a variety of datasets and demonstrate learning performance comparable to existing active learning methods, at a reduced computational cost. These results demonstrate the potential of directly deploying concepts from feedback channel coding to design efficient active learning strategies.
stat
Computing Shapley Effects for Sensitivity Analysis
Shapley effects are attracting increasing attention as sensitivity measures. When the value function is the conditional variance, they account for the individual and higher order effects of a model input. They are also well defined under model input dependence. However, one of the issues associated with their use is computational cost. We present a new algorithm that offers major improvements for the computation of Shapley effects, reducing computational burden by several orders of magnitude (from $k!\cdot k$ to $2^k$, where $k$ is the number of inputs) with respect to currently available implementations. The algorithm works in the presence of input dependencies. The algorithm also makes it possible to estimate all generalized (Shapley-Owen) effects for interactions.
stat
Bayesian Estimation of Attribute and Identification Disclosure Risks in Synthetic Data
The synthetic data approach to data confidentiality has been actively researched on, and for the past decade or so, a good number of high quality work on developing innovative synthesizers, creating appropriate utility measures and risk measures, among others, have been published. Comparing to a large volume of work on synthesizers development and utility measures creation, measuring risks has overall received less attention. This paper focuses on the detailed construction of some Bayesian methods proposed for estimating disclosure risks in synthetic data. In the processes of presenting attribute and identification disclosure risks evaluation methods, we highlight key steps, emphasize Bayesian thinking, illustrate with real application examples, and discuss challenges and future research directions. We hope to give the readers a comprehensive view of the Bayesian estimation procedures, enable synthetic data researchers and producers to use these procedures to evaluate disclosure risks, and encourage more researchers to work in this important growing field.
stat
Coefficients of Determination for Mixed-Effects Models
In consistency with the law of total variance, the coefficient of determination, also known as $R^2$, is well-defined for linear regression models to measure the proportion of variation in a variable explained by a set of predictors. Following the same law, we will show that it is natural to extend such a measure for linear mixed models. However, the heteroscedasticity of a generalized linear model challenges further extension. By measuring the change along the variance function responding to different means, we propose to define proper coefficients of determination for generalized linear mixed models, measuring the proportion of variation in the dependent variable modeled by fixed effects, random effects, or both. As in the case of generalized linear models, our measures can be calculated for general quasi-models with mixed effects, which are only modeled with known link and variance functions. When Gaussian models are considered, they reduce to those measures defined for linear mixed models on the basis of the law of total variance.
stat
Distributional Null Hypothesis Testing with the T distribution
Null Hypothesis Significance Testing (NHST) has long been central to the scientific project, guiding theory development and supporting evidence-based intervention and decision-making. Recent years, however, have seen growing awareness of serious problems with NHST as it is typically used, and hence to proposals to limit the use of NHST techniques, to abandon these techniques and move to alternative statistical approaches, or even to ban the use of NHST entirely. These proposals are premature, because the observed problems with NHST all arise as a consequence of a contingent and in many cases incorrect choice: that of NHST testing against point-form nulls. We show that testing against distributional, rather than point-form, nulls is better motivated mathematically and experimentally, and that the use of distributional nulls addresses many problems with the standard point-form NHST approach. We also show that use of distributional nulls allows a form of null hypothesis testing that takes into account both the statistical significance of a given result and the probability of replication of that result in a new experiment. Rather than abandoning NHST, we should use the NHST approach in its more general form, with distributional rather than point-form nulls.
stat
Storchastic: A Framework for General Stochastic Automatic Differentiation
Modelers use automatic differentiation of computation graphs to implement complex Deep Learning models without defining gradient computations. However, modelers often use sampling methods to estimate intractable expectations such as in Reinforcement Learning and Variational Inference. Current methods for estimating gradients through these sampling steps are limited: They are either only applicable to continuous random variables and differentiable functions, or can only use simple but high variance score-function estimators. To overcome these limitations, we introduce Storchastic, a new framework for automatic differentiation of stochastic computation graphs. Storchastic allows the modeler to choose from a wide variety of gradient estimation methods at each sampling step, to optimally reduce the variance of the gradient estimates. Furthermore, Storchastic is provably unbiased for estimation of any-order gradients, and generalizes variance reduction techniques to higher-order gradient estimates. Finally, we implement Storchastic as a PyTorch library.
stat
ivmodel: An R Package for Inference and Sensitivity Analysis of Instrumental Variables Models with One Endogenous Variable
We present a comprehensive R software ivmodel for analyzing instrumental variables with one endogenous variable. The package implements a general class of estimators called k- class estimators and two confidence intervals that are fully robust to weak instruments. The package also provides power formulas for various test statistics in instrumental variables. Finally, the package contains methods for sensitivity analysis to examine the sensitivity of the inference to instrumental variables assumptions. We demonstrate the software on the data set from Card (1995), looking at the causal effect of levels of education on log earnings where the instrument is proximity to a four-year college.
stat
Accurate Characterization of Non-Uniformly Sampled Time Series using Stochastic Differential Equations
Non-uniform sampling arises when an experimenter does not have full control over the sampling characteristics of the process under investigation. Moreover, it is introduced intentionally in algorithms such as Bayesian optimization and compressive sensing. We argue that Stochastic Differential Equations (SDEs) are especially well-suited for characterizing second order moments of such time series. We introduce new initial estimates for the numerical optimization of the likelihood, based on incremental estimation and initialization from autoregressive models. Furthermore, we introduce model truncation as a purely data-driven method to reduce the order of the estimated model based on the SDE likelihood. We show the increased accuracy achieved with the new estimator in simulation experiments, covering all challenging circumstances that may be encountered in characterizing a non-uniformly sampled time series. Finally, we apply the new estimator to experimental rainfall variability data.
stat
An interval-valued GARCH model for range-measured return processes
Range-measured return contains more information than the traditional scalar-valued return. In this paper, we propose to model the [low, high] price range as a random interval and suggest an interval-valued GARCH (Int-GARCH) model for the corresponding range-measured return process. Under the general framework of random sets, the model properties are investigated. Parameters are estimated by the maximum likelihood method, and the asymptotic properties are established. Empirical application to stocks and financial indices data sets suggests that our Int-GARCH model overall outperforms the traditional GARCH for both in-sample estimation and out-of-sample prediction of volatility.
stat
A different approach for choosing a threshold in peaks over threshold
Abstract In Extreme Value methodology the choice of threshold plays an important role in efficient modelling of observations exceeding the threshold. The threshold must be chosen high enough to ensure an unbiased extreme value index but choosing the threshold too high results in uncontrolled variances. This paper investigates a generalized model that can assist in the choice of optimal threshold values in the \gamma positive domain. A Bayesian approach is considered by deriving a posterior distribution for the unknown generalized parameter. Using the properties of the posterior distribution allows for a method to choose an optimal threshold without visual inspection.
stat
Robust Grouped Variable Selection Using Distributionally Robust Optimization
We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based uncertainty set for selecting grouped variables under perturbations on the data for both linear regression and classification problems. The resulting model offers robustness explanations for Grouped Least Absolute Shrinkage and Selection Operator (GLASSO) algorithms and highlights the connection between robustness and regularization. We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and establish the grouping effect of our estimator, showing that coefficients in the same group converge to the same value as the sample correlation between covariates approaches 1. Based on this result, we propose to use the spectral clustering algorithm with the Gaussian similarity function to perform grouping on the predictors, which makes our approach applicable without knowing the grouping structure a priori. We compare our approach to an array of alternatives and provide extensive numerical results on both synthetic data and a real large dataset of surgery-related medical records, showing that our formulation produces an interpretable and parsimonious model that encourages sparsity at a group level and is able to achieve better prediction and estimation performance in the presence of outliers.
stat
Stochastic Gradient Descent on a Tree: an Adaptive and Robust Approach to Stochastic Convex Optimization
Online minimization of an unknown convex function over the interval $[0,1]$ is considered under first-order stochastic bandit feedback, which returns a random realization of the gradient of the function at each query point. Without knowing the distribution of the random gradients, a learning algorithm sequentially chooses query points with the objective of minimizing regret defined as the expected cumulative loss of the function values at the query points in excess to the minimum value of the function. An approach based on devising a biased random walk on an infinite-depth binary tree constructed through successive partitioning of the domain of the function is developed. Each move of the random walk is guided by a sequential test based on confidence bounds on the empirical mean constructed using the law of the iterated logarithm. With no tuning parameters, this learning algorithm is robust to heavy-tailed noise with infinite variance and adaptive to unknown function characteristics (specifically, convex, strongly convex, and nonsmooth). It achieves the corresponding optimal regret orders (up to a $\sqrt{\log T}$ or a $\log\log T$ factor) in each class of functions and offers better or matching regret orders than the classical stochastic gradient descent approach which requires the knowledge of the function characteristics for tuning the sequence of step-sizes.
stat
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal Transport
Generative adversarial networks (GANs) are the state of the art in generative modeling. Unfortunately, most GAN methods are susceptible to mode collapse, meaning that they tend to capture only a subset of the modes of the true distribution. A possible way of dealing with this problem is to use an ensemble of GANs, where (ideally) each network models a single mode. In this paper, we introduce a principled method for training an ensemble of GANs using semi-discrete optimal transport theory. In our approach, each generative network models the transportation map between a point mass (Dirac measure) and the restriction of the data distribution on a tile of a Voronoi tessellation that is defined by the location of the point masses. We iteratively train the generative networks and the point masses until convergence. The resulting k-GANs algorithm has strong theoretical connection with the k-medoids algorithm. In our experiments, we show that our ensemble method consistently outperforms baseline GANs.
stat
On the parameter estimation of ARMA(p,q) model by approximate Bayesian computation
In this paper, the parameter estimation of ARMA(p,q) model is given by approximate Bayesian computation algorithm. In order to improve the sampling efficiency of the algorithm, approximate Bayesian computation should select as many statistics as possible with parameter information in low dimension. Firstly, we use the autocorrelation coefficient of the first p+q order sample as the statistic and obtain an approximate Bayesian estimation of the AR coefficient, transforming the ARMA(p,q) model into the MA(q) model. Considering the first q order sample autocorrelation functions and sample variance as the statistics, the approximate Bayesian estimation of MA coefficient and white noise variances can be given. The method mentioned above is more accurate and powerful than the maximum likelihood estimation, which is verified by the numerical simulations and experiment study.
stat
High-dimensional generalized semiparametric model for longitudinal data
This paper considers the problem of estimation in the generalized semiparametric model for longitudinal data when the number of parameters diverges with the sample size. A penalization type of generalized estimating equation method is proposed, while we use the regression spline to approximate the nonparametric component. The proposed procedure involves the specification of the posterior distribution of the random effects, which cannot be evaluated in a closed-form. However, it is possible to approximate this posterior distribution by producing random draws from the distribution using a Metropolis algorithm. Under some regularity conditions, the resulting estimators enjoy the oracle properties, under the high-dimensional regime. Simulation studies are carried out to assess the performance of our proposed method, and two real data sets are analyzed to illustrate the procedure.
stat
Learning Social Networks from Text Data using Covariate Information
Describing and characterizing the impact of historical figures can be challenging, but unraveling their social structures perhaps even more so. Historical social network analysis methods can help and may also illuminate people who have been overlooked by historians but turn out to be influential social connection points. Text data, such as biographies, can be a useful source of information about the structure of historical social networks but can also introduce challenges in identifying links. The Local Poisson Graphical Lasso model leverages the number of co-mentions in the text to measure relationships between people and uses a conditional independence structure to model a social network. This structure will reduce the tendency to overstate the relationship between "friends of friends", but given the historical high frequency of common names, without additional distinguishing information, we can still introduce incorrect links. In this work, we extend the Local Poisson Graphical Lasso model with a (multiple) penalty structure that incorporates covariates giving increased link probabilities to people with shared covariate information. We propose both greedy and Bayesian approaches to estimate the penalty parameters. We present results on data simulated with characteristics of historical networks and show that this type of penalty structure can improve network recovery as measured by precision and recall. We also illustrate the approach on biographical data of individuals who lived in early modern Britain, targeting the period from 1500 to 1575.
stat
Isometric Gaussian Process Latent Variable Model for Dissimilarity Data
We propose a fully generative model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference and is therefore fully generative. We demonstrate how the new model can encode invariances in the learned manifolds.
stat
Data-Driven Open Set Fault Classification and Fault Size Estimation Using Quantitative Fault Diagnosis Analysis
Data-driven fault classification is complicated by imbalanced training data and unknown fault classes. Fault diagnosis of dynamic systems is done by detecting changes in time-series data, for example residuals, caused by faults or system degradation. Different fault classes can result in similar residual outputs, especially for small faults which can be difficult to distinguish from nominal system operation. Analyzing how easy it is to distinguish data from different fault classes is crucial during the design process of a diagnosis system to evaluate if classification performance requirements can be met. Here, a data-driven model of different fault classes is used based on the Kullback-Leibler divergence. This is used to develop a framework for quantitative fault diagnosis performance analysis and open set fault classification. A data-driven fault classification algorithm is proposed which can handle unknown faults and also estimate the fault size using training data from known fault scenarios. To illustrate the usefulness of the proposed methods, data have been collected from an engine test bench to illustrate the design process of a data-driven diagnosis system, including quantitative fault diagnosis analysis and evaluation of the developed open set fault classification algorithm.
stat
Statistical Foundation of Variational Bayes Neural Networks
Despite the popularism of Bayesian neural networks in recent years, its use is somewhat limited in complex and big data situations due to the computational cost associated with full posterior evaluations. Variational Bayes (VB) provides a useful alternative to circumvent the computational cost and time complexity associated with the generation of samples from the true posterior using Markov Chain Monte Carlo (MCMC) techniques. The efficacy of the VB methods is well established in machine learning literature. However, its potential broader impact is hindered due to a lack of theoretical validity from a statistical perspective. However there are few results which revolve around the theoretical properties of VB, especially in non-parametric problems. In this paper, we establish the fundamental result of posterior consistency for the mean-field variational posterior (VP) for a feed-forward artificial neural network model. The paper underlines the conditions needed to guarantee that the VP concentrates around Hellinger neighborhoods of the true density function. Additionally, the role of the scale parameter and its influence on the convergence rates has also been discussed. The paper mainly relies on two results (1) the rate at which the true posterior grows (2) the rate at which the KL-distance between the posterior and variational posterior grows. The theory provides a guideline of building prior distributions for Bayesian NN models along with an assessment of accuracy of the corresponding VB implementation.
stat
Simplified Kalman filter for online rating: one-fits-all approach
In this work, we deal with the problem of rating in sports, where the skills of the players/teams are inferred from the observed outcomes of the games. Our focus is on the online rating algorithms which estimate the skills after each new game by exploiting the probabilistic models of the relationship between the skills and the game outcome. We propose a Bayesian approach which may be seen as an approximate Kalman filter and which is generic in the sense that it can be used with any skills-outcome model and can be applied in the individual -- as well as in the group-sports. We show how the well-know algorithms (such as the Elo, the Glicko, and the TrueSkill algorithms) may be seen as instances of the one-fits-all approach we propose. In order to clarify the conditions under which the gains of the Bayesian approach over the simpler solutions can actually materialize, we critically compare the known and the new algorithms by means of numerical examples using the synthetic as well as the empirical data.
stat
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
The interpretation of complex high-dimensional data typically requires the use of dimensionality reduction techniques to extract explanatory low-dimensional representations. However, in many real-world problems these representations may not be sufficient to aid interpretation on their own, and it would be desirable to interpret the model in terms of the original features themselves. Our goal is to characterise how feature-level variation depends on latent low-dimensional representations, external covariates, and non-linear interactions between the two. In this paper, we propose to achieve this through a structured kernel decomposition in a hybrid Gaussian Process model which we call the Covariate Gaussian Process Latent Variable Model (c-GPLVM). We demonstrate the utility of our model on simulated examples and applications in disease progression modelling from high-dimensional gene expression data in the presence of additional phenotypes. In each setting we show how the c-GPLVM can extract low-dimensional structures from high-dimensional data sets whilst allowing a breakdown of feature-level variability that is not present in other commonly used dimensionality reduction approaches.
stat
An Initial Exploration of Bayesian Model Calibration for Estimating the Composition of Rocks and Soils on Mars
The Mars Curiosity rover carries an instrument, ChemCam, designed to measure the composition of surface rocks and soil using laser-induced breakdown spectroscopy (LIBS). The measured spectra from this instrument must be analyzed to identify the component elements in the target sample, as well as their relative proportions. This process, which we call disaggregation, is complicated by so-called matrix effects, which describe nonlinear changes in the relative heights of emission lines as an unknown function of composition due to atomic interactions within the LIBS plasma. In this work we explore the use of the plasma physics code ATOMIC, developed at Los Alamos National Laboratory, for the disaggregation task. ATOMIC has recently been used to model LIBS spectra and can robustly reproduce matrix effects from first principles. The ability of ATOMIC to predict LIBS spectra presents an exciting opportunity to perform disaggregation in a manner not yet tried in the LIBS community, namely via Bayesian model calibration. However, using it directly to solve our inverse problem is computationally intractable due to the large parameter space and the computation time required to produce a single output. Therefore we also explore the use of emulators as a fast solution for this analysis. We discuss a proof of concept Gaussian process emulator for disaggregating two-element compounds of sodium and copper. The training and test datasets were simulated with ATOMIC using a Latin hypercube design. After testing the performance of the emulator, we successfully recover the composition of 25 test spectra with Bayesian model calibration.
stat
Bayesian Updating and Sequential Testing: Overcoming Inferential Limitations of Screening Tests
Bayes' Theorem confers inherent limitations on the accuracy of screening tests as a function of disease prevalence. We have shown in previous work that a testing system can tolerate significant drops in prevalence, up until a certain well-defined point known as the $prevalence$ $threshold$, below which the reliability of a positive screening test drops precipitously. Herein, we establish a mathematical model to determine whether sequential testing overcomes the aforementioned Bayesian limitations and thus improves the reliability of screening tests. We show that for a desired positive predictive value of $\rho$ that approaches $k$, the number of positive test iterations $n_i$ needed is: $ n_i =\lim_{\rho \to k}\left\lceil\frac{ln\left[\frac{\rho(\phi-1)}{\phi(\rho-1)}\right]}{ln\left[\frac{a}{1-b}\right]}\right\rceil$ where $n_i$ = number of testing iterations necessary to achieve $\rho$, the desired positive predictive value, a = sensitivity, b = specificity, $\phi$ = disease prevalence and $k$ = constant. Based on the aforementioned derivation, we provide reference tables for the number of test iterations needed to obtain a $\rho(\phi)$ of 50, 75, 95 and 99$\%$ as a function of various levels of sensitivity, specificity and disease prevalence.
stat
Spatiotemporal Covariance Estimation by Shifted Partial Tracing
We consider the problem of covariance estimation for replicated space-time processes from the functional data analysis perspective. Due to the challenges to computational and statistical efficiency posed by the dimensionality of the problem, common paradigms in the space-time processes literature typically adopt parametric models, invariances, and/or separability. Replicated outcomes may allow one to do away with parametric specifications, but considerations of statistical and computational efficiency often compel the use of separability, even though the assumption may fail in practice. In this paper, we consider the problem of non-parametric covariance estimation, under "local" departures from separability. Specifically, we consider a setting where the underlying random field's second order structure is nearly separable, in that it may fail to be separable only locally (either due to noise contamination or due to the presence of a non-separable short-range dependent signal component). That is, the covariance is an additive perturbation of a separable component by a non-separable but banded component. We introduce non-parametric estimators hinging on the novel concept of shifted partial tracing, which is capable of estimating the model computationally efficiently under dense observation. Due to the denoising properties of shifted partial tracing, our methods are shown to yield consistent estimators of the separable part of the covariance even under noisy discrete observation, without the need for smoothing. Further to deriving the convergence rates and limit theorems, we also show that the implementation of our estimators, including for the purpose of prediction, comes at no computational overhead relative to a separable model. Finally, we demonstrate empirical performance and computational feasibility of our methods in an extensive simulation study and on a real data set.
stat
Causal mediation analysis in presence of multiple mediators uncausally related
Mediation analysis aims at disentangling the effects of a treatment on an outcome through alternative causal mechanisms and has become a popular practice in biomedical and social science applications. The causal framework based on counterfactuals is currently the standard approach to mediation, with important methodological advances introduced in the literature in the last decade, especially for simple mediation, that is with one mediator at the time. Among a variety of alternative approaches, K. Imai et al. showed theoretical results and developed an R package to deal with simple mediation as well as with multiple mediation involving multiple mediators conditionally independent given the treatment and baseline covariates. This approach does not allow to consider the often encountered situation in which an unobserved common cause induces a spurious correlation between the mediators. In this context, which we refer to as mediation with uncausally related mediators, we show that, under appropriate hypothesis, the natural direct and joint indirect effects are non-parametrically identifiable. Moreover, we adopt the quasi-Bayesian algorithm developed by Imai et al. and propose a procedure based on the simulation of counterfactual distributions to estimate not only the direct and joint indirect effects but also the indirect effects through individual mediators. We study the properties of the proposed estimators through simulations. As an illustration, we apply our method on a real data set from a large cohort to assess the effect of hormone replacement treatment on breast cancer risk through three mediators, namely dense mammographic area, nondense area and body mass index.
stat
GrAMME: Semi-Supervised Learning using Multi-layered Graph Attention Models
Modern data analysis pipelines are becoming increasingly complex due to the presence of multi-view information sources. While graphs are effective in modeling complex relationships, in many scenarios a single graph is rarely sufficient to succinctly represent all interactions, and hence multi-layered graphs have become popular. Though this leads to richer representations, extending solutions from the single-graph case is not straightforward. Consequently, there is a strong need for novel solutions to solve classical problems, such as node classification, in the multi-layered case. In this paper, we consider the problem of semi-supervised learning with multi-layered graphs. Though deep network embeddings, e.g. DeepWalk, are widely adopted for community discovery, we argue that feature learning with random node attributes, using graph neural networks, can be more effective. To this end, we propose to use attention models for effective feature learning, and develop two novel architectures, GrAMME-SG and GrAMME-Fusion, that exploit the inter-layer dependencies for building multi-layered graph embeddings. Using empirical studies on several benchmark datasets, we evaluate the proposed approaches and demonstrate significant performance improvements in comparison to state-of-the-art network embedding strategies. The results also show that using simple random features is an effective choice, even in cases where explicit node attributes are not available.
stat
Nearly Optimal Adaptive Procedure with Change Detection for Piecewise-Stationary Bandit
Multi-armed bandit (MAB) is a class of online learning problems where a learning agent aims to maximize its expected cumulative reward while repeatedly selecting to pull arms with unknown reward distributions. We consider a scenario where the reward distributions may change in a piecewise-stationary fashion at unknown time steps. We show that by incorporating a simple change-detection component with classic UCB algorithms to detect and adapt to changes, our so-called M-UCB algorithm can achieve nearly optimal regret bound on the order of $O(\sqrt{MKT\log T})$, where $T$ is the number of time steps, $K$ is the number of arms, and $M$ is the number of stationary segments. Comparison with the best available lower bound shows that our M-UCB is nearly optimal in $T$ up to a logarithmic factor. We also compare M-UCB with the state-of-the-art algorithms in numerical experiments using a public Yahoo! dataset to demonstrate its superior performance.
stat
Bus Travel Time Prediction: A Lognormal Auto-Regressive (AR) Modeling Approach
Providing real time information about the arrival time of the transit buses has become inevitable in urban areas to make the system more user-friendly and advantageous over various other transportation modes. However, accurate prediction of arrival time of buses is still a challenging problem in dynamically varying traffic conditions especially under heterogeneous traffic condition without lane discipline. One broad approach researchers have adopted over the years is to segment the entire bus route into segments and work with these segment travel times as the data input (from GPS traces) for prediction. This paper adopts this approach and proposes predictive modelling approaches which fully exploit the temporal correlations in the bus GPS data. Specifically, we propose two approaches: (a) classical time-series approach employing a seasonal AR model (b)unconventional linear, non-stationary AR approach. The second approach is a novel technique and exploits the notion of partial correlation for learning from data. A detailed analysis of the marginal distributions of the data from Indian conditions (used here), revealed a predominantly log-normal behavior. This aspect was incorporated into the above proposed predictive models and statistically optimal prediction schemes in the lognormal sense are utilized for all predictions. Both the above temporal predictive modeling approaches predict ahead in time at each segment independently. For real-time bus travel time prediction, one however needs to predict across multiple segments ahead in space. Towards a complete solution, the study also proposes an intelligent procedure to perform (real-time) multi-section ahead travel-time predictions based on either of the above proposed temporal models. Results showed a clear improvement in prediction accuracy using the proposed methods,
stat
Closed-form variance estimators for weighted and stratified dose-response function estimators using generalized propensity score
Propensity score methods are widely used in observational studies for evaluating marginal treatment effects. The generalized propensity score (GPS) is an extension of the propensity score framework, historically developed in the case of binary exposures, for use with quantitative or continuous exposures. In this paper, we proposed variance esti-mators for treatment effect estimators on continuous outcomes. Dose-response functions (DRF) were estimated through weighting on the inverse of the GPS, or using stratification. Variance estimators were evaluated using Monte Carlo simulations. Despite the use of stabilized weights, the variability of the weighted estimator of the DRF was particularly high, and none of the variance estimators (a bootstrap-based estimator, a closed-form estimator especially developped to take into account the estimation step of the GPS, and a sandwich estimator) were able to adequately capture this variability, resulting in coverages below to the nominal value, particularly when the proportion of the variation in the quantitative exposure explained by the covariates was 1 large. The stratified estimator was more stable, and variance estima-tors (a bootstrap-based estimator, a pooled linearized estimator, and a pooled model-based estimator) more efficient at capturing the empirical variability of the parameters of the DRF. The pooled variance estimators tended to overestimate the variance, whereas the bootstrap estimator, which intrinsically takes into account the estimation step of the GPS, resulted in correct variance estimations and coverage rates. These methods were applied to a real data set with the aim of assessing the effect of maternal body mass index on newborn birth weight.
stat
Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates
Policy evaluation studies, which intend to assess the effect of an intervention, face some statistical challenges: in real-world settings treatments are not randomly assigned and the analysis might be further complicated by the presence of interference between units. Researchers have started to develop novel methods that allow to manage spillover mechanisms in observational studies; recent works focus primarily on binary treatments. However, many policy evaluation studies deal with more complex interventions. For instance, in political science, evaluating the impact of policies implemented by administrative entities often implies a multivariate approach, as a policy towards a specific issue operates at many different levels and can be defined along a number of dimensions. In this work, we extend the statistical framework about causal inference under network interference in observational studies, allowing for a multi-valued individual treatment and an interference structure shaped by a weighted network. The estimation strategy is based on a joint multiple generalized propensity score and allows one to estimate direct effects, controlling for both individual and network covariates. We follow the proposed methodology to analyze the impact of the national immigration policy on the crime rate. We define a multi-valued characterization of political attitudes towards migrants and we assume that the extent to which each country can be influenced by another country is modeled by an appropriate indicator, summarizing their cultural and geographical proximity. Results suggest that implementing a highly restrictive immigration policy leads to an increase of the crime rate and the estimated effects is larger if we take into account interference from other countries.
stat
Conceptualizing experimental controls using the potential outcomes framework
The goal of a well-controlled study is to remove unwanted variation when estimating the causal effect of the intervention of interest. Experiments conducted in the basic sciences frequently achieve this goal using experimental controls, such as "negative" and "positive" controls, which are measurements designed to detect systematic sources of unwanted variation. Here, we introduce clear, mathematically precise definitions of experimental controls using potential outcomes. Our definitions provide a unifying statistical framework for fundamental concepts of experimental design from the biological and other basic sciences. These controls are defined in terms of whether assumptions are being made about a specific treatment level, outcome, or contrast between outcomes. We discuss experimental controls as tools for researchers to wield in designing experiments and detecting potential design flaws, including using controls to diagnose unintended factors that influence the outcome of interest, assess measurement error, and identify important subpopulations. We believe that experimental controls are powerful tools for reproducible research that are possibly underutilized by statisticians, epidemiologists, and social science researchers.
stat
Most Powerful Test Sequences with Early Stopping Options
Sequential likelihood ratio testing is found to be most powerful in sequential studies with early stopping rules when grouped data come from the one-parameter exponential family. First, to obtain this elusive result, the probability measure of a group sequential design is constructed with support for all possible outcome events, as is useful for designing an experiment prior to having data. This construction identifies impossible events that are not part of the support. The overall probability distribution is dissected into stage specific components. These components are sub-densities of interim test statistics first described by Armitage, McPherson and Rowe (1969) that are commonly used to create stopping boundaries given an $\alpha$-spending function and a set of interim analysis times. Likelihood expressions conditional on reaching a stage are given to connect pieces of the probability anatomy together. The reduction of the support caused by the adoption of an early stopping rule induces sequential truncation (not nesting) in the probability distributions of possible events. Multiple testing induces mixtures on the adapted support. Even asymptotic distributions of inferential statistics are mixtures of truncated distributions. In contrast to the classical result on local asymptotic normality (Le Cam 1960), statistics that are asymptotically normal without stopping options have asymptotic distributions that are mixtures of truncated normal distributions under local alternatives with stopping options; under fixed alternatives, asymptotic distributions of test statistics are degenerate.
stat
Network-Assisted Estimation for Large-dimensional Factor Model with Guaranteed Convergence Rate Improvement
Network structure is growing popular for capturing the intrinsic relationship between large-scale variables. In the paper we propose to improve the estimation accuracy for large-dimensional factor model when a network structure between individuals is observed. To fully excavate the prior network information, we construct two different penalties to regularize the factor loadings and shrink the idiosyncratic errors. Closed-form solutions are provided for the penalized optimization problems. Theoretical results demonstrate that the modified estimators achieve faster convergence rates and lower asymptotic mean squared errors when the underlying network structure among individuals is correct. An interesting finding is that even if the priori network is totally misleading, the proposed estimators perform no worse than conventional state-of-art methods. Furthermore, to facilitate the practical application, we propose a data-driven approach to select the tuning parameters, which is computationally efficient. We also provide an empirical criterion to determine the number of common factors. Simulation studies and application to the S&P100 weekly return dataset convincingly illustrate the superiority and adaptivity of the new approach.
stat
Bayesian optimization with local search
Global optimization finds applications in a wide range of real world problems. The multi-start methods are a popular class of global optimization techniques, which are based on the ideas of conducting local searches at multiple starting points. In this work we propose a new multi-start algorithm where the starting points are determined in a Bayesian optimization framework. Specifically, the method can be understood as to construct a new function by conducting local searches of the original objective function, where the new function attains the same global optima as the original one. Bayesian optimization is then applied to find the global optima of the new local search defined function.
stat
Statistical Failure Mechanism Analysis of Earthquakes Revealing Time Relationships
If we assume that earthquakes are chaotic, and influenced locally then chaos theory suggests that there should be a temporal association between earthquakes in a local region that should be revealed with statistical examination. To date no strong relationship has been shown (refs not prediction). However, earthquakes are basically failures of structured material systems, and when multiple failure mechanisms are present, prediction of failure is strongly inhibited without first separating the mechanisms. Here we show that by separating earthquakes statistically, based on their central tensor moment structure, along lines first suggested by a separation into mechanisms according to depth of the earthquake, a strong indication of temporal association appears. We show this in earthquakes above 200 Km along the pacific ring of fire, with a positive association in time between earthquakes of the same statistical type and a negative association in time between earthquakes of different types. Whether this can reveal either useful mechanistic information to seismologists, or can result in useful forecasts remains to be seen.
stat
Tracing Network Evolution Using the PARAFAC2 Model
Characterizing time-evolving networks is a challenging task, but it is crucial for understanding the dynamic behavior of complex systems such as the brain. For instance, how spatial networks of functional connectivity in the brain evolve during a task is not well-understood. A traditional approach in neuroimaging data analysis is to make simplifications through the assumption of static spatial networks. In this paper, without assuming static networks in time and/or space, we arrange the temporal data as a higher-order tensor and use a tensor factorization model called PARAFAC2 to capture underlying patterns (spatial networks) in time-evolving data and their evolution. Numerical experiments on simulated data demonstrate that PARAFAC2 can successfully reveal the underlying networks and their dynamics. We also show the promising performance of the model in terms of tracing the evolution of task-related functional connectivity in the brain through the analysis of functional magnetic resonance imaging data.
stat
Polynomial Cost of Adaptation for X -Armed Bandits
In the context of stochastic continuum-armed bandits, we present an algorithm that adapts to the unknown smoothness of the objective function. We exhibit and compute a polynomial cost of adaptation to the H{\"o}lder regularity for regret minimization. To do this, we first reconsider the recent lower bound of Locatelli and Carpentier [20], and define and characterize admissible rate functions. Our new algorithm matches any of these minimal rate functions. We provide a finite-time analysis and a thorough discussion about asymptotic optimality.
stat
Another Approximation of the First-Passage Time Densities for the Ratcliff Diffusion Decision Model
We present a novel method for approximating the probability density function (PDF) of the first-passage times in the Ratcliff diffusion decision model (DDM). We implemented this approximation method in $\texttt{C++}$ using the $\texttt{R}$ package $\texttt{Rcpp}$ to utilize the faster $\texttt{C++}$ language while maintaining the $\texttt{R}$ language interface. In addition to our novel approximation method, we also compiled all known approximation methods for the DDM density function (with fixed and variable drift rate), including previously unused combinations of techniques found in the relevant literature. We ported these approximation methods to $\texttt{C++}$ and optimized them to run in this new language. Given an acceptable error tolerance in the value of the PDF approximation, we benchmarked all of these approximation methods to compare their speed against each other and also against commonly used $\texttt{R}$ functions from the literature. The results of these tests show that our novel approximation method is not only orders of magnitude faster than the current standards, but it is also faster than all of the other approximation methods available even after translation and optimization to the faster $\texttt{C++}$ language. All of these approximation methods are bundled in the $\texttt{fddm}$ package for the $\texttt{R}$ statistical computing language; this package is available via CRAN, and the source code is available on GitHub.
stat
Online Boosting for Multilabel Ranking with Top-k Feedback
We present online boosting algorithms for multilabel ranking with top-k feedback, where the learner only receives information about the top k items from the ranking it provides. We propose a novel surrogate loss function and unbiased estimator, allowing weak learners to update themselves with limited information. Using these techniques we adapt full information multilabel ranking algorithms (Jung and Tewari, 2018) to the top-k feedback setting and provide theoretical performance bounds which closely match the bounds of their full information counterparts, with the cost of increased sample complexity. These theoretical results are further substantiated by our experiments, which show a small gap in performance between the algorithms for the top-k feedback setting and that for the full information setting across various datasets.
stat
Exact Semiparametric Inference and Model Selection for Load-Sharing Systems
As a specific proportional hazard rates model, sequential order statistics can be used to describe the lifetimes of load-sharing systems. Inference for these systems needs to account for small sample sizes, which are prevalent in reliability applications. By exploiting the probabilistic structure of sequential order statistics, we derive exact finite sample inference procedures to test for the load-sharing parameters and for the nonparametrically specified baseline distribution, treating the respective other part as a nuisance quantity. This improves upon previous approaches for the model, which either assume a fully parametric specification or rely on asymptotic results. Simulations show that the tests derived are able to detect deviations from the null hypothesis at small sample sizes. Critical values for a prominent case are tabulated.
stat
Bayesian Non-Parametric Detection Heterogeneity in Ecological Models
Detection heterogeneity is inherent to ecological data, arising from factors such as varied terrain or weather conditions, inconsistent sampling effort, or heterogeneity of individuals themselves. Incorporating additional covariates into a statistical model is one approach for addressing heterogeneity, but is no guarantee that any set of measurable covariates will adequately address the heterogeneity, and the presence of unmodelled heterogeneity has been shown to produce biases in the resulting inferences. Other approaches for addressing heterogeneity include the use of random effects, or finite mixtures of homogeneous subgroups. Here, we present a non-parametric approach for modelling detection heterogeneity for use in a Bayesian hierarchical framework. We employ a Dirichlet process mixture which allows a flexible number of population subgroups without the need to pre-specify this number of subgroups as in a finite mixture. We describe this non-parametric approach, then consider its use for modelling detection heterogeneity in two common ecological motifs: capture-recapture and occupancy modelling. For each, we consider a homogeneous model, finite mixture models, and the non-parametric approach. We compare these approaches using two simulation studies, and observe the non-parametric approach as the most reliable method for addressing varying degrees of heterogeneity. We also present two real-data examples, and compare the inferences resulting from each modelling approach. Analyses are carried out using the \texttt{nimble} package for \texttt{R}, which provides facilities for Bayesian non-parametric models.
stat
Product risk assessment: a Bayesian network approach
Product risk assessment is the overall process of determining whether a product, which could be anything from a type of washing machine to a type of teddy bear, is judged safe for consumers to use. There are several methods used for product risk assessment, including RAPEX, which is the primary method used by regulators in the UK and EU. However, despite its widespread use, we identify several limitations of RAPEX including a limited approach to handling uncertainty and the inability to incorporate causal explanations for using and interpreting test data. In contrast, Bayesian Networks (BNs) are a rigorous, normative method for modelling uncertainty and causality which are already used for risk assessment in domains such as medicine and finance, as well as critical systems generally. This article proposes a BN model that provides an improved systematic method for product risk assessment that resolves the identified limitations with RAPEX. We use our proposed method to demonstrate risk assessments for a teddy bear and a new uncertified kettle for which there is no testing data and the number of product instances is unknown. We show that, while we can replicate the results of the RAPEX method, the BN approach is more powerful and flexible.
stat
Unpacking the Drop in COVID-19 Case Fatality Rates: A Study of National and Florida Line-Level Data
Since the COVID-19 pandemic first reached the United States, the case fatality rate has fallen precipitously. Several possible explanations have been floated, including greater detection of mild cases due to expanded testing, shifts in age distribution among the infected, lags between confirmed cases and reported deaths, improvements in treatment, mutations in the virus, and decreased viral load as a result of mask-wearing. Using both Florida line-level data and recently released (but incomplete) national line level data from April 1, 2020 to November 1, 2020 on cases, hospitalizations, and deaths--each stratified by age--we unpack the drop in case fatality rate (CFR). Under the hypothesis that improvements in treatment efficacy should correspond to decreases in hospitalization fatality rate (HFR), we find that improvements in the national data do not always match the story told by Florida data. In the national data, treatment improvements between the first wave and the second wave appear substantial, but modest when compared to the drop in aggregate CFR. By contrast, possibly due to constrained resources in a much larger second peak, Florida data suggests comparatively little difference between the first and second wave, with HFR slightly increasing in every age group. However, by November 1st, both Florida and national data suggest significant decreases in age-stratified HFR since April 1st. By accounting for several confounding factors, our analysis shows how age-stratified HFR can provide a more realistic picture of treatment improvements than CFR. One key limitation of our analysis is that the national line-level data remains incomplete and plagued by artifacts. Our analysis highlights the crucial role that this data can play but also the pressing need for public, complete, and high-quality age-stratified line-level data for both cases, hospitalizations, and deaths for all states.
stat
Conditional Precedence Orders for Stochastic Comparison of Random Variables
Most of the stochastic orders for comparing random variables, considered in the literature, are afflicted with two main drawbacks: (i) lack of connex property and (ii) lack of consideration of any dependence structure between the random variables. Both these drawbacks can be overcome at the cost of transitivity with the stochastic precedence order, which may seem to be a good choice in particular when only two random variables are under consideration, a situation where the question of transitivity does not arise. In this paper, we show that even under such favorable conditions, stochastic precedence order may direct to misleading conclusion in certain situations and develop variations of the order to address the phenomenon.
stat
Distributional Clustering: A distribution-preserving clustering method
One key use of k-means clustering is to identify cluster prototypes which can serve as representative points for a dataset. However, a drawback of using k-means cluster centers as representative points is that such points distort the distribution of the underlying data. This can be highly disadvantageous in problems where the representative points are subsequently used to gain insights on the data distribution, as these points do not mimic the distribution of the data. To this end, we propose a new clustering method called "distributional clustering", which ensures cluster centers capture the distribution of the underlying data. We first prove the asymptotic convergence of the proposed cluster centers to the data generating distribution, then present an efficient algorithm for computing these cluster centers in practice. Finally, we demonstrate the effectiveness of distributional clustering on synthetic and real datasets.
stat